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1 Introduction

Inpainting refers to the practice of artists of restoring ancient paintings. Simply
speaking, inpainting is to complete a painting by filling in the missing informa-
tion on prescribed domains. On such domains, the original painting has been
damaged due to aging, scratching, or some other factors.

Inpainting and disocclusion in vision analysis are closely connected but also
clearly different. Both try to recover the missing visual information from a
given 2-D image, and mathematically, can be classified into the same category
of inverse problems. The difference lies in both their goals and approaches.

The main goal of disocclusion is to model how human vision works to com-
plete occluded objects in a given 2-D scene, and understand their physical or-
ders in the direction perpendicular to the imaging plane, and thus reconstruct
approximately a meaningful 3-dimensional world (Nitzberg, Mumford, and Sh-
iota [14]). The outputs from disocclusion are complete objects, and their relative
orders or depth. Inpainting, on the other hand, is to complete a 2-D image which
have certain regions missing. The output is still a 2-D image. (In applications,
a missing region can indeed be the 2-D projection of a real object, such as the
female statue in Figure 9.) Therefore, from the vision point of view, inpainting
is a lower level process compared to disocclusion.

This fundamental difference naturally influences the approaches. The main
approach for disocclusion is to segment the regions in a 2-D image, and then
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logically connect those which belong to the projection of a same physical object,
and finally generate the order or depth for all the completed objects. FEdge
completion is one crucial step during the whole process. Disocclusion also often
uses some high level information about objects (such as the near symmetry of
human faces). For inpainting, an ideal scheme should be able to reconstruct an
incomplete 2-D image in every detail so that it looks “complete” and “natural.”
More specifically, to inpaint, is not only to complete the broken edges, but also to
connect each broken isophote (or level-line), so that the 2-D objects completed in
such a way show their natural variation in intensity (or color for color images) [3,
6, 11].

This comparison helps us understand better the real nature of the inpainting
problem in a broader context.

The terminology of digital inpainting was first introduced by Bertalmio,
Sapiro, Caselles, and Ballester [3]. Inspired by the real inpainting process of
artists, the authors invented a successful digital inpainting scheme (referred
to below as the BSCB inpainting scheme for convenience) based on the PDE
method. The authors also deepened the interest in digital inpainting by demon-
strating its broad applications in text removal, restoring old photos, and creating
special effects such as object disappearance from a scene.

Though a qualitative understanding based on the transportation mechanism
can be well established, rigorous mathematical analysis on the BSCB scheme
appears to be much more difficult. This has encouraged Chan and Shen [6] to
develop a new inpainting model which is founded on the variational principle.
Since the energy function is based on the total variational (TV) norm [6], the
model is called TV inpainting. The TV inpainting scheme is surprisingly a close
variation of the well known restoration model of Rudin, Osher and Fatemi [16,
17]. The Euler-Lagrange equation for the TV inpainting model is
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valid on the entire image domain 2. The extended Lagrange multiplier A\, =
A1 — xp), where xp is the characteristic function (or mask) of the inpainting
domain D, and A is as in the TV denoising scheme [16, 17]. Therefore, inside
the inpainting domain, the model simply employs an anisotropic diffusion:
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The TV inpainting model also explains successfully some aspects of the hu-
man disocclusion process in vision psychology [6], including the entanglement
illusions gathered and analyzed by Kanizsa, the great psychologist [6, 9].

The major drawback of the TV inpainting model is that it does not restore
well a single object when its disconnected remaining parts are separated far
apart by the inpainting domain (see Figure 1 for a typical example). Such
dependency on the aspect ratio of the missing part of the object is against two
facts:

(2)
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Figure 1: The output of the TV inpainting depends on the aspect ratio of the
missing part of the object.

(a) The Connectivity Principle in the human disocclusion process. The vision
psychology (Kanisza [9], Nitzberg, Mumford and Shiota [14]) shows that
humans mostly seem to prefer the connected result. For example, in Fig-
ure 2, no matter what the relative ratio of w to [ is, the whole bar always
seems to be the best guess to most of us, psychologically.

What is behind the box? Answer from most humans Answer by the TV mode
(1l >>w)

Figure 2: When | > w, the TV inpainting (or disocclusion) result is against the
Connectivity Principle of human perception — humans mostly prefer having the
two disjoint parts connected, even when they are far apart [9, 14].

(b) In application, an average image often contains objects of a large dynamic
range of scales. Hence in most inpainting problems, it is commonly found
that “slim” objects are broken by the inpainting domains even though the
domains themselves are small (to humans). A good inpainting scheme
should encourage the connection of these broken slim objects (lines, thin
bars, or simple fiber-like textures; also see the numerical examples coming
later).

