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Abstract

We show, in this paper, that the average over translations of an operator diagonal in a wavelet
packet basis is a convolution. We also show that an operator diagonal in a wavelet packet basis can be
decomposed into several operators of the same kind, each of them being better conditioned. We then
investigate on several applications of these properties to the issue of image deblurring. First, we show
that this framework permits to redefine existing deblurring methods. Then, we show that it permits to
define a new variational method which combines the wavelet packet and the total variation approaches.
We argue and show on experiments that this permits to avoid the drawbacks of both approaches which
are respectively the ringing and the staircasing.

1 Introduction

This paper is mainly concerned with image deblurring and with the use of wavelet-packet bases for this
purpose. More precisely, we will show that the average over translations of an operator which is diagonal
in a wavelet packet basis is a convolution. We will investigate several applications of this property to the
issue of image deblurring.

The deblurring problem under our scope is to restore a convolved and noisy image u, given the data

ug =8 *u-+n,

where s; is a low-pass filter and = is a noise. Expressing this in the Fourier Domain (we recall that the
Fourier basis diagonalizes the convolution operator), we obtain

ug =S+,
where we note with a hat the Fourier transform of a function. We clearly see here that, since § can be
very small or even be zero, this problem is ill-posed.

The main interest of the wavelet packet framework for image deblurring is that it permits to have
both a sparse representation of an image (and therefore to separate the information and the noise) and
a good frequencial localization. This has first been noticed by B. Rougé and has already been used in
several articles (see [10, 12, 13, 21]}. The methods, proposed in these articles, are based on a shrinkage of
the wavelet packet coefficients similar to the wavelet shrinkage approach, for the purpose of denoising, of
Donoho and Johnstone (see [9]). A part of this paper is somehow a continuation to the articles on “wavelet
packet based deblurring” and, we hope, permits to understand and analyze them in a simple way.

There is an abundant literature on image deblurring. The reader is referred to [1] for most of the
linear methods and to [8, 11] for overviews on the subject. In few words, the first approach consists
in enhancing images without regard to the convolution kernel [14]. The other methods are based on
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regularization approaches of the problem: using statistical properties (Wiener and Kalman filters) or
regularity measurements of the images such as the entropy (see [8] and references there), the total variation
(see [22]) or the characterization of Besov spaces by wavelets coefficients (see {4, 9]}

For simplicity, all the results, of this paper, are stated in the case of 1D signals. Note that they can be
generalized to higher dimensions. The paper is organized as follows:

We will give in Section 2 the statement of the main result of the paper which is that we can approximate
a convolution by averaging translations of an operator diagonal in a wavelet packet basis. More precisely,
if we note D an operator which is diagonal in a wavelet packet basis of depth J, we define the operator D
by

271
Dw)=2"7 3 rpoDomu),

k=0

where u € [%(Z) and 71 represents the translation operator of & € Z. We show that this operator is a
convolution and give the explicit form of the kernel defining this latter. Note that this proposition is a new
argument in favor of the cycle spinning introduced in [6]. We also show that an operator which is diagonal
in a wavelet packet basis can be written as the composition of several operators which are diagonal in other
wavelet packet bases. We show that this property permits to justify the multi-level thresholding proposed
in [10].

In Section 3, we expose two models, for the image deblurring, based on the properties of Section 2. The
first one is equivalent to the usual wavelet-packet shrinkage. The second is new and more andacious. The
idea is to use the approximation of the convolution in a wavelet packet basis to approximate the convolution
in the Rudin-Osher-Fatemi functional and to use the ability of the wavelet packet decompositions to
sparsely represent information to modify this functional. If we present this modification under the point
of view of Rudin-Osher-Fatemi functional, this permits to avoid staircasing while if we present it under
the wavelet packet shrinkage point of view, this permits to avoid ringing artifacts.

We display in Section 4 several experiments which show to evidence that the approximation of the
convolution is often a good approximation and that its analysis permits a better understanding of the
existing wavelet packet shrinkage algorithms. We also show the importance of the average over translations
and the advantage of the multi-level thresholding. We finish with some comparison between two wavelet
packet shrinkage, the Rudin-Osher-Fatemi model and the modification, we suggested, of this latter.

2 Approximation of the convolution in a wavelet packet basis

2.1 Wavelet packet bases

As we said previously, we approximate a convolution operator by the average over translations of an
operator which is diagonal in a wavelet packet basis. Let us first define the notations that we will use in
order to describe wavelet packet bases. Once again, for simplicity, we only describe wavelet packet bases in
the case of function of R, higher dimensional cases can be deduced from this one by taking tensor products,
For more details the reader is referred to [7] or to Section § of [16].

