
Non-Texture Inpainting by Curvature-DrivenDi�usions (CDD)Tony F. Chan and Jianhong Shen �Department of Mathemati
s, UCLALos Angeles, CA 90095-1555(
han�math.u
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s & IMAUniversity of MinnesotaMinneapolis, MN 55455(jhshen�math.umn.edu)1 Introdu
tionInpainting refers to the pra
ti
e of artists of restoring an
ient paintings. Simplyspeaking, inpainting is to 
omplete a painting by �lling in the missing informa-tion on pres
ribed domains. On su
h domains, the original painting has beendamaged due to aging, s
rat
hing, or some other fa
tors.Inpainting and diso

lusion in vision analysis are 
losely 
onne
ted but also
learly di�erent. Both try to re
over the missing visual information from agiven 2-D image, and mathemati
ally, 
an be 
lassi�ed into the same 
ategoryof inverse problems. The di�eren
e lies in both their goals and approa
hes.The main goal of diso

lusion is to model how human vision works to 
om-plete o

luded obje
ts in a given 2-D s
ene, and understand their physi
al or-ders in the dire
tion perpendi
ular to the imaging plane, and thus re
onstru
tapproximately a meaningful 3-dimensional world (Nitzberg, Mumford, and Sh-iota [14℄). The outputs from diso

lusion are 
omplete obje
ts, and their relativeorders or depth. Inpainting, on the other hand, is to 
omplete a 2-D image whi
hhave 
ertain regions missing. The output is still a 2-D image. (In appli
ations,a missing region 
an indeed be the 2-D proje
tion of a real obje
t, su
h as thefemale statue in Figure 9.) Therefore, from the vision point of view, inpaintingis a lower level pro
ess 
ompared to diso

lusion.This fundamental di�eren
e naturally in
uen
es the approa
hes. The mainapproa
h for diso

lusion is to segment the regions in a 2-D image, and then�Resear
h supported by grants from NSF under grant number DMS-9626755 and fromONR under N00014-96-1-0277. Manus
ript is available at the site of UCLA CAM Reports:www.math.u
la.edu/applied/
am/index.html. 1



logi
ally 
onne
t those whi
h belong to the proje
tion of a same physi
al obje
t,and �nally generate the order or depth for all the 
ompleted obje
ts. Edge
ompletion is one 
ru
ial step during the whole pro
ess. Diso

lusion also oftenuses some high level information about obje
ts (su
h as the near symmetry ofhuman fa
es). For inpainting, an ideal s
heme should be able to re
onstru
t anin
omplete 2-D image in every detail so that it looks \
omplete" and \natural."More spe
i�
ally, to inpaint, is not only to 
omplete the broken edges, but also to
onne
t ea
h broken isophote (or level-line), so that the 2-D obje
ts 
ompleted insu
h a way show their natural variation in intensity (or 
olor for 
olor images) [3,6, 11℄.This 
omparison helps us understand better the real nature of the inpaintingproblem in a broader 
ontext.The terminology of digital inpainting was �rst introdu
ed by Bertalmio,Sapiro, Caselles, and Ballester [3℄. Inspired by the real inpainting pro
ess ofartists, the authors invented a su

essful digital inpainting s
heme (referredto below as the BSCB inpainting s
heme for 
onvenien
e) based on the PDEmethod. The authors also deepened the interest in digital inpainting by demon-strating its broad appli
ations in text removal, restoring old photos, and 
reatingspe
ial e�e
ts su
h as obje
t disappearan
e from a s
ene.Though a qualitative understanding based on the transportation me
hanism
an be well established, rigorous mathemati
al analysis on the BSCB s
hemeappears to be mu
h more diÆ
ult. This has en
ouraged Chan and Shen [6℄ todevelop a new inpainting model whi
h is founded on the variational prin
iple.Sin
e the energy fun
tion is based on the total variational (TV) norm [6℄, themodel is 
alled TV inpainting. The TV inpainting s
heme is surprisingly a 
losevariation of the well known restoration model of Rudin, Osher and Fatemi [16,17℄. The Euler-Lagrange equation for the TV inpainting model is�u�t (or 0) = r � � rujruj�+ �e(u� u0); (1)valid on the entire image domain 
. The extended Lagrange multiplier �e =�(1� �D), where �D is the 
hara
teristi
 fun
tion (or mask) of the inpaintingdomain D, and � is as in the TV denoising s
heme [16, 17℄. Therefore, insidethe inpainting domain, the model simply employs an anisotropi
 di�usion:�u�t (or 0) = r � � rujruj� : (2)The TV inpainting model also explains su