In this paper, we propose a new inpainting model based on the diffusion
mechanism as inspired by our previous work on the TV inpainting, aiming at



realizing the Connectivity Principle. Since in the new diffusion model, the
conductivity coefficient depends on the curvature of the isophotes, we call such
new diffusions Curvature-Driven Diffusions (CDD), as compared to the other
diffusion models prevailing in image and vision analysis (Perona and Malik [15],
Morel and Solomini [12]).

The CDD inpainting model, like the TV and BSCB models, is based on the
PDE method. Therefore, generally it is directly applicable only to non-texture
images, since visually meaningful statistical fluctuations in textures are often
smoothed out by PDE’s. For recent works related to texture inpaintings, see
Wei and Levoy [18], and Igehy and Pereita [8]. In the future, we plan to apply
the CDD inpainting scheme indirectly to texture images, based on the multiscale
representation of textures (such as Burt and Adelson’s Gaussian pyramid [4]
and wavelets transforms).

The organization of the paper goes as follows. In Section 2, we explain what
has been missed by the TV inpainting model, and why the CDD model can fix
it. We formulate the CDD inpainting equations for both an ideal clean image,
and for a more realistic noisy image. Connections to some related existing
works in image and vision analysis are made. Section 3 addresses the numerical
implementation of the CDD model. A discretization scheme based on finite
differencing is explained. In Section 4, we show some typical applications of
the CDD inpainting model in disocclusion, scratch removal, text removal, and
special effects.
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2 Inpainting via Curvature-Driven Diffusions (CDD)

We start out by first analyzing how the TV inpainting model can violate the
Connectivity Principle. Then, based on such an analysis, we propose our CDD
inpainting scheme.

In the TV model, the diffusion strength only depends on the contrast or
strength of the isophotes, which is reflected in the expression for the conductivity

coefficient: ! .
D= —_. 3
~ul (3)

Therefore, the diffusion strength does not depend on the geometric informa-
tion of an isophote. For a plane curve, its geometry is encoded into its scalar
curvature k.

Then why does this account for the TV’s failure in completing a whole object
for a large scale ratio [ : w as depicted in Figure 27 The rightmost one is the
output from the TV inpainting, in which, the curvature kK = +oc at the four
corners a, b, ¢ and d. In contrast, in the“psychologically” correct output in
the middle, all the isophotes are completed so that they stretch out as flatly as
possible, or equivalently, the curvature & is as small as possible (in magnitude).

1Since the symbol D is reserved in this paper for the inpainting domain to be consistent
with the notations in [6], we shall use D instead for the conductivity coefficient to follow the
conventional notation D.



The combination of the above qualitative analysis on what has gone wrong
with the TV output when [ > w, and what is characteristic with the psycho-
logically correct output, inspires our CDD inpainting model, which we are now
ready to introduce.

We modify the TV (or more generally, the Perona-Malik [15]) conductivity
coefficient

D = f(|Vul), (4)
v (%))

A~ g(k

D - |vu| b) (5)

where ¢ is the “annihilator” of large curvatures and stabilizer of small curva-
tures:
0, s=0
g(s) = q o0, § =00 (6)
in between, 0 < s < oo.

With this choice, the diffusion gets stronger where the isophotes are having a
larger curvature, while it dies away as the isophotes stretch out. Thus for the
typical example shown in Figure 2, the CDD necessarily leads to a steady state
that is closer to what most humans perceive in the middle. On the other hand,
the steady state for the TV diffusion as plotted in the rightmost in Figure 2 is
unstable in this new curvature-driven diffusion, since at the four corners a, b,
¢ and d, the curvatures are oo (or more precisely, behave like the Dirac delta
functions locally along the edge isophotes). Such diffusion patterns are exactly
what we have been expecting.

While the choice g(oc) = oc has been thoroughly motivated above, the
requirement of g(0) = 0 is less obvious. Suppose we allow g(0) = a # 0. Then
the CDD model degenerates to the second order equation of TV inpainting for
flatter isophotes. By doing so, we are again putting the Connectivity Principle
in risk. Such speculation has been well supported by our numerical experiments.

In the current paper, we have chosen

g(s)=s", s>0,p>1
The curvature  at a pixel x is the scalar curvature of the isophote through it,
and is given by
Vu
=V |=.
" [Wud
Thus, the CDD inpainting model reads
Ou 9(lx1)
- 0)=V- D
at(or) \Y% {|vu|Vu, X €

u=uY, x € D°.

(7)

Here the inpaiting domain D is mathematically understood as an open set, i.e.,
not including its boundary; and u" is the available part of the image. If we solve



the time marching equation, then the initial condition can be any compatible
guess, that is, any u(x,0) that satisfies: u(x,0) = u°(x), x € D°.
The flux field for the curvature-driven diffusion is

L g(xl)

j=-DVu-= Yl Vu, (8)
which is anti-gradient and hence stable. Physically, we can treat the image
function u as the density function of a certain species of particles. The available
part of the original image u° acts as a constant source or sink of particles through
the transactions at the boundaries. For example, suppose we are inpainting a
broken bar in a uniform background. The connecting of the two broken parts
is realized, in this particle diffusion picture, by the particles constantly fluxed
into (or out of) the inpainting domain through its boundaries.

