
Non-Texture Inpainting by Curvature-DrivenDi�usions (CDD)Tony F. Chan and Jianhong Shen �Department of Mathematis, UCLALos Angeles, CA 90095-1555(han�math.ula.edu)Shool of Mathematis & IMAUniversity of MinnesotaMinneapolis, MN 55455(jhshen�math.umn.edu)1 IntrodutionInpainting refers to the pratie of artists of restoring anient paintings. Simplyspeaking, inpainting is to omplete a painting by �lling in the missing informa-tion on presribed domains. On suh domains, the original painting has beendamaged due to aging, srathing, or some other fators.Inpainting and disolusion in vision analysis are losely onneted but alsolearly di�erent. Both try to reover the missing visual information from agiven 2-D image, and mathematially, an be lassi�ed into the same ategoryof inverse problems. The di�erene lies in both their goals and approahes.The main goal of disolusion is to model how human vision works to om-plete oluded objets in a given 2-D sene, and understand their physial or-ders in the diretion perpendiular to the imaging plane, and thus reonstrutapproximately a meaningful 3-dimensional world (Nitzberg, Mumford, and Sh-iota [14℄). The outputs from disolusion are omplete objets, and their relativeorders or depth. Inpainting, on the other hand, is to omplete a 2-D image whihhave ertain regions missing. The output is still a 2-D image. (In appliations,a missing region an indeed be the 2-D projetion of a real objet, suh as thefemale statue in Figure 9.) Therefore, from the vision point of view, inpaintingis a lower level proess ompared to disolusion.This fundamental di�erene naturally inuenes the approahes. The mainapproah for disolusion is to segment the regions in a 2-D image, and then�Researh supported by grants from NSF under grant number DMS-9626755 and fromONR under N00014-96-1-0277. Manusript is available at the site of UCLA CAM Reports:www.math.ula.edu/applied/am/index.html. 1



logially onnet those whih belong to the projetion of a same physial objet,and �nally generate the order or depth for all the ompleted objets. Edgeompletion is one ruial step during the whole proess. Disolusion also oftenuses some high level information about objets (suh as the near symmetry ofhuman faes). For inpainting, an ideal sheme should be able to reonstrut aninomplete 2-D image in every detail so that it looks \omplete" and \natural."More spei�ally, to inpaint, is not only to omplete the broken edges, but also toonnet eah broken isophote (or level-line), so that the 2-D objets ompleted insuh a way show their natural variation in intensity (or olor for olor images) [3,6, 11℄.This omparison helps us understand better the real nature of the inpaintingproblem in a broader ontext.The terminology of digital inpainting was �rst introdued by Bertalmio,Sapiro, Caselles, and Ballester [3℄. Inspired by the real inpainting proess ofartists, the authors invented a suessful digital inpainting sheme (referredto below as the BSCB inpainting sheme for onveniene) based on the PDEmethod. The authors also deepened the interest in digital inpainting by demon-strating its broad appliations in text removal, restoring old photos, and reatingspeial e�ets suh as objet disappearane from a sene.Though a qualitative understanding based on the transportation mehanisman be well established, rigorous mathematial analysis on the BSCB shemeappears to be muh more diÆult. This has enouraged Chan and Shen [6℄ todevelop a new inpainting model whih is founded on the variational priniple.Sine the energy funtion is based on the total variational (TV) norm [6℄, themodel is alled TV inpainting. The TV inpainting sheme is surprisingly a losevariation of the well known restoration model of Rudin, Osher and Fatemi [16,17℄. The Euler-Lagrange equation for the TV inpainting model is�u�t (or 0) = r � � rujruj�+ �e(u� u0); (1)valid on the entire image domain 
. The extended Lagrange multiplier �e =�(1� �D), where �D is the harateristi funtion (or mask) of the inpaintingdomain D, and � is as in the TV denoising sheme [16, 17℄. Therefore, insidethe inpainting domain, the model simply employs an anisotropi di�usion:�u�t (or 0) = r � � rujruj� : (2)The TV inpainting model also explains suessfully some aspets of the hu-man disolusion proess in vision psyhology [6℄, inluding the entanglementillusions gathered and analyzed by Kanizsa, the great psyhologist [6, 9℄.The major drawbak of the TV inpainting model is that it does not restorewell a single objet when its disonneted remaining parts are separated farapart by the inpainting domain (see Figure 1 for a typial example). Suhdependeny on the aspet ratio of the missing part of the objet is against twofats: 2