essfully some aspe
ts of the hu-man diso

lusion pro
ess in vision psy
hology [6℄, in
luding the entanglementillusions gathered and analyzed by Kanizsa, the great psy
hologist [6, 9℄.The major drawba
k of the TV inpainting model is that it does not restorewell a single obje
t when its dis
onne
ted remaining parts are separated farapart by the inpainting domain (see Figure 1 for a typi
al example). Su
hdependen
y on the aspe
t ratio of the missing part of the obje
t is against twofa
ts: 2



To be inpainted TV inpaiting for l > w

l

w

inpainting domain

TV inpainting for l < wFigure 1: The output of the TV inpainting depends on the aspe
t ratio of themissing part of the obje
t.(a) The Conne
tivity Prin
iple in the human diso

lusion pro
ess. The visionpsy
hology (Kanisza [9℄, Nitzberg, Mumford and Shiota [14℄) shows thathumans mostly seem to prefer the 
onne
ted result. For example, in Fig-ure 2, no matter what the relative ratio of w to l is, the whole bar alwaysseems to be the best guess to most of us, psy
hologi
ally.
Answer from most humans Answer by the TV modelWhat is behind the box?

(l >> w)
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Figure 2: When l > w, the TV inpainting (or diso

lusion) result is against theConne
tivity Prin
iple of human per
eption | humans mostly prefer having thetwo disjoint parts 
onne
ted, even when they are far apart [9, 14℄.(b) In appli
ation, an average image often 
ontains obje
ts of a large dynami
range of s
ales. Hen
e in most inpainting problems, it is 
ommonly foundthat \slim" obje
ts are broken by the inpainting domains even though thedomains themselves are small (to humans). A good inpainting s
hemeshould en
ourage the 
onne
tion of these broken slim obje
ts (lines, thinbars, or simple �ber-like textures; also see the numeri
al examples 
ominglater).In this paper, we propose a new inpainting model based on the di�usionme
hanism as inspired by our previous work on the TV inpainting, aiming at3



realizing the Conne
tivity Prin
iple. Sin
e in the new di�usion model, the
ondu
tivity 
oeÆ
ient depends on the 
urvature of the isophotes, we 
all su
hnew di�usions Curvature-Driven Di�usions (CDD), as 
ompared to the otherdi�usion models prevailing in image and vision analysis (Perona and Malik [15℄,Morel and Solomini [12℄).The CDD inpainting model, like the TV and BSCB models, is based on thePDE method. Therefore, generally it is dire
tly appli
able only to non-textureimages, sin
e visually meaningful statisti
al 
u
tuations in textures are oftensmoothed out by PDE's. For re
ent works related to texture inpaintings, seeWei and Levoy [18℄, and Igehy and Pereita [8℄. In the future, we plan to applythe CDD inpainting s
heme indire
tly to texture images, based on the multis
alerepresentation of textures (su
h as Burt and Adelson's Gaussian pyramid [4℄,and wavelets transforms).The organization of the paper goes as follows. In Se
tion 2, we explain whathas been missed by the TV inpainting model, and why the CDD model 
an �xit. We formulate the CDD inpainting equations for both an ideal 
lean image,and for a more realisti
 noisy image. Conne
tions to some related existingworks in image and vision analysis are made. Se
tion 3 addresses the numeri
alimplementation of the CDD model. A dis
retization s
heme based on �nitedi�eren
ing is explained. In Se
tion 4, we show some typi
al appli
ations ofthe CDD inpainting model in diso