In the following, we will denote by (h, g} a pair of conjugate mirror filters related with a multi-resolution
analysis (for instance g, = (—1)*""hy_,) and by ¢ the associated scaling function. Letting ¢ = ¢, we
can define recursively, for j € N and p € {0,...,27 — 1}

P (@)= Y hatif(z —2n), (1
and
Bz = Y gadl(z - 27n). (2)



Therefore, if we note ¥ (z) = 1#"(:1:——23 n} and W7 the vectorial subspace of L*(R) generated by {/% , n €
%}, we know that {1,[};’ w M E Z} is an orthonormal basis of WE. Moreover, we have

Wil e Wi, = W2,

We also know that for any admissible tree (see Section 8 of [16]) (pr,Ji)r<i<n, {9 n}nez1<i<E, is an

orthonormal basis of WJ.
In the following, we will identify any (un)nez € I*(Z) with @ = (3, .z un¥f ) € Wi. Therefore,
noting w} . = (&,97% .} and (uf), = u} ,, we can deduce from (1) and (2) that

i
+1 k] Z h u_’,‘ 2ndm h * up(2n) (3)
mez

where, for any nn € Z, hp, = h_p, and

2p+1 _
ujil,n = Z Om ui-’,%_i_m =g* u?(Zn) {4)
mecZ
where, for any n € Z, §n = g_p.
Therefore, for any admissible tree (py, )1 <i<r, we can recursively define the kernel HJ' such that
P _ P 3
uy, o, = Hj, *u(2n).

Similarly, we can rebuild u} , from uf it1,n and ufi"'{ln using

P _ E : 2p 2p+1
Ui = hn_am Uittm + E Gn—2m Ujiq m -
meZ mEL

In other words, noting, for any u € 12(Z?),

. uyp ,if nis even,
0 , if n is odd,

we have

= (h* (@21))n + (g @51 ) V)n - (5)

2.2 The approximation of a convolution

The first idea which, in fact, comes from B. Rougé and is the departure point of the deblurring in wavelet
packet bases, is that, due to their frequencial localization, it is possible to approximate the convolution in
a wavelet packet basis. Therefore, for a suitable basis {%0;:',“}“62,15;3 1 and suitable eigenvalues ()\g: <<z

{which do not depend on n), we can define the linear operator I by
(D(u), 98 ) = X (u, 57 )

foruel?(Z),lc{l,..,L} and n € Z. 5

One of the very important property we loose, when approximating by such a D the convolution, is
the translation invariance. The first simple way to solve this drawback is to use the Shannon wavelet (see
[16], pp. 245). In this case, we have h=+2 21j.z,zyand § = V21 PATERS and therefore the wavelet packet
analysis itself is transiataon invariant. The problem with the Shannon wavelet is that it has a slow decay
at infinity and therefore, in a noisy case, poorly decorrelates information and noise.

However, as soon as, for I € {1,...,L}, A}/, do not depend on n, another simple way to turn around

this drawback is to average D over some translations of the image. The following proposition proves that
the so defined operator is a convolution and gives the form of its convolution kernel®.

1Remark that the average over translations of any linear operator is a convolution. The main interests of Proposition
1 is due to the nature of wavelet packet bases (sparse representation of the image and adaptable frequencial localization).
Moreover, we only have to average over J = max; ¢j<y Jjy translations.



Proposition 1 Let ('ﬁbﬂn)ne&lgtg 1. be a wavelet packet basis. Let D be a linear operator continuous

from I*(Z) into 1*(Z), disgonal in the basis (Y} Ineza<icr. Assume moreover that the eigenvalues

(N neza<icr (respectively associated to the eigenvector {4 Incza<i<r) do not depend on n. Then,

the operator D defined, for any u € I2{Z), by
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D(w)=2"" % r.roDom(u), (6)

k=0

where J = maxi<i<z fi end Tx represents the translation operator of k € Z, is o convolution continuous
from 12(Z) into I12(Z). Moreover, the Fourier transform of the convolution kernel h defining D is given,
for £ € [—W: ﬂ'], by

s = > OF, @
{==1

where we note A = X5 for anyl € {1,..,L} andn € Z.

Jan

Proof For simplicity, we will only demonstrate the result in the case J = 1. The proof of the general
result is similar to this latter?. _
Similarly to Section 2.1, we will denote, for any v € I?(Z), j € Nand p € {0, ...,27 — 1},

v;),n = (Z ”m¢g,ma ¢in) M

mez

Let (tn)nez € 12(Z), for any n € Z, it is clear, using (3), (4) and (5), that

(D)gn =[h* (AL (rxw)(2)V]n + [g * (A (@ *)(2))"]n (8)

{note that we abuse of the notation u instead of u3}. Of course, we have

(R uy(2)Y = (Rru) Y bnz

kEE

where & denotes the Dirac delta function (a similar statement holds for ((F *u)(2.))V).
Therefore, expressing (8) in Fourier domain, we have, for £ € [—n,7),
D(u)(&) = X 1(€) [(hxw) Y 6nal(€) + X1 8() [0} D Sn-2](©)-

ek keZ

We can simplify this latter, by mean of the Poisson formula ([16], pp. 259), and we obtain

B ~ i MO REXmler) |y HOUO +HEx e +r)

= SDBEOP + MIa@F) ) + SSR(ORE +m) + Ma©OFE + Ml Al +7).  (9)

Therefore, since (mxu)(¢) = e*¢a(€), we have, for & € [—, 7],

i 7 2 S 2
@) = pgPEE L 085,

’Indeed, if J > 1, we can simply define (;’;)osmzi such that, for p € {0,...,27 —1},

ﬁ(wg,n) = ’\g w?,n 3

in order to paraphrase the proof in the case J = 1. However, this yields more compticated notations.



which achieves the proof. [

advantage of this intermediate step is to have the possibility to decorrelate the noise and the information,
which is of a great interest for the issue of image deblurring.