To be inpainted TV inpaiting for l > w

l

w

inpainting domain

TV inpainting for l < wFigure 1: The output of the TV inpainting depends on the aspet ratio of themissing part of the objet.(a) The Connetivity Priniple in the human disolusion proess. The visionpsyhology (Kanisza [9℄, Nitzberg, Mumford and Shiota [14℄) shows thathumans mostly seem to prefer the onneted result. For example, in Fig-ure 2, no matter what the relative ratio of w to l is, the whole bar alwaysseems to be the best guess to most of us, psyhologially.
Answer from most humans Answer by the TV modelWhat is behind the box?

(l >> w)
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Figure 2: When l > w, the TV inpainting (or disolusion) result is against theConnetivity Priniple of human pereption | humans mostly prefer having thetwo disjoint parts onneted, even when they are far apart [9, 14℄.(b) In appliation, an average image often ontains objets of a large dynamirange of sales. Hene in most inpainting problems, it is ommonly foundthat \slim" objets are broken by the inpainting domains even though thedomains themselves are small (to humans). A good inpainting shemeshould enourage the onnetion of these broken slim objets (lines, thinbars, or simple �ber-like textures; also see the numerial examples ominglater).In this paper, we propose a new inpainting model based on the di�usionmehanism as inspired by our previous work on the TV inpainting, aiming at3



realizing the Connetivity Priniple. Sine in the new di�usion model, theondutivity oeÆient depends on the urvature of the isophotes, we all suhnew di�usions Curvature-Driven Di�usions (CDD), as ompared to the otherdi�usion models prevailing in image and vision analysis (Perona and Malik [15℄,Morel and Solomini [12℄).The CDD inpainting model, like the TV and BSCB models, is based on thePDE method. Therefore, generally it is diretly appliable only to non-textureimages, sine visually meaningful statistial utuations in textures are oftensmoothed out by PDE's. For reent works related to texture inpaintings, seeWei and Levoy [18℄, and Igehy and Pereita [8℄. In the future, we plan to applythe CDD inpainting sheme indiretly to texture images, based on the multisalerepresentation of textures (suh as Burt and Adelson's Gaussian pyramid [4℄,and wavelets transforms).The organization of the paper goes as follows. In Setion 2, we explain whathas been missed by the TV inpainting model, and why the CDD model an �xit. We formulate the CDD inpainting equations for both an ideal lean image,and for a more realisti noisy image. Connetions to some related existingworks in image and vision analysis are made. Setion 3 addresses the numerialimplementation of the CDD model. A disretization sheme based on �nitedi�erening is explained. In Setion 4, we show some typial appliations ofthe CDD inpainting model in disolusion, srath removal, text removal, andspeial e�ets.2 Inpainting via Curvature-Driven Di�usions (CDD)We start out by �rst analyzing how the TV inpainting model an violate theConnetivity Priniple. Then, based on suh an analysis, we propose our CDDinpainting sheme.In the TV model, the di�usion strength only depends on the ontrast orstrength of the isophotes, whih is reeted in the expression for the ondutivityoeÆient: 1 D̂ = 1jruj : (3)Therefore, the di�usion strength does not depend on the geometri informa-tion of an isophote. For a plane urve, its geometry is enoded into its salarurvature �.Then why does this aount for the TV's failure in ompleting a whole objetfor a large sale ratio l : w as depited in Figure 2? The rightmost one is theoutput from the TV inpainting, in whih, the urvature � = �1 at the fourorners a, b,  and d. In ontrast, in the\psyhologially" orret output inthe middle, all the isophotes are ompleted so that they streth out as atly aspossible, or equivalently, the urvature � is as small as possible (in magnitude).1Sine the symbol D is reserved in this paper for the inpainting domain to be onsistentwith the notations in [6℄, we shall use D̂ instead for the ondutivity oeÆient to follow theonventional notation D. 4