lusion, s
rat
h removal, text removal, andspe
ial e�e
ts.2 Inpainting via Curvature-Driven Di�usions (CDD)We start out by �rst analyzing how the TV inpainting model 
an violate theConne
tivity Prin
iple. Then, based on su
h an analysis, we propose our CDDinpainting s
heme.In the TV model, the di�usion strength only depends on the 
ontrast orstrength of the isophotes, whi
h is re
e
ted in the expression for the 
ondu
tivity
oeÆ
ient: 1 D̂ = 1jruj : (3)Therefore, the di�usion strength does not depend on the geometri
 informa-tion of an isophote. For a plane 
urve, its geometry is en
oded into its s
alar
urvature �.Then why does this a

ount for the TV's failure in 
ompleting a whole obje
tfor a large s
ale ratio l : w as depi
ted in Figure 2? The rightmost one is theoutput from the TV inpainting, in whi
h, the 
urvature � = �1 at the four
orners a, b, 
 and d. In 
ontrast, in the\psy
hologi
ally" 
orre
t output inthe middle, all the isophotes are 
ompleted so that they stret
h out as 
atly aspossible, or equivalently, the 
urvature � is as small as possible (in magnitude).1Sin
e the symbol D is reserved in this paper for the inpainting domain to be 
onsistentwith the notations in [6℄, we shall use D̂ instead for the 
ondu
tivity 
oeÆ
ient to follow the
onventional notation D. 4



The 
ombination of the above qualitative analysis on what has gone wrongwith the TV output when l > w, and what is 
hara
teristi
 with the psy
ho-logi
ally 
orre
t output, inspires our CDD inpainting model, whi
h we are nowready to introdu
e.We modify the TV (or more generally, the Perona-Malik [15℄) 
ondu
tivity
oeÆ
ient D̂ = f(jruj); (4)to D̂ = g(j�j)jruj ; (5)where g is the \annihilator" of large 
urvatures and stabilizer of small 
urva-tures: g(s) = 8><>:0; s = 01; s =1in between; 0 < s <1: (6)With this 
hoi
e, the di�usion gets stronger where the isophotes are having alarger 
urvature, while it dies away as the isophotes stret
h out. Thus for thetypi
al example shown in Figure 2, the CDD ne
essarily leads to a steady statethat is 
loser to what most humans per
eive in the middle. On the other hand,the steady state for the TV di�usion as plotted in the rightmost in Figure 2 isunstable in this new 
urvature-driven di�usion, sin
e at the four 
orners a, b,
 and d, the 
urvatures are �1 (or more pre
isely, behave like the Dira
 deltafun
tions lo
ally along the edge isophotes). Su
h di�usion patterns are exa
tlywhat we have been expe
ting.While the 
hoi
e g(1) = 1 has been thoroughly motivated above, therequirement of g(0) = 0 is less obvious. Suppose we allow g(0) = a 6= 0. Thenthe CDD model degenerates to the se
ond order equation of TV inpainting for
atter isophotes. By doing so, we are again putting the Conne
tivity Prin
iplein risk. Su
h spe
ulation has been well supported by our numeri
al experiments.In the 
urrent paper, we have 
hoseng(s) = sp; s > 0; p � 1:The 
urvature � at a pixel x is the s
alar 
urvature of the isophote through it,and is given by � = r � � rujruj� :Thus, the CDD inpainting model reads8<:�u�t (or 0) = r � �g(j�j)jruj ru� ; x 2 Du = u0; x 2 D
: (7)Here the inpaiting domain D is mathemati
ally understood as an open set, i.e.,not in
luding its boundary; and u0 is the available part of the image. If we solve5



the time mar
hing equation, then the initial 
ondition 
an be any 
ompatibleguess, that is, any u(x; 0) that satis�es: u(x; 0) = u0(x), x 2 D
.The 
ux �eld for the 
urvature-driven di�usion isj = �D̂ru = �g(j�j)jruj ru; (8)whi
h is anti-gradient and hen
e stable. Physi
ally, we 
an treat the imagefun
tion u as the density fun
tion of a 
ertain spe
ies of parti
les. The availablepart of the original image u0 a
ts as a 
onstant sour
e or sink of parti
les throughthe transa
tions at the boundaries. For example, suppose we are inpainting abroken bar in a uniform ba
kground. The 
onne
ting of the two broken partsis realized, in this parti
le di�usion pi
ture, by the parti
les 
onstantly 
uxedinto (or out of) the inpainting domain through its boundaries.In most 
ases, the available part of the original image u0 is noisy (su
h as ina digitally s
anned photo due to the dust resting on the s
anning glass). TheCDD inpainting s
heme formulated in Eq. (7) is sensitive to the noise sin
e thelatter will enter the inpainting domain via the boundary 
ux 
ow.Two approa
hes 
an diminish this noise e�e
t. First, one 
an denoise theavailable part of the original image before applying the CDD inpainting s
heme.However, due to the topologi
al 
omplexity of a general inpainting domain, theimplementation of most edge-enhan
ing denoising s
hemes is often nontrivial.The se
ond approa
h, is to intrinsi
ally build the denoising a
tion into theCDD inpainting s
heme. Su
h pra
ti
e seems to be natural for the humaninpainting and diso