Figure 3 and 4 represeni the Fourier transforms of two convolution kernels and the corresponding
convolution kernel after the approximation by diagonal operators in different wavelet packet bases. We
see here that, in the case of the Shannon wavelet (the dashed line), the initial kernel is approximated by
a kernel which is constant on dyadic intervals of the Fourier domain (this is also visible in (7) and gives
the intuitive meaning of (A5')1<1<z). Therefore, as long as the Fourier transform of the initial kernel does
not vary too much inside these dyadic intervals, the approximation we are doing when approximating the
convolution in a wavelet packet basis will yield good results. It seems therefore a good idea to choose the
tree which defines the basis {7} , }nez tefo, ...z} according to this criterion.

Remark that, in practice, in order to approximate the convolution operator with s € I}{Z), by an
operator D which is the average of a operator diagonal in a given wavelet packet basis {@/’f,’,n}nez.lsts I

we can compute the (A% )1<i<r in several ways®. However, it is easy to check that

Therefore, we can use a wavelet packet hasis as an intermediate step for the Fourier basis. Of course, the

N = (8 *¥5 0 ¥Viin)» (10)
permits to minimize ||S — D||z (where ${u) = s * u) and can therefore be considered as a good candidate.
Remark that these A} do not depend on n so that we can forget the index n and denote them by ALY

However, Proposition 1 can also be used to determine the approximated eigenvalues (A?{)lggs . We
can for instance choose these eigenvalues in such a way that they minimize the error between 5 and s.
Note that we can also use this formula in such a way that the approximated convolution avoids specific
artifacts. For instance, when approximating a kernel which inverts the convolution with a kernel s:, we
could determine {A]); <1<z in such a way that § x 51 is positive (in order to avoid ringing effects in the
vicinity of edges).

Let us now investigate the issue of the spatial localization of the wavelet packet basis (versus its
frequencial one). Indeed, in the case of the deconvolution (s is the pseudo-inverse of a low pass filter 5,),
we usually want the elements of the wavelet packet basis to have: a good frequencial localization, in order
to define a good approximation of the deconvolution; and a good spatial localization, in order to properly
separates information from the noise. As far as we know there have been two attempts to cope with these
incompatible properties. The first one consists in finding the “best basis”, that is the basis which separates
the most the information from the deconvolved noise (see [12, 13]). The second one was introduced in [10]
and consists in shrinking the image at different scales.

The following proposition, despite its simplicity, permits to justify and generalize this second approach.
Let us first define a partial order among admissible trees.

Definition 1 Let (m, fi)i<i<r end (p}, j})i<i<is be two admissible trees, we say that
(1, ir<i<s = (P i hi<icr

if and only if there exists a partition of {1, ..., L} info L' subsets (Iy)1<y <1+ such that for anyl' € {1, ..., L'},
Dy - ]
Wi = Brer, Wi,
This relation simply means that the elements of {4}/ ) }nez,1<1<1 correspond to a higher level of decom-
position than the ones of {wi.’;‘ n}neZ,lsls 1. Note that if the admissible trees are indexed with regard to
there position in the binary tree (for instance from left to right} then the Iy are of the form {ty_.1,...,tp —1}

with l=tp < ... <ifp <tppp <...<tp =L+ 1L
Using this definition, we can state,

#0One can refer to [10] for examples of such computation.



Proposition 2 Lel {{7  }nez,1<i<1 be @ wavelet packet basis and D be an operator linear, continuous and
diagonal in the basis {$}  Inez,1<1<1, which goes from 12(Z) into itself. If we note Xy |, the eigenvalue of

D associated with the ezgenvector W | then for any edmissible tree (p}, 1) )1<i<p’, such that (pr, fTh<i<r >

Jum?
(B, Jih<ictr, and any (#j;, hase € R\ {0}, we have

D=DyoDs,
where Dy and Dy are linear and continuous from [2(Z) into itself and are such thet: for any n € Z and

any ' € {1,..., L'},

Dl('f,bpy )_ Py 1[)17’;.'

J,,T-‘- : JJJ:'”’

and for anyn € Z, any I' € {1,..., L'} and any | € Iy (we toke here the notations of Definition 1),

]?l
e T 2
Dz (’(/)Jz md T gl Vi

j;]

Proof This is a simple consequence of the fact that (pr, ji)i<i<r 2 (P}, J])1<1<r- Indeed, let n € Z and
te{1,...,L}, there exists I’ € {1,..., L'} and (&t )mez € I*(Z), such that

P,r
.?h'n' Z am :"I" m’

mei

Therefore,

AP

DroDy(y¥,) = s Y om Dl(w”" )
f-"jr mez
'f
= DE,)

So, Dy o Dy and D, which are continuous and linear, coincide on a basis of {2(Z), they are equal. O

This proposition proves that, the operator ﬁ, diagonal in a wavelet packet basis, of which we average
the translation, can be written as a composition of similar operators D = Dj e Dy 0 Dy o -, In practice,
it can be used to obtain some D; which are better conditioned than ). Moreover, in a noisy case, we can
apply the D; and smooth the image successively. The advantage of this approach is that the operator Dy,
for small indexes i, separate the noise from the information very efficiently since they correspond to low
decomposition levels and therefore have a good spatial localization.