In most cases, the available part of the original image u° is noisy (such as in
a digitally scanned photo due to the dust resting on the scanning glass). The
CDD inpainting scheme formulated in Eq. (7) is sensitive to the noise since the
latter will enter the inpainting domain via the boundary flux flow.

Two approaches can diminish this noise effect. First, one can denoise the
available part of the original image before applying the CDD inpainting scheme.
However, due to the topological complexity of a general inpainting domain, the
implementation of most edge-enhancing denoising schemes is often nontrivial.

The second approach, is to intrinsically build the denoising action into the
CDD inpainting scheme. Such practice seems to be natural for the human
inpainting and disocclusion process. Humans seem to be the master in detecting
features from the available portion of a noisy image, and at the same time,
extending them into the inpainting domain.

Such methodology also appears in other mathematical models in image
and vision analysis. The most famous one is the Mumford-Shah segmentation
model [13], in which, segmentation and denoising are carried out simultaneously.
Other examples include the Rudin-Osher-Fatemi [17] deblurring model, and our
previous TV inpainting model [6].

This second approach suggests a model of a two-phase nature: inside the
inpainting domain, we apply the CDD inpainting scheme (7); while outside, we
activate the Rudin-Osher-Fatemi TV denoising model [16, 17]:

% (or0)=V- {&} Mu — u?), for all x € D°. (9)

[Vl
The two actions can be concisely combined into one equation as in the TV
inpainting scheme [6]:

% (or0)=V- {@VU} + A (x) (u — u), x € Q. (10)
Both the conductivity coefficient and Lagrange multiplier have two phases:
1, D¢ A, D¢
Gx,s)=4 =€ he(x) = {0 XE€ (11)
9(s), x€eD, 0, x€eD,



where g and A come from Eq. (7) and the TV denoising model, separately. In
applications, A can be estimated from the noise level as discussed in the TV
denoising model [6, 17]. In the two-phase equation (10), the phase transition
occurs along the boundary of the inpainting domain. The boundary condition
at 0Q for (10) is determined by the TV denoising equation, and thus a natural
choice would be the Neumann adiabatic condition [7, 17].

The CDD inpainting model we propose here is closely related to some other
existing works in image and vision analysis.

(a) Anisotropic diffusion has been a powerful tool in image and vision analysis.
Well-known examples include the Perona-Malik diffusion for edge enhance-
ment and detection [15]:

0
S = V- [F(Vu)Vul
where f(s) is a non-negative function representing the conductivity coeffi-
cient inversely proportional to the strength of an isophote; and its general-
ization in the framework of mean curvature motions by Alvarez, Lions and
Morel [1]:
ou Vu
— = f(VGy xu) |Vu| V- | = 12
5 = (VG ) (9l v [ ). (12)
where G, is a Gaussian mollifier with the filtering scale o, and f(s) is
a “time-corrector.” The nonlinear diffusion operator is also important in
Nitzberg, Mumford and Shiota’s work in modeling disocclusion and depth [14].
The recent monograph by Weickert [19] is completely devoted to the topic
of diffusion in image analysis.

All these diffusion models are of second-order and the diffusion depends
solely on the strength of an isophote, but not on its geometry, i.e., the
curvature. In Alvarez-Lions-Morel’s formula (12), although the curvature
appears, its action is on the propagation speed along the normal characteris-
tics, not on the diffusion. The CDD is of third-order, and both the strength
and geometry of isophotes determine the diffusion. To our best knowledge,
such diffusion model is introduced in this paper for the first time in image
analysis.

(b) The main part of the BSCB inpainting scheme [3] is also a third order
equation:

u
% =Vtu-VL(u)
where, V41 is the 90-degree-rotated copy of the gradient, and L(u) is an
operator that evaluates the degree of smoothness. For example, the authors
mainly used L(u) = Aw, the Laplacian. It is very interesting to note the
completely “orthogonal” manners of BSCB’s equation and our CDD: the
BSCB equation is based on the elegant intuition of transportation (or prop-
agation) of smoothness along the isophotes, while the CDD diffuses image
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pixel information perpendicular to isophotes (i.e., along the normal direc-
tions). It will be interesting to explore the possibility of combining these
two complementary models.