lusion pro
ess. Humans seem to be the master in dete
tingfeatures from the available portion of a noisy image, and at the same time,extending them into the inpainting domain.Su
h methodology also appears in other mathemati
al models in imageand vision analysis. The most famous one is the Mumford-Shah segmentationmodel [13℄, in whi
h, segmentation and denoising are 
arried out simultaneously.Other examples in
lude the Rudin-Osher-Fatemi [17℄ deblurring model, and ourprevious TV inpainting model [6℄.This se
ond approa
h suggests a model of a two-phase nature: inside theinpainting domain, we apply the CDD inpainting s
heme (7); while outside, wea
tivate the Rudin-Osher-Fatemi TV denoising model [16, 17℄:�u�t (or 0) = r � � rujruj�+ �(u� u0); for all x 2 D
: (9)The two a
tions 
an be 
on
isely 
ombined into one equation as in the TVinpainting s
heme [6℄:�u�t (or 0) = r � �G(x; j�j)jruj ru�+ �e(x)(u� u0); x 2 
: (10)Both the 
ondu
tivity 
oeÆ
ient and Lagrange multiplier have two phases:G(x; s) = (1; x 2 D
g(s); x 2 D; �e(x) = (�; x 2 D
0; x 2 D; (11)6



where g and � 
ome from Eq. (7) and the TV denoising model, separately. Inappli
ations, � 
an be estimated from the noise level as dis
ussed in the TVdenoising model [6, 17℄. In the two-phase equation (10), the phase transitiono

urs along the boundary of the inpainting domain. The boundary 
onditionat �
 for (10) is determined by the TV denoising equation, and thus a natural
hoi
e would be the Neumann adiabati
 
ondition [7, 17℄.The CDD inpainting model we propose here is 
losely related to some otherexisting works in image and vision analysis.(a) Anisotropi
 di�usion has been a powerful tool in image and vision analysis.Well-known examples in
lude the Perona-Malik di�usion for edge enhan
e-ment and dete
tion [15℄: �u�t = r � [f(jruj)ru℄;where f(s) is a non-negative fun
tion representing the 
ondu
tivity 
oeÆ-
ient inversely proportional to the strength of an isophote; and its general-ization in the framework of mean 
urvature motions by Alvarez, Lions andMorel [1℄: �u�t = f(rG� � u) jruj r � � rujruj� ; (12)where G� is a Gaussian molli�er with the �ltering s
ale �, and f(s) isa \time-
orre
tor." The nonlinear di�usion operator is also important inNitzberg, Mumford and Shiota's work in modeling diso

lusion and depth [14℄.The re
ent monograph by Wei
kert [19℄ is 
ompletely devoted to the topi
of di�usion in image analysis.All these di�usion models are of se
ond-order and the di�usion dependssolely on the strength of an isophote, but not on its geometry, i.e., the
urvature. In Alvarez-Lions-Morel's formula (12), although the 
urvatureappears, its a
tion is on the propagation speed along the normal 
hara
teris-ti
s, not on the di�usion. The CDD is of third-order, and both the strengthand geometry of isophotes determine the di�usion. To our best knowledge,su
h di�usion model is introdu
ed in this paper for the �rst time in imageanalysis.(b) The main part of the BSCB inpainting s
heme [3℄ is also a third orderequation: �u�t = r?u � rL(u);where, r?u is the 90-degree-rotated 
opy of the gradient, and L(u) is anoperator that evaluates the degree of smoothness. For example, the authorsmainly used L(u) = �u, the Lapla
ian. It is very interesting to note the
ompletely \orthogonal" manners of BSCB's equation and our CDD: theBSCB equation is based on the elegant intuition of transportation (or prop-agation) of smoothness along the isophotes, while the CDD di�uses image7