Remark also that the A} | generally do not depend on n (for instance in the case of {10}) and that
Proposition 2 could be consequently simplified.

For instance, let us consider the case of the approximation of a deconvolution using the averaging over
translations of an operator D diagonal in a basis {4} }nez 0<p<zio. For simplicity, we assume that all the

A% are positive and do not depend on n. We can let p; = M for p e {0,..., 270 — 1} and then recursively
define pif_; = min(|1 — pi""|, |1 — p3?]) for p € {0,...,29"1 — 1} and for j = jo,jo —1,-++,1 and let
pd =1 (the iy ’s have to be understood as the remaining convolution for levels ¢ < 7). Therefore, we can

decompose D=Djo-0 DJD where the D are sotne continuous and linear operator, diagonal in the basis

#2”+1 2p+1
{¥% . }nez o<p<ai, with the eigenvalues wr P

and $2®

i n for p € {0,...,271 — 1}. This decomposatlon permits to deconvolve as few as possible at coarse
scales, where the spatial localization is weak.

2
and "'"'F”'*** respectively associated with the eigenvectors 1,0




3 Application to the issue of image deconvolution

3.1 The FCNR

As we said in the introduction, the approximation of the convolution, by mean of the wavelet packet

decomposition of the image, permits to use the ability of these decompositions to yield sparse representation

of the image. For instance, in the case of the deconvolution, if we define (by any appropriate mean) a
“pseudo-inverse?” r of the convolution kernel s;.

Once we have chosen an appropriate wavelet packet basis {#}' ,}nez,1<i<s and chosen a sequence

= (M )1<i<r, of real numbers which permit to approximate the convolution with 7 efficiently {or so that

the convolutaon it defines is itself an acceptable “pseudo-inverse”). We can, according to Proposition 1,

define an approximated convolution, of u € I2{Z), by averaging, over several translations of u, the operator

]3, defined by
(D), ¥5 ) = Mol w95 )

forn€Zandl1 <l <L.
Remark that, according to Proposition 2, we can now decompose

525105201‘530-.

Remark now that, for any of these fh;, we can define an “adaptative convelution” in a way similar
to what follows. This permits to justify the multi-level wavelet packet shrinkage which has been named
FCNR and described in [10, 21].

Let us now define what we mean by “adaptative convolution”. For ¢ > 0 and u € {?(Z), we can define
an adaptative convolution, by averaging, over several translations of u, the operator

0 | 3E AT = 0,
(Ax.o (1), 2 =< XNu, gt i [(u, g ) > o and AV #£0
(u P ) , otherwise,

forne€Zandinle {1,..,L}.

Heuristically, we convolve the information contained in 4 and leave unchanged what we consider being
noise. Of course, it is in general preferable to have a continuous operator, instead of Ax . We can moreover
introduce a parameter, § € [0, 1], in order to lower the remaining noise. Therefore, we will prefer, to the
above operator, an operator of the kind

0 , i }\p' = 0
N ({u, g2 ) = 6) + o If( )>cra.nd/\p'750
¥4 J— L R * ‘? 7
(Axo,6(u), 15 ) = 5&’%‘ n; Jifo > (.; TP ) > —0 a.nd /\p‘ #0,

X ((u, 5 ) + o) —do i —o > {u, y and A -,é(},

(11)

it Tl> ;,u n

forue LAR), 0 >0, €[0,l],n€Zandl e {l1,..,L}.

Remark that the average over the translations of the usual wavelet thresholding methods falls under
the scope of (11). Therefore, the framework of the “adaptative convolution” can probably give some tools
to understand what these algorithms do.

This “adaptative convolution” is probably the most natural and immediate application of the results
stated in the preceding section. In fact, this framework is only a new point of view on existing methods.
However, we do believe, and will try to show it in the experiments, that this permits a better understanding
of what these methods really do and to explain there drawbacks and properties.

4By pseudo-inverse, we mean any kernel r such that r * s1 is close to the identity (restricted to {2(Z}\ Ker(s1)) which
would, by the way, satisfy suitable properties {for instance r % s > 0 or/and spatial localization), depending on the user’s
expectations.




3.2 A modification of Rudin-Osher-Fatemi functional

We are now going to introduce another application of the approximation of the convolution to the problem
of deconvelution. This consists in introducing a wavelet packet term in the method introduced by Rudin,
Osher and Fatemi in [22]. In order to have well defined variational problems, we are forced to boil down
to the finite dimensional cage where the signals are assumed to be of sive N € N. Let us first make some
recalls on this latter method.

Rudin, Osher and Fatemi introduced the total variation based deconvolution method, which consists
in minimizing, for N € N and a data g € RV, the functional

TV (u) + Aj|sy *u — gll2, (12)

among u» € BY, where A can be interpreted as a Lagrange multiplier (see [3]) and the total variation is
defined by

N-—1
TV (u) = 3 lumst = thml

m=0

The main advantage of this method is that, since the total variation does not expect too much smooth-
ness at edges, it permiis to avoid ringing artifacts in the their vicinity.