The ombination of the above qualitative analysis on what has gone wrongwith the TV output when l > w, and what is harateristi with the psyho-logially orret output, inspires our CDD inpainting model, whih we are nowready to introdue.We modify the TV (or more generally, the Perona-Malik [15℄) ondutivityoeÆient D̂ = f(jruj); (4)to D̂ = g(j�j)jruj ; (5)where g is the \annihilator" of large urvatures and stabilizer of small urva-tures: g(s) = 8><>:0; s = 01; s =1in between; 0 < s <1: (6)With this hoie, the di�usion gets stronger where the isophotes are having alarger urvature, while it dies away as the isophotes streth out. Thus for thetypial example shown in Figure 2, the CDD neessarily leads to a steady statethat is loser to what most humans pereive in the middle. On the other hand,the steady state for the TV di�usion as plotted in the rightmost in Figure 2 isunstable in this new urvature-driven di�usion, sine at the four orners a, b, and d, the urvatures are �1 (or more preisely, behave like the Dira deltafuntions loally along the edge isophotes). Suh di�usion patterns are exatlywhat we have been expeting.While the hoie g(1) = 1 has been thoroughly motivated above, therequirement of g(0) = 0 is less obvious. Suppose we allow g(0) = a 6= 0. Thenthe CDD model degenerates to the seond order equation of TV inpainting foratter isophotes. By doing so, we are again putting the Connetivity Priniplein risk. Suh speulation has been well supported by our numerial experiments.In the urrent paper, we have hoseng(s) = sp; s > 0; p � 1:The urvature � at a pixel x is the salar urvature of the isophote through it,and is given by � = r � � rujruj� :Thus, the CDD inpainting model reads8<:�u�t (or 0) = r � �g(j�j)jruj ru� ; x 2 Du = u0; x 2 D: (7)Here the inpaiting domain D is mathematially understood as an open set, i.e.,not inluding its boundary; and u0 is the available part of the image. If we solve5



the time marhing equation, then the initial ondition an be any ompatibleguess, that is, any u(x; 0) that satis�es: u(x; 0) = u0(x), x 2 D.The ux �eld for the urvature-driven di�usion isj = �D̂ru = �g(j�j)jruj ru; (8)whih is anti-gradient and hene stable. Physially, we an treat the imagefuntion u as the density funtion of a ertain speies of partiles. The availablepart of the original image u0 ats as a onstant soure or sink of partiles throughthe transations at the boundaries. For example, suppose we are inpainting abroken bar in a uniform bakground. The onneting of the two broken partsis realized, in this partile di�usion piture, by the partiles onstantly uxedinto (or out of) the inpainting domain through its boundaries.In most ases, the available part of the original image u0 is noisy (suh as ina digitally sanned photo due to the dust resting on the sanning glass). TheCDD inpainting sheme formulated in Eq. (7) is sensitive to the noise sine thelatter will enter the inpainting domain via the boundary ux ow.Two approahes an diminish this noise e�et. First, one an denoise theavailable part of the original image before applying the CDD inpainting sheme.However, due to the topologial omplexity of a general inpainting domain, theimplementation of most edge-enhaning denoising shemes is often nontrivial.The seond approah, is to intrinsially build the denoising ation into theCDD inpainting sheme. Suh pratie seems to be natural for the humaninpainting and disolusion proess. Humans seem to be the master in detetingfeatures from the available portion of a noisy image, and at the same time,extending them into the inpainting domain.Suh methodology also appears in other mathematial models in imageand vision analysis. The most famous one is the Mumford-Shah segmentationmodel [13℄, in whih, segmentation and denoising are arried out simultaneously.Other examples inlude the Rudin-Osher-Fatemi [17℄ deblurring model, and ourprevious TV inpainting model [6℄.This seond approah suggests a model of a two-phase nature: inside theinpainting domain, we apply the CDD inpainting sheme (7); while outside, weativate the Rudin-Osher-Fatemi TV denoising model [16, 17℄:�u�t (or 0) = r � � rujruj�+ �(u� u0); for all x 2 D: (9)The two ations an be onisely ombined into one equation as in the TVinpainting sheme [6℄:�u�t (or 0) = r � �G(x; j�j)jruj ru�+ �e(x)(u� u0); x 2 
: (10)Both the ondutivity oeÆient and Lagrange multiplier have two phases:G(x; s) = (1; x 2 Dg(s); x 2 D; �e(x) = (�; x 2 D0; x 2 D; (11)6