pixel information perpendi
ular to isophotes (i.e., along the normal dire
-tions). It will be interesting to explore the possibility of 
ombining thesetwo 
omplementary models.(
) We would also like to mention some other interesting works on non-textureinpaintings or diso

lusions, whi
h take di�erent approa
hes. Caselles,Morel and Sbert in [5℄ developed the axiomati
 framework for lo
al im-age interpolations based on se
ond order di�erential operators. Masnouand Morel in [11℄ proposed the fun
tionalization of the 1-dimensional Eu-ler's Elasti
a [14℄ as a variational formulation for non-texture diso

lusionproblems. The authors solved it numeri
ally by mat
hing and 
onne
tingindividual broken isophotes using dynami
al programming. In their workon nonlinear image interpolation, Armstrong, Kokaram and Rayner [2℄ pro-posed to use the min-max fun
tion as the predi
tor for missing image in-formation, and formulated a least-square error minimization problem. Nu-meri
ally, it was solved using a 
ombination of simulated annealing andthe 
onjugate gradient method. It is apparent from these examples, thatgenerally the inpainting problem is very ill-posed, and fast numeri
al imple-mentation is as 
hallenging as 
oming up with a right mathemati
al modelfor inpaintings.Sin
e our CDD inpainting model is based on PDE's, its implementationnaturally depends on the numeri
al PDE method.3 Numeri
al ImplementationIn this se
tion, we explain the expli
it time mar
hing s
heme for our CDDinpainting model (7) or (10). Take (7) for example:�u�t = �r � j:The expli
it s
heme iterates as:u(n+1) = u(n) ��t r � j(n);where �t is the numeri
al time step, and (n) denotes the sampling at n�t. Wenow detail on the spatial dis
retization.The CDD inpainting equation (7) or (10) is of 3rd order and in the divergen
eform. On the natural re
tangular pixel grid of a given image, we take the half-point 
entral di�eren
e for the divergen
e operator. That is, near a pixel, say(0; 0) (see Figure 3), the divergen
e form r � j is dis
retized to (assuming thatj = (j1; j2)) j1( 12 ;0) � j1(� 12 ;0)h + j2(0; 12 ) � j2(0;� 12 )h :8



Here the CDD 
ux j is given by the expression (8), a

ording to whi
h, we needto obtain the half-point valuesru(i;j); �(i;j); ij = 0; jij+ jjj = 12 :Take (i; j) = ( 12 ; 0) for example (refer to Figure 3):
�������� ����

����

����

����

(0,0)

(0,−1)

(0,1)

(−1/2,0)

(0,−1/2)

(0,1/2)

(−1,0) (1,0)

(1/2,0)

Pixel locations

 Half−points Figure 3: Numeri
al implementation.(I) The expression for ru( 12 ;0).We haveru( 12 ;0) =  �u�x ����( 12 ;0); �u�y ����( 12 ;0)! ' �u(1;0) � u(0;0)h ; u( 12 ;1) � u( 12 ;�1)2h � :For the new half-point values u( 12 ;�1), we take the average of u(0;�1)and u(1;�1). Then both the ru( 12 ;0) and jruj( 12 ;0) are represented bythe pixel values.(II) The expression for �( 12 ;0).Re
all that � = r � � rujruj� = ��x � uxjruj�+ ��y � uyjruj� :Thus, we 
an use again the 
entral di�eren
e divergen
e form for thehalf-point value �( 12 ;0). For example,h � ��x � uxjruj�( 12 ;0) ' � uxjruj�(1;0) � � uxjruj�(0;0) :9