On the other hand, its main drawback is that it tends to create staircasing artifacts and therefore to
remove some textures. This has been studied by several anthors among which we can cite [19, 20]. If
we look in detail at the arguments given in [20], we see that one of the key properties which causes this
staircasing is the fact that we can not have a “reasonable local®” solution to the equation

i * (s xu—g)=0, (13)

where (87)n = (81)n. This is, in general, the case since g containg noise and s, is regular (for instance a
low-pass filter).

These considerations leads us to modify the functional in order to have a data fidelity term whose
derivative (the left term in (13)) can be null. With that in mind, we change the convelution operator in
is1 * u - gl|z by an “adaptative convolution” similar to the one defined in (11). More precisely, given a
wavelet packet basis® (Y2 )1 c1<r, 0<n<a-inn », We compute some eigenvalues X = (A )1<i<r. (for instance
with (10}) in order to approximate the convolution with s; by an operator I} (defined in Proposition 1).

Givenadatag € RN | we can define an adaptative convolution by averaging, over translations of u, the

operator Sy 0.6

0 i AB = 0,
= N {u, ! Y — o) + 80 i (g, 98 ) > o and AT #£0
Pty i ) Yin ’ L TP Jt '
aneal) Viind =\ glu,upt ) i o> {6,920 ) > —o and AZ! £0,
A ((u, ) )+ o) 80 i —a > (g, o) and AZ £ 0,
foro>0and § > 0. We call it
271 _
Synos =277 Z Tk © Sg. 20,6 9Tk
k=0

where J = max; j;.
Note that, in order to define a convex data fidelity term |[Sga,0.5(2) — g|l2, we have not taken the
adaptative convolution defined by (11) ({|Ax ¢,s(x) — gll2 is not convex as soon as one of the A7 is lower

5W. Ring wrote his paper in the continuous framework of an open set £ C R (instead of {1,...,/N}). Therefore, he can
assume that the equation 37 * (51 * » — g) = 0 does not have any sclution on any open subset of . The heuristic translation
of this hypothesis in our discrete framework could be that we do not have any “reasonable local” solution.

6P'his time we have to take a wavelet packet basis of the interval.



than 1, which is, in general, the case). Therefore, we propose to minimize, among u € RV, a functional of
the kind

TV (u) + AllSp.x.00(u) — glia. (14)

Note that Sy ».»s is affine and so that the functional (14) is convex and admits a minimum. As usual,
we cannot guaranty the uniqueness of the result since the functional is not necessarily strictly convex.
However, we could state, about this issue, results similar to the one given in [3, 10].

One of the advantages of this functional is that, this time, there exists a reasonably smooth sclution
e 60 the equation

Sy xes(Sgams(u} —g) =0, (15)

where S;, 0.5 15 the derivative of 5.

Moreover, this solution is close to the solution of the wavelet shrinkage method described in the pre-
ceding section. In fact, if, in (15), we take Sy x 0.5, instead of Sg 3 5,5, and if 6 # 0 and AL # 0, for any
te{l,.., L},

Yoo = A(;}-ﬁ_rhgagm%,% (9)
iy

is a solution of (15}.

Therefore, the role of the parameter A, o and § is clear: ¢ and § are used to control the noise and A is
used to control the ringing artifacts. It is also a point which is satisfactory. Indeed, in Rudin-Osher-Fatemi
method, when letting A as a parameter, we, in practice, fix it in order to have a reasonably low amount
of noise in homogeneous regions {where the noise is the most visible). Though, we know that the main
advantage in the use of the total variation is its ability to remove Gibbs effects (see [10]). That is one of
the oddness which is solved by our new approach.

Moreover, with regard to the causes of the staircasing given in [20], the existence of u, cancels one of
the reason of the staircasing. We will see in the experiments that the image restored by means of (14) are
indeed free of staircasing.

Remark: We have chosen here to present (14) under a variational point of view. We are conscious
of the fact that {14) can appear redundant to readers who are usually interested in wavelet shrinkage.
Indeed, in the case of denoising, one can consider the characterization of Besov spaces by semi-norms on
wavelet coefficients to show that wavelet shrinkage algorithms are equivalent to minimization problems
close to (12)7. However, the drawback of these methods in the case of deblurring is that they cannot
recover lost frequencies (see [10]) (we can however mention the attempt to oversample images by means
of wavelet transforms made in {2]). Therefore, it seems interesting to reintroduce the total variation term
for spatial/frequencial location where the regularity needed by the Besov semi-norm is too important. We
will see in the section devoted to the experiments (Section 4.4) that {14) permits to avoid ringing artifacts
where wavelet packet shrinkage method does not.

In the experiments presented in Section 4.4 we have computed a solution to (14) by mean of a gradient
algorithm with an optimal step. This means that at each iteration we compute the gradient of the functional
and then compute the optimal move in that direction in order to make (14) decrease. We could probably
have a better algorithm by using methods such as the ones introduced in [5, 17]

Compared to the usual Rudin-Osher-Fatemi algorithm, the computational cost increases due to the
translations made in the operator Sy q,s. Fortunately, in practice, we only need to average over four
translations of v to obtain a sufficiently nice approximation of the convolution.

"For instance, it is shown in {4] that, in the case of the denocising, the usual wavelet coefficient soft-thresholding is equivalent
at minimizing

el 53 11y + Ml = gl

where B}(L!) is a Besov space (see [18]} close to BV,
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Figure 1: Profile of the Fourier transform of 1 (see (16)). The hatching represents the frequencies which
are, in practice, lost during the degradation.