(c) We would also like to mention some other interesting works on non-texture
inpaintings or disocclusions, which take different approaches. Caselles,
Morel and Sbert in [5] developed the axiomatic framework for local im-
age interpolations based on second order differential operators. Masnou
and Morel in [11] proposed the functionalization of the 1-dimensional Eu-
ler’s FElastica [14] as a variational formulation for non-texture disocclusion
problems. The authors solved it numerically by matching and connecting
individual broken isophotes using dynamical programming. In their work
on nonlinear image interpolation, Armstrong, Kokaram and Rayner [2] pro-
posed to use the min-max function as the predictor for missing image in-
formation, and formulated a least-square error minimization problem. Nu-
merically, it was solved using a combination of simulated annealing and
the conjugate gradient method. It is apparent from these examples, that
generally the inpainting problem is very ill-posed, and fast numerical imple-
mentation is as challenging as coming up with a right mathematical model
for inpaintings.

Since our CDD inpainting model is based on PDE’s, its implementation
naturally depends on the numerical PDE method.

3 Numerical Implementation

In this section, we explain the explicit time marching scheme for our CDD
inpainting model (7) or (10). Take (7) for example:

ou .
a =-V -J.

The explicit scheme iterates as:
Pt = () A v )

where At is the numerical time step, and (n) denotes the sampling at nA¢. We
now detail on the spatial discretization.

The CDD inpainting equation (7) or (10) is of 3rd order and in the divergence
form. On the natural rectangular pixel grid of a given image, we take the half-
point central difference for the divergence operator. That is, near a pixel, say
(0,0) (see Figure 3), the divergence form V - j is discretized to (assuming that

i=3{43%)




Here the CDD flux j is given by the expression (8), according to which, we need
to obtain the half-point values

.. , \ 1
Vg ), K(i,j) s ij =0, li|+|j| = >

Take (i,j) = (4,0) for example (refer to Figure 3):
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Figure 3: Numerical implementation.

(I) The expression for Vs o-

We have
B 8u U(l’o) — U(070) U(%’l) — U(%’il)
Vi = (833 <%7o>> - ( heo 2h '

For the new half-point values UL 11, We take the average of u(0,+1)

and u(1,+1). Then both the Vu o) and [Vu|(1 o) are represented by
the pixel values.
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(I) The expression for (1 o).
Recall that
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Thus, we can use again the central difference divergence form for the

half-point value K(1,0)- For example,
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For the new quantities like (u,/|Vu[)(1,0), we then simply use the ordinary
pixel wise central difference. In this way, the half-point curvature K(1,0)
is expressed by the image pixel values.

Since we are always using the divergence form, certain conservation-law like
results can be established, and, the numerical scheme is indeed stable according
to our experiments.

Since the numerical scheme only utilizes central differencing, it is invariant
under digital rotations of the input image, namely, multiples of w/2. (Under
digital rotations, the image data always live on a rectangular grid.)

As the time steps increase, the numerical image function u stably converges
to the final result. However, such time marching is generally slow for images
of large size. Thus, acceleration techniques are worthwhile to investigate. For
example, one can imitate the Marquina-Osher speeding modification for the TV
diffusion [10].

One simple technique that we have used is to start the CDD time marching
with a good initial guess u(x,0): we run the TV inpainting model (1) first, and
its output is then fed into the CDD scheme as a good initial guess. Since the TV
inpainting model is of second order, and allows a positive energy functional [6],
the time marching step can be much larger than the 3rd order CDD, and the
output converges much faster. Besides the time marching approach for the TV
inpainting model, Chan and Shen in [6] also solved directly its steady state equa-
tion via the linearization and relaxation techniques in numerical mathematics.

4 Examples of CDD Inpainting

In this section, we show some typical numerical examples and applications of
the CDD inpainting scheme, which include simple disocclusions, restoration
of an old photo with scratches, text removal from an image, and the special
effect of removing an object from a scene (as inspired by [3]). The individual
captions give more detailed explanations. Unless notified, the annihilator of
large curvatures in Eq. (6) is set to be g(s) = s. (Our numerical experiments
do not show significant difference among the different choices of g(s) = s? with
distinct p values.)
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The original complete image The mask for the inpainting domain

Initially filled in with a random guess The output from the CDD Inpainting

b

Figure 4: Inpainting a broken bar. Here the inpainting scale [ is much larger
than the width w of the bar. Therefore, the TV inpainting model [6] will output
two separated bars. The CDD inpainting produces a whole bar, which is what
most humans tend to perceive.
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Figure 8: Removal of dense text. One major advantage of PDE models such as
the CDD here is that it allows the inpainting domain to have any topology.
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Figure 9: “Who stole my company” (from the courtyard of Rolfe Hall, UCLA
campus)? This example shows the difficulty of real inpainting problems due
to the rapid variations of isophotes and the roughness of image functions. It
also illustrates why PDE based inpainting methods are not ideal for directly
inpainting textures like grass in the current image. (Similar discussion can
also be found in Bertalmio et al. [3].) Designing direct inpainting schemes for
textures is another important task. Recent works (based on non-PDE methods)
can be found in Wei and Levoy [18], and Igehy and Pereita [8].
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