For the new quantities like (ux=jruj)(1;0), we then simply use the ordinarypixel wise 
entral di�eren
e. In this way, the half-point 
urvature �( 12 ;0)is expressed by the image pixel values.Sin
e we are always using the divergen
e form, 
ertain 
onservation-law likeresults 
an be established, and, the numeri
al s
heme is indeed stable a

ordingto our experiments.Sin
e the numeri
al s
heme only utilizes 
entral di�eren
ing, it is invariantunder digital rotations of the input image, namely, multiples of �=2. (Underdigital rotations, the image data always live on a re
tangular grid.)As the time steps in
rease, the numeri
al image fun
tion u stably 
onvergesto the �nal result. However, su
h time mar
hing is generally slow for imagesof large size. Thus, a

eleration te
hniques are worthwhile to investigate. Forexample, one 
an imitate the Marquina-Osher speeding modi�
ation for the TVdi�usion [10℄.One simple te
hnique that we have used is to start the CDD time mar
hingwith a good initial guess u(x; 0): we run the TV inpainting model (1) �rst, andits output is then fed into the CDD s
heme as a good initial guess. Sin
e the TVinpainting model is of se
ond order, and allows a positive energy fun
tional [6℄,the time mar
hing step 
an be mu
h larger than the 3rd order CDD, and theoutput 
onverges mu
h faster. Besides the time mar
hing approa
h for the TVinpainting model, Chan and Shen in [6℄ also solved dire
tly its steady state equa-tion via the linearization and relaxation te
hniques in numeri
al mathemati
s.4 Examples of CDD InpaintingIn this se
tion, we show some typi
al numeri
al examples and appli
ations ofthe CDD inpainting s
heme, whi
h in
lude simple diso

lusions, restorationof an old photo with s
rat
hes, text removal from an image, and the spe
iale�e
t of removing an obje
t from a s
ene (as inspired by [3℄). The individual
aptions give more detailed explanations. Unless noti�ed, the annihilator oflarge 
urvatures in Eq. (6) is set to be g(s) = s. (Our numeri
al experimentsdo not show signi�
ant di�eren
e among the di�erent 
hoi
es of g(s) = sp withdistin
t p values.)A
knowledgmentsThe authors would like to thank G. Sapiro's group at ECE, University of Min-nesota, for introdu
ing us this interesting problem, and for generously exposingtheir new work and ideas to us. The authors would also like to thank StanOsher, Luminita Vese, Sung Ha Kang, and Laurent Demanet for their supportand help.
10



The original complete image The mask for the inpainting domain 

Initially filled in with a random guess The output from the CDD Inpainting

Figure 4: Inpainting a broken bar. Here the inpainting s
ale l is mu
h largerthan the width w of the bar. Therefore, the TV inpainting model [6℄ will outputtwo separated bars. The CDD inpainting produ
es a whole bar, whi
h is whatmost humans tend to per
eive.Referen
es[1℄ L. Alvarez, P.-L. Lions, and J.M. Morel. Image sele
tive smoothing andedge dete
tion by nonlinear di�usion (II). SIAM J. Num. Anal., 29:845{866, 1992.[2℄ S. Armstrong, A. Kokaram, and P.J.W. Rayner. Nonlinear interpolation ofmissing data using min-max fun
tions. IEEE Int. Conf. Nonlinear Signaland Image Pro
essings, 1997.[3℄ M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting.Te
hni
al report, ECE-University of Minnesota, 1999.[4℄ P. Burt and E. Adelson. The Lapla
ian pyramid as a 
ompa
t image 
ode.IEEE Trans. Comm., 31:482{540, 1983.11



The original complete image The mask for the inpainting domain 

Initially filled in with a random guess The output from the CDD Inpainting with k2

Figure 5: Inpainting a broken ring. Certainly, this example 
an also be under-stood as a thi
k 
ross o

luding a thin ring. Again the TV inpainting modeloutputs four dis
onne
ted ar
s, while the CDD inpainting s
heme su

essfully
ompletes the ring to the �rst order (i.e. using straight lines for 
ir
ular ar
s).[5℄ V. Caselles, J.-M. Morel, and C. Sbert. An axiomati
 approa
h to imageinterpolation. IEEE Trans. Image Pro
essing, 7(3):376{386, 1998.[6℄ T. Chan and J. Shen. Mathemati
al models for lo
al determinis-ti
 inpaintings. Submitted. UCLA CAM Report 00-11 available at:www.math.u
la.edu/applied/
am/index.html, 2000.[7℄ T. Chan and J. Shen. Variational restoration of non-
at image features:models and algorithms. SIAM J. Appl. Math., in press, 2000.[8℄ H. Igehy and L. Pereira. Image repla
ement through texture synthesis.Pro
eedings of 1997 IEEE Int. Conf. Image Pro
essing.[9℄ G. Kanizsa. Organization in Vision. Praeger, New York, 1979.
12