%/5%%@;»

Figure 2: Profile of the Fourier transform of sy (see (17)). The hatching represents the frequencies which
are, in practice, lost during the degradation.

4 Numerical results

This section is split into four parts. They are organized as follows. The first part describes the data and
notations which permit to understand the experiments of other sections. In the second part, we display
experiments which show that we can, in reasonable cases, approximate a convolution operator efficiently in
a wavelet packet basis. In the third part, we illustrate the practical interest of Proposition 2. We display
in the last section some experiments on the possibility to modify Rudin-Osher-Fatemi method according
to the preceding section and compare its results with the method of Rudin-Osher-Fatemi and with two
wavelet packet shrinkage.

4.1 Description of the data and notations

The experiments are based on two realistic degradation models (the same as the ones presented in [10])
which are derived from satellite imaging. They correspond to two different satellites.

In both cases, the Fourier transform of the impulse response is supported on [—m, 7| x [—7, x]. Moreover,
we will assume the noise (Gaussian, even if the real noise is the sum of three noises having different
structures. The assumed standard deviation of this Gaussian noise is, in both cases, realistic and gives
rise to the same difficulty as the real noise.

e The convolution kernel of the first model is given by

§(6m) = e Prlel-2mln (3“’;(;9) (3’”;(5")) (3’:’;(”)) , for £,7 € [-m,7), (16)

where ¢ = 0.479, v, = 0.450 and the standard deviation of the noise is o1 = 2.4 {see Figure 1).

» The convolution kernel of the second model is given by

si(e.n) = etz (S0} (D) g e ), (a7)

with the same values for ¥ and 7,. The standard deviation of the noise is 03 = 0.5 {see Figure 2).

We have already shown to evidence in [10] that the main difference between these two convolution
kernels is that in the first case the Fourier transform of the convolution kernel only vanishes when one of
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Name Tree Wavelet
Basis T | mirror-like tree of depth 4 | cubic spline
Basis 2 | full tree of depth 4 cubic spline
Basis 3 | full tree of depth 4 Shannon

Table 1: Definition of the wavelet packet bases.

the Fourier coordinates is in the vicinity of —m or 7 while in the second case we also miss some intermediate
frequencies (see the hatched zones on Figure 1 and 2).

We also showed in this paper that variational methods are better suited to this second degradation
model (due to there ability to retrieve lost frequencies) even if they tend to erase some textures {at least
in the case of the total variation).

We also define some simple “pseudo-inverse” operator to the convolutions presented above by truncating
the inverse of the Fourier transform at the value 30. More precisely, we take

sy o ISEm > g,

e )30 if0<EEM < &,
7‘1(577?) - -30 , if — 3;1—0 S 57:(5:71) < 0’
4] ,lf 51(5;’?) =10,

for i = 1,2, where the s; are defined by (16) or (17).

We will also use the reference image, which is the best sampled image, we can expect to recover, given
the initial landscape and the sampling rate (once again, see its definition in [10], we display some parts of
this reference on Figures 12.b, 13.b, 14.b).

In the following sections, we will show experiments using wavelet packet bases. Since these bases have
an important impact on the results of the experiments, we have chosen to summarize their definitions in
Table 1.

We describe these wavelet packet bases in terms of a tree and a wavelet. We will use two trees: the
mirror Iike tree of a given depth, which is exactly the mirror tree described in [12] or its adaptation to 89
(see (17)); the full tree of a given depth (or pseudo local cosine transform). Concerning wavelets, we will
use the Shannon wavelet (see [16], pp. 245) and the cubic spline (see[16], pp. 236).

4.2 Approximation of the convolution

We will display in this section two kinds of experiments whose aim is to illustrate Proposition 1. The first
one shows that we can approximate a convolution efficiently when using (6) and the second one shows to
evidence the practical importance of the average over translations in Propositien 1.

In order to highlight the difference between the different kind of approximations of the kernel, we will
approximate the two “high pass” filters defined in the preceding section: r; or ra.

As we said in Proposition 1, the average over several translations of an operator diagonal in a wavelet
packet basis is a convolution. Therefore, we have computed the Fourier transform of its kernel. We display
on Figure 3 the Fourier transform of #; (the hard line) and of several of its approximations. In order to
create these signals, we have averaged the corresponding diagonal operator over translations of a Dirac
delta function. The displayed signals are the profile of the Fourier transforms of the obtained kernels, on
the line 5 == 0.

Here is the detailed and commented description of what is displayed on Figure 3:

¢ The hard line represents 1.

o The dashed line represents the Fourier transform of the kernel when we approximate the convolution
using the (A})1<i<r defined by (10) in Basis 3 {defined in Table 1). We clearly see that in this
case, we simply approximate § by a piecewise constant function (the pieces corresponding to dyadic
intervals). Remark that this corresponds to the announced result (see (7)). Note also that in this
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Figure 3: Profile of the Fourier transforms of the convolution kernels derived from different wavelet packets
based approximations (see description on page 11). The initial convolution kernel is vy and is represented
by the hard line.