where g and � ome from Eq. (7) and the TV denoising model, separately. Inappliations, � an be estimated from the noise level as disussed in the TVdenoising model [6, 17℄. In the two-phase equation (10), the phase transitionours along the boundary of the inpainting domain. The boundary onditionat �
 for (10) is determined by the TV denoising equation, and thus a naturalhoie would be the Neumann adiabati ondition [7, 17℄.The CDD inpainting model we propose here is losely related to some otherexisting works in image and vision analysis.(a) Anisotropi di�usion has been a powerful tool in image and vision analysis.Well-known examples inlude the Perona-Malik di�usion for edge enhane-ment and detetion [15℄: �u�t = r � [f(jruj)ru℄;where f(s) is a non-negative funtion representing the ondutivity oeÆ-ient inversely proportional to the strength of an isophote; and its general-ization in the framework of mean urvature motions by Alvarez, Lions andMorel [1℄: �u�t = f(rG� � u) jruj r � � rujruj� ; (12)where G� is a Gaussian molli�er with the �ltering sale �, and f(s) isa \time-orretor." The nonlinear di�usion operator is also important inNitzberg, Mumford and Shiota's work in modeling disolusion and depth [14℄.The reent monograph by Weikert [19℄ is ompletely devoted to the topiof di�usion in image analysis.All these di�usion models are of seond-order and the di�usion dependssolely on the strength of an isophote, but not on its geometry, i.e., theurvature. In Alvarez-Lions-Morel's formula (12), although the urvatureappears, its ation is on the propagation speed along the normal harateris-tis, not on the di�usion. The CDD is of third-order, and both the strengthand geometry of isophotes determine the di�usion. To our best knowledge,suh di�usion model is introdued in this paper for the �rst time in imageanalysis.(b) The main part of the BSCB inpainting sheme [3℄ is also a third orderequation: �u�t = r?u � rL(u);where, r?u is the 90-degree-rotated opy of the gradient, and L(u) is anoperator that evaluates the degree of smoothness. For example, the authorsmainly used L(u) = �u, the Laplaian. It is very interesting to note theompletely \orthogonal" manners of BSCB's equation and our CDD: theBSCB equation is based on the elegant intuition of transportation (or prop-agation) of smoothness along the isophotes, while the CDD di�uses image7



pixel information perpendiular to isophotes (i.e., along the normal dire-tions). It will be interesting to explore the possibility of ombining thesetwo omplementary models.() We would also like to mention some other interesting works on non-textureinpaintings or disolusions, whih take di�erent approahes. Caselles,Morel and Sbert in [5℄ developed the axiomati framework for loal im-age interpolations based on seond order di�erential operators. Masnouand Morel in [11℄ proposed the funtionalization of the 1-dimensional Eu-ler's Elastia [14℄ as a variational formulation for non-texture disolusionproblems. The authors solved it numerially by mathing and onnetingindividual broken isophotes using dynamial programming. In their workon nonlinear image interpolation, Armstrong, Kokaram and Rayner [2℄ pro-posed to use the min-max funtion as the preditor for missing image in-formation, and formulated a least-square error minimization problem. Nu-merially, it was solved using a ombination of simulated annealing andthe onjugate gradient method. It is apparent from these examples, thatgenerally the inpainting problem is very ill-posed, and fast numerial imple-mentation is as hallenging as oming up with a right mathematial modelfor inpaintings.Sine our CDD inpainting model is based on PDE's, its implementationnaturally depends on the numerial PDE method.3 Numerial ImplementationIn this setion, we explain the expliit time marhing sheme for our CDDinpainting model (7) or (10). Take (7) for example:�u�t = �r � j:The expliit sheme iterates as:u(n+1) = u(n) ��t r � j(n);where �t is the numerial time step, and (n) denotes the sampling at n�t. Wenow detail on the spatial disretization.The CDD inpainting equation (7) or (10) is of 3rd order and in the divergeneform. On the natural retangular pixel grid of a given image, we take the half-point entral di�erene for the divergene operator. That is, near a pixel, say(0; 0) (see Figure 3), the divergene form r � j is disretized to (assuming thatj = (j1; j2)) j1( 12 ;0) � j1(� 12 ;0)h + j2(0; 12 ) � j2(0;� 12 )h :8