The original image to be inpainted
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The mask for the inpainting domain 
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Initially filled in with a random guess
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The output from the CDD inpainting
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30Figure 6: Removing s
rat
hes in a damaged photograph. From this example,one sees the di�eren
e between inpainting and diso

lusion. In vision resear
h,diso

lusion mostly deals with boundary edges, while for inpainting, we have to
omplete isophotes (i.e. level lines) in all kinds of 
ontrast, in
luding weak edgessu
h as the shaded side of the nose in the present image. (Image sour
e: [3℄.)[10℄ A. Marquina and S. Osher. Le
ture Notes in Computer S
ien
e, volume1682, 
hapter \A new time dependent model based on level set motion fornonlinear deblurring and noise removal", pages 429{434. 1999.[11℄ S. Masnou and J.-M. Morel. Level-lines based diso

lusion. Pro
eedings of5th IEEE Int'l Conf. on Image Pro
ess., Chi
ago, 3:259{263, 1998.[12℄ J.-M. Morel and S. Solimini. Variational Methods in Image Segmentation,volume 14 of Progress in Nonlinear Di�erential Equations and Their Ap-pli
ations. Birkh�auser, Boston, 1995.[13℄ D. Mumford and J. Shah. Optimal approximations by pie
ewise smoothfun
tions and asso
iated variational problems. Comm. Pure Applied. Math.,XLII:577{685, 1989.[14℄ M. Nitzberg, D. Mumford, and T. Shiota. Filtering, Segmentation, andDepth. Le
ture Notes in Comp. S
i., Vol. 662. Springer-Verlag, Berlin,1993.[15℄ P. Perona and J. Malik. S
ale-spa
e and edge dete
tion using anisotropi
di�usion. IEEE Trans. Pattern Anal. Ma
hine Intell., 12:629{639, 1990.13



The original complete image
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The mask for the inpainting domain 
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Initially filled in with a random guess
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The output from the CDD Inpainting
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40Figure 7: Removing thi
k text from an image. This example partially showswhy in most inpainting appli
ations, thin lines or bars should be 
onne
ted. Ifwe had used the TV inpainting model [6℄, the single bla
k rim of the T-shirt(around the arm) would have been broken sin
e its width is smaller than thatof the letters at the interse
tions.[16℄ L. Rudin and S. Osher. Total variation based image restoration with freelo
al 
onstraints. Pro
. 1st IEEE ICIP, 1:31{35, 1994.[17℄ L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noiseremoval algorithms. Physi
a D, 60:259{268, 1992.[18℄ L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-stru
tured ve
torquantization. Preprint, Computer S
ien
e, Stanford University, 2000; Alsoin Pro
eedings of SIGGRAPH 2000.[19℄ J. Wei
kert. Anisotropi
 Di�usion in Image Pro
essing. Teubner-Verlag,Stuttgart, Germany, 1998.
14



The image to be inpainted

The inpainting domain is the text region

After inpainting

Figure 8: Removal of dense text. One major advantage of PDE models su
h asthe CDD here is that it allows the inpainting domain to have any topology.15



A scene from UCLA campus

SOS: who stole my company?

To be inpainted The mask

Initial guess CDD inpainting

Figure 9: \Who stole my 
ompany" (from the 
ourtyard of Rolfe Hall, UCLA
ampus)? This example shows the diÆ
ulty of real inpainting problems dueto the rapid variations of isophotes and the roughness of image fun
tions. Italso illustrates why PDE based inpainting methods are not ideal for dire
tlyinpainting textures like grass in the 
urrent image. (Similar dis
ussion 
analso be found in Bertalmio et al. [3℄.) Designing dire
t inpainting s
hemes fortextures is another important task. Re
ent works (based on non-PDE methods)
an be found in Wei and Levoy [18℄, and Igehy and Pereita [8℄.
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