Figure 4: Profile of the Fourier transforms of the convolution kernels derived from different wavelet packets
based approximations (see description on page 11). The initial convolution kernel is r5 and is represented
by the hard line.

case, since we ugse the Shannon wavelet, we do not need to do all the translation (see (9), in the proof
of Proposition 1).

e The dotted line represents the Fourier transform of the kernel when we approximate the convolution
using the same (A?:)lﬁgL as previously but when using Basis 2. This kernel is very close to the
previous one but is smoother (which is normal with regard to (7) and since the cubic spline is less
localized in frequency domain than the Shannon wavelet), Note that both this approximation and
the previous one are very close to the initial convelution.

¢ The dotted and strong line represents the Fourier transform of the kernel when we approximate the
convolution using the (A} )1 <<z defined in (10)® in the case of Basis 1. This approximation is, of
course, less efficient since this time we do not decompose all the frequencial dyadic intervals as much
as possible. However, this approximation is made in a basis whose elements have a better spatial
localization than the previous basis, which is interesting for the purpose of denoising.

Note that we have not used (7) to compute the (A)i<i<r and that we could clearly improve our
approximations by doing so.

8Note that, for the calculus of (A?: J1<i<r, we have approximated the spline by the Shannon wavelet,

12



convolution | convolution
Bases with with o
Basis 1 7.9 22.8
Basig 2 3.1 6.3
Basis 3 3.9 5.3

Table 2: Mean square error between the exact and the approximated convolution,

Figure 5: Ilustration of the error made when we approximate the convolution kernel.
Left: the convolution with rs.
Right: its approximation in Basis 1.

We display on Figure 4 exactly the same experiments in the case of the convolution with 5. The only
difference is that this time we replace the mirror tree by a tree adapted to the special case ry (we call
it mirror-like tree). Therefore, with this tree, we decompose more the wavelet packet whose frequencial
localization is in the vicinity of T and —3.

The approximation is worth in this case than in the previous one because of the large variation of 73.
This is especially true for the one made in Basis 1 which, this time, poorly approximates the real kernel.
Moreover, we partly loose the advantage of the mirror-like tree approach since we must have ming §; = 3
in order to decompose more the intermediate frequencies.

It is visually almost impossible to see the difference between a convolved image and its approximation
in a wavelet packet basis. Therefore, in order to show to evidence that the error we are doing when
approximating the convolution kernel is not too important, we have computed the convolution of the
reference image with s; (respectively s;) and convolved it with its pseudo-inverse r; (respectively r;) or
by its approximation using different wavelet packet bases (described in Table 1). We summarize in Table
2 the error in terms of the means square error between the exact and the approximated convolution. Note
that the main comments concerning these statistics are that they are reasonably small and that Basis 1
yields not as good statistics as the other ones (hut on the other hand it has a better spatial localization).

Remark that, we can however see the difference when we approximate the convolution with r3 in Basis
1 (the profile of the approximated kernel in this case is represented by the dotted strong line on Figure 4).
In order to show this difference, we take as an initial image the reference image convolved with s9 and we
display, on the left part of Figure 5, its convolution with ry; and, on the right hand side of Figure 5, the
convolution approximated in Basis 1 (as described for Figure 4). Here, we see that the difference is a kind
of ringing artifact which is due to the fact that the composition of the two convolutions (with s; and the
approximation of rq} is a convolution whose kernel can be negative.

The next experiments illustrate the need of doing the translations. First, note that in practice three
translations {one pixel on the right, down and diagonal) are sufficient to obtain a reasonably good results.
However, if we do not average over any transkations the result contains aliasing like artifacts. With regard to
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Figure 6: Cylindrical image.

Figure 7: Tllustration of the need of the averaging over translations. Extracted and sharpened part of:
Left: Approximation of the convolution with vy in Basis 2, average over several translations.
Right: Same calculus, without any translation.
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Figure 8 Modulus of the Fourier transform (raise at the power 0.01} of the images displayed on Figure 7.

Figure 9: Hlustration of the need of averaging over translations.
Left: Approximation of the convolution with ro in Basis 1, average over several translations.
Right: Same calculus, without any translation.

(9} it is clear that these artifacts are due to the aliasing occuring during the wavelet packet decomposition.

In order to illustrate this, we use a cylindrical function as introduced in [15} (the Fourier transform
of a cylindrical function is supported by a line (just like on the left image of Figure 8)). Therefore, we
convolved the cylindrical function displayed on Figure 6 with s;. We then compute the image of this
function by an approximation of 7 in Basis 2 (note that the result would have been worth with Basis 1),
We display on Figure 7 an extracted part of a sharpened version {the sharpening of “xv”) of the result (on
feft) and the result when doing the same approximation without any translations (on right). The hatching
which is not in the direction of the edge is clearly due to the aliasing inside the wavelet packet. We can
see on the modulus of the Fourier transform of these images (see Figure 8) the effect of the aliasing inside
the wavelet packet when we do not average different translations.

We also show on Figure 9 the same experiment when the initial image is the reference image, the first
convolution kernel is s, and we approximate the convolution with r2 in Basis 1. This time the aliasing is
translated into the hatching on the road. ‘

4.3 Need of spatial localization

As we said in the introduction of Proposition 2 it is often important to have a wavelet packet decomposition
which decorrelates efficiently the noise from the information. We then presented two ways to achieve this
goal. In order to illustrate these, we focus on the deconvolution, using the wavelet shrinkage method
defined by (11), of the blurred image whose degradation model is described by (16).