Here the CDD ux j is given by the expression (8), aording to whih, we needto obtain the half-point valuesru(i;j); �(i;j); ij = 0; jij+ jjj = 12 :Take (i; j) = ( 12 ; 0) for example (refer to Figure 3):
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 Half−points Figure 3: Numerial implementation.(I) The expression for ru( 12 ;0).We haveru( 12 ;0) =  �u�x ����( 12 ;0); �u�y ����( 12 ;0)! ' �u(1;0) � u(0;0)h ; u( 12 ;1) � u( 12 ;�1)2h � :For the new half-point values u( 12 ;�1), we take the average of u(0;�1)and u(1;�1). Then both the ru( 12 ;0) and jruj( 12 ;0) are represented bythe pixel values.(II) The expression for �( 12 ;0).Reall that � = r � � rujruj� = ��x � uxjruj�+ ��y � uyjruj� :Thus, we an use again the entral di�erene divergene form for thehalf-point value �( 12 ;0). For example,h � ��x � uxjruj�( 12 ;0) ' � uxjruj�(1;0) � � uxjruj�(0;0) :9



For the new quantities like (ux=jruj)(1;0), we then simply use the ordinarypixel wise entral di�erene. In this way, the half-point urvature �( 12 ;0)is expressed by the image pixel values.Sine we are always using the divergene form, ertain onservation-law likeresults an be established, and, the numerial sheme is indeed stable aordingto our experiments.Sine the numerial sheme only utilizes entral di�erening, it is invariantunder digital rotations of the input image, namely, multiples of �=2. (Underdigital rotations, the image data always live on a retangular grid.)As the time steps inrease, the numerial image funtion u stably onvergesto the �nal result. However, suh time marhing is generally slow for imagesof large size. Thus, aeleration tehniques are worthwhile to investigate. Forexample, one an imitate the Marquina-Osher speeding modi�ation for the TVdi�usion [10℄.One simple tehnique that we have used is to start the CDD time marhingwith a good initial guess u(x; 0): we run the TV inpainting model (1) �rst, andits output is then fed into the CDD sheme as a good initial guess. Sine the TVinpainting model is of seond order, and allows a positive energy funtional [6℄,the time marhing step an be muh larger than the 3rd order CDD, and theoutput onverges muh faster. Besides the time marhing approah for the TVinpainting model, Chan and Shen in [6℄ also solved diretly its steady state equa-tion via the linearization and relaxation tehniques in numerial mathematis.4 Examples of CDD InpaintingIn this setion, we show some typial numerial examples and appliations ofthe CDD inpainting sheme, whih inlude simple disolusions, restorationof an old photo with srathes, text removal from an image, and the speiale�et of removing an objet from a sene (as inspired by [3℄). The individualaptions give more detailed explanations. Unless noti�ed, the annihilator oflarge urvatures in Eq. (6) is set to be g(s) = s. (Our numerial experimentsdo not show signi�ant di�erene among the di�erent hoies of g(s) = sp withdistint p values.)AknowledgmentsThe authors would like to thank G. Sapiro's group at ECE, University of Min-nesota, for introduing us this interesting problem, and for generously exposingtheir new work and ideas to us. The authors would also like to thank StanOsher, Luminita Vese, Sung Ha Kang, and Laurent Demanet for their supportand help.
10



The original complete image The mask for the inpainting domain 

Initially filled in with a random guess The output from the CDD Inpainting

Figure 4: Inpainting a broken bar. Here the inpainting sale l is muh largerthan the width w of the bar. Therefore, the TV inpainting model [6℄ will outputtwo separated bars. The CDD inpainting produes a whole bar, whih is whatmost humans tend to pereive.Referenes[1℄ L. Alvarez, P.-L. Lions, and J.M. Morel. Image seletive smoothing andedge detetion by nonlinear di�usion (II). SIAM J. Num. Anal., 29:845{866, 1992.[2℄ S. Armstrong, A. Kokaram, and P.J.W. Rayner. Nonlinear interpolation ofmissing data using min-max funtions. IEEE Int. Conf. Nonlinear Signaland Image Proessings, 1997.[3℄ M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting.Tehnial report, ECE-University of Minnesota, 1999.[4℄ P. Burt and E. Adelson. The Laplaian pyramid as a ompat image ode.IEEE Trans. Comm., 31:482{540, 1983.11



The original complete image The mask for the inpainting domain 

Initially filled in with a random guess The output from the CDD Inpainting with k2