First, we display on Figure 10 two restorations of this blurred image, when using a multi-level approach,
with & = 1, on left in the case of Basis 3 (with ¢ = 10) and on right with Basis 2 (with ¢ = 3.5). We see
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Figure 10: Hlustration of the need of spatial localization of the elements of the wavelet packet basis.
Deconvolution /Shrinkage of a noisy image in:

Left: Basis 3.

Right: Basis 2.

that the left image contains noise while the right one does almost not. This is due to the fact {which by
the way is well known) that, just like the Fourier transform, the Shannon wavelet decomposition does not
decorrelate the noise from the information because of its weak spatial localization. Therefore, the Shannon
wavelet can not be used (at least for the purpose of denoising) to avoid the translations which are needed
to properly approximate a convolution when using other wavelets.

In addition to this rough aspect of the need of spatial localization, we illustrate on Figure 11 the interest
of Proposition 2. With that in mind, we have restored using (11) the image obtained with the degradation
model described by (16). We display on Figure 11 two extracted parts of three images (remark that all
the images are sharpened for the need of the display).

o Up: The two images are extracted from a restoration of the blurred image when shrinking in Basis
2, without the multi-level approach. Here, we take 4 = 1 and o = 4. We see on both images some
vertical structures®.

» Middle: The image is computed with the same basis except that we take ¢ = 3.5 and use the multi-
level shrinkage introduced in [10] and justified by Proposition 2. The vertical structures present in
the preceding image have disappeared. Remark also that we obtain less noise with a smaller value
of o, since we remove some noise in different bases.

¢ Down: The two images are computed using the wavelet packet shrinkage in Basis 1, with é = 1 and
o = 4, and without any multi-level shrinkage. The structures present in the first images have also
almost disappeared. You can also remark that the line in the middle of the road is better restored
than on the previous image. This is probably due to the fact that, at least in our experiments ,
the approximated convolution kernel has, on almost all the frequency domain, a Fourier Transform
larger in the case of Basis 1 than in other cases {see Figure 3).

4.4 Modifying the Rudin-Osher-Fatemi variational method

We present in this section some results on the modified Rudin-Osher-Fatemi variational method. In order
to illustrate the ability of this method to both recover textures and avoid ringing, we have chosen to restore
the image degraded by the second degradation model {see {17}).

We have restored this image by several methods. Let us describe the methods under consideration

e A wavelet shrinkage method applied in Basis 1, without multi-level approach, with 6 =1 and o == 1.

9Remark that the simulated noise is not really Gaussian and has an “inter-column” component, which yields these
structures.
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Figure 11: THustration of the use of Proposition 2. Deconvolution/Shrinkage of a noisy image in:
Up: Basis 2, without multi-level shrinkage.

Middle: Basis 2, with multi-level shrinkage.

Down: Basis 1, without multi-level shrinkage.
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o A wavelet shrinkage method applied in Basis 2, with the multi-level approach, with § = 1 and o = 1.
» The usual Rudin-Osher-Fatemi method with A = 8.
¢ The modified Rudin-Osher-Fatemi using Basis 1, with § =1, ¢ =1 and A = 8.

We display on Figures 12, 13 and 14 extracted parts of these restorations as well as the reference
and the blurred images. On Figure 12, we see that the modified Rudin-Osher-Fatemi and the wavelet
packet shrinkage methods preserve textures better than the Rudin-Osher-Fatemi one. We also see that
the modified Rudin-Osher-Fatemi method does not suffer from staircasing artifacts (like the usual Rudin-
Osher-Fatemi method). On Figure 13 (which has been sharpened for the display), we see that, despite the
modification, the methods based on the total variation still permits to remove the ringing effects which is
present in the other wavelet packet methods. Once again, we can see the staircasing on Figure 13.e but not
on 13.f. At last, we see on Figure 14 that, in wavelet packet methods, the approximation of the convolution
kernel yields to a result which is still more blurry than the classical Rudin-Osher-Fatemi method. This is
due to the bad approximation of the convolution (see Figure 4) and can maybe be improved by optimizing
the basis and the (\]")1<1<r.
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Figure 12: Restoration of the degradation model described in (17).

a: Blurred image.

b: Reference image.

c: Shrinkage in Basis 1, without multi-level approach.
d: Multi-evel shrinkage in Basis 2.

e: Rudin-Osher-Fatemi method.

f: Modified Rudin-Osher-Fatemi method.
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Figure 13: Restoration of the degradation model described in (17} (the images have been sharpened).
a: Blurred image.

b: Reference image.

¢: Shrinkage in Basis 1, without multi-level approach.

d: Multi-level shrinkage in Basis 2.

e: Rudin-Osher-Fatemi method.

f: Modified Rudin-Osher-Fatemi method.
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Figure 14: Restoration of the degradation model described in (17).

a: Blurred image.

b: Reference image.

c: Shrinkage in Basis 1, without multi-level approach.
d: Multi-level shrinkage in Basis 2.

e: Rudin-Osher-Fatemi method.

f: Modified Rudin-Osher-Fatemi method.
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