Figure 5: Inpainting a broken ring. Certainly, this example an also be under-stood as a thik ross oluding a thin ring. Again the TV inpainting modeloutputs four disonneted ars, while the CDD inpainting sheme suessfullyompletes the ring to the �rst order (i.e. using straight lines for irular ars).[5℄ V. Caselles, J.-M. Morel, and C. Sbert. An axiomati approah to imageinterpolation. IEEE Trans. Image Proessing, 7(3):376{386, 1998.[6℄ T. Chan and J. Shen. Mathematial models for loal determinis-ti inpaintings. Submitted. UCLA CAM Report 00-11 available at:www.math.ula.edu/applied/am/index.html, 2000.[7℄ T. Chan and J. Shen. Variational restoration of non-at image features:models and algorithms. SIAM J. Appl. Math., in press, 2000.[8℄ H. Igehy and L. Pereira. Image replaement through texture synthesis.Proeedings of 1997 IEEE Int. Conf. Image Proessing.[9℄ G. Kanizsa. Organization in Vision. Praeger, New York, 1979.
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The original image to be inpainted
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The output from the CDD inpainting
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30Figure 6: Removing srathes in a damaged photograph. From this example,one sees the di�erene between inpainting and disolusion. In vision researh,disolusion mostly deals with boundary edges, while for inpainting, we have toomplete isophotes (i.e. level lines) in all kinds of ontrast, inluding weak edgessuh as the shaded side of the nose in the present image. (Image soure: [3℄.)[10℄ A. Marquina and S. Osher. Leture Notes in Computer Siene, volume1682, hapter \A new time dependent model based on level set motion fornonlinear deblurring and noise removal", pages 429{434. 1999.[11℄ S. Masnou and J.-M. Morel. Level-lines based disolusion. Proeedings of5th IEEE Int'l Conf. on Image Proess., Chiago, 3:259{263, 1998.[12℄ J.-M. Morel and S. Solimini. Variational Methods in Image Segmentation,volume 14 of Progress in Nonlinear Di�erential Equations and Their Ap-pliations. Birkh�auser, Boston, 1995.[13℄ D. Mumford and J. Shah. Optimal approximations by pieewise smoothfuntions and assoiated variational problems. Comm. Pure Applied. Math.,XLII:577{685, 1989.[14℄ M. Nitzberg, D. Mumford, and T. Shiota. Filtering, Segmentation, andDepth. Leture Notes in Comp. Si., Vol. 662. Springer-Verlag, Berlin,1993.[15℄ P. Perona and J. Malik. Sale-spae and edge detetion using anisotropidi�usion. IEEE Trans. Pattern Anal. Mahine Intell., 12:629{639, 1990.13



The original complete image

20 40 60 80 100

10

20

30

40

The mask for the inpainting domain 

20 40 60 80 100

10

20

30

40

Initially filled in with a random guess

20 40 60 80 100

10

20

30

40

The output from the CDD Inpainting
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40Figure 7: Removing thik text from an image. This example partially showswhy in most inpainting appliations, thin lines or bars should be onneted. Ifwe had used the TV inpainting model [6℄, the single blak rim of the T-shirt(around the arm) would have been broken sine its width is smaller than thatof the letters at the intersetions.[16℄ L. Rudin and S. Osher. Total variation based image restoration with freeloal onstraints. Pro. 1st IEEE ICIP, 1:31{35, 1994.[17℄ L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noiseremoval algorithms. Physia D, 60:259{268, 1992.[18℄ L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-strutured vetorquantization. Preprint, Computer Siene, Stanford University, 2000; Alsoin Proeedings of SIGGRAPH 2000.[19℄ J. Weikert. Anisotropi Di�usion in Image Proessing. Teubner-Verlag,Stuttgart, Germany, 1998.
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The image to be inpainted

The inpainting domain is the text region

After inpainting

Figure 8: Removal of dense text. One major advantage of PDE models suh asthe CDD here is that it allows the inpainting domain to have any topology.15



A scene from UCLA campus

SOS: who stole my company?

To be inpainted The mask

Initial guess CDD inpainting

Figure 9: \Who stole my ompany" (from the ourtyard of Rolfe Hall, UCLAampus)? This example shows the diÆulty of real inpainting problems dueto the rapid variations of isophotes and the roughness of image funtions. Italso illustrates why PDE based inpainting methods are not ideal for diretlyinpainting textures like grass in the urrent image. (Similar disussion analso be found in Bertalmio et al. [3℄.) Designing diret inpainting shemes fortextures is another important task. Reent works (based on non-PDE methods)an be found in Wei and Levoy [18℄, and Igehy and Pereita [8℄.
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