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MODELS USING GECMETRIC PDE’s for
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Abstract. This paper is devoted to the analysis and the extraction of information
from bio-medical images. Our technique is based on object and contour detection,
curve evolution and segmentation. We present a particular active contour model
for 2D and 3D images, formulated using the level set method, and based on a
2-phase segmentation. We then show how this model can be generalized to seg-
mentation of images with more than two segments. Our techniques are based on
the Mumford-Shah model. By our proposed models, we can extract in addition
measurements of the detected objects, such as average intensity, perimeter, area,
or volume. Such informations are useful when in particular a time evolution of the
subject is known, or when we need to make comparisons between different subjects,
for instance between a normal subject and an abnormal one, Finally, all these will
give more informations about the dynamic of a disease, or about how the human
body growths. We illustrate our method by calculations on two-dimensional and
three-dimensional bio-medical images.

1 Introduction

Techniques of image processing and data analysis are more and more
used in the medical field. Mathematical algorithms of feature extraction,
modelisation and measurements can exploit the data to detect pathology in
an individual or patient group, the evolution of the disease, or to compare a
normal subject to an abnormal one.

In this paper, we show how our active contour model without edges in-
troduced in {7], and its extension to segmentation of images from [8], can
be applied to medical images. The benefits of these algorithms can be sum-
marized in: automatically detecting interior contours, robust with respect to
noise, ability to detect and represent complex topologies (boundaries, seg-
ments), and finally, extraction of geometric measurements, such as length,
area, volume, intensity, of a detected contour, surface or region. These in-
formations can be later used to study the evolution in time of a disease (a
growing tumor), or to compare two different subjects, usually a normal one
and an abnormal one.

* 'This work was supported in part by ONR. Contract NO0014-96-1-0277 and NSF
Contract DMS-9973341.



In active contours, the basic idea is to evolve a curve C in a given image ug,
and to stop the evolution when the curve meets an object or a boundary of the
image. In order to stop the curve on the desired objects, classical models use
the magnitude of the gradient of the image, to detect the boundaries of the
object. Therefore, these models can detect only edges defined by gradient.
Moreover, some of these classical models suffer from other limitations: the
initial curve has to surround the objects to be detected, and interior contours
cannot be detected automatically. We refer the reader to [9], {3], [16], {17] [18],
(4], [10], for a few examples of active contour models based on the gradient.

The active contour model that we will use here [7], is different than the
classical ones, because it is not based on the gradient {a local information)
for the stopping criteria. Instead, it is based on a global segmentation of the
image, and it has the advantages mentioned above. We have also extended
this model to segment images, based on the piecewise-constant Mumford-
Shah model [21], using a particular multiphase level set formulation. This
formulation allows for multiple segments, triple junctions, complex topologies
and in addition, compared with other multiphase level set formulations, the
problems of vacuum and overlap of phases cannot arise.

Before going further, we would like to refer the reader to other works
on segmentation using Mumford-Shah techniques: [1], [2], [5], [6], [12], [19],
[20], [23], [25], [26], [28], [30], {31], and to related works with applications to
medical imagery: {27), {14], [15], {11], [24], [13].

We will first recall our active contour model and its extension to segmen-
tation of images. Then, we will illustrate how these geometric models can be
applied to medical images.

2 Description of the model

Let us first introduce our notations. Let 2 C IR" — IR be an open and
bounded set, and let up : 2 — IR be a given image. In our case, we will
consider n = 2 (plane images), and n = 3 (volumetric images), and z € R"
denotes an arbitrary point. Let C C 2 be a hyper-surface, as the boundary of
an opexn subset w of £2, 1.e. wis open, w C 2 and C = dw. We call “inside(C)"
the region given by w, and “outside(C’)” the region given by 2\ . We recall
that H™" ! denotes the (n — 1)-dimensional Hausdorff measure in IR™. For
n = 2, H* () gives the length of the curve C, and for n = 3, H* }{C)
gives the area of the surface C.

In this paper, we consider the problem of active contours and object
detection, via the level set method [22] and segmentation. Giving an initial
hyper-surface, we evolve it under some constraints, in order to detect objects
in the image up. In addition, we also obtain a segmentation of the image,
given by the connected components of {2\ €' and the averages of ug in these
regions. Finally, we would like to extract more informations, in the form of
geometrical measurements for the detected objects.



We introduce an energy based segmentation, as a particular case of the
minimal partition problem of Mumford-Shah [21]. As in [7], we denote by
c; and ¢z two unknown constants, representing the averages of the image ug
inside C' and outside ', respectively. A variant of the model introduced in
[7], but generalized to n dimensions, is:

inch(cl,02,C'), (1}

€1,C32,

where, using the above notations,

[uo(z) — c1|2dz + Mg / lug{z) — ¢ |*dz

outside(C)

F(Cl,CQ,C) Rt Al/

inside{C)
+ pHPHC) + vLM(inside(C)).

Here, £™ denotes the Lebesgue measure in JR”. For n = 2, £2({w) denotes the
area of w, and for n = 3, £3(w) denotes the volume of w. The coefficients
A1, Az, ¢ and v are fixed non-negative constants.

Minimizing the above energy with respect to ¢;, ¢z and C, leads to an
active contour model, based on segmentation. It looks for the best simplest
approximation of the image taking only two values, ¢4 and ea, and the active
contour is the boundary between the two corresponding regions. One of the
regions represents the objects to be detected, and the other region gives the
background. We note that, when A; = A2 = 1 and v = 0, the minimization of
the above energy is a particular case of the piecewise-constant Mumiord-Shah
model for segmentation {21].

For the evolving curve (U, we use an implicit representation given by the
level set method of S. Osher and J. Sethian [22], because it has many advan-
tages, comparing with an explicit parameterization: it allows for automatic
change of topology, cusps, merging and breaking, and the calculations are
made on a fix rectangular grid. In this framework, as in [22], a hyper-surface
C' € {2 is represented implicitly via a Lipschitz function ¢ : 2 — IR, such
that: C = {x € 2|¢(x) = 0}. Also, ¢ needs to have opposite signs on each
side of C. For instance, we can choose ¢(x) > 0 inside C (i.e. in w), and
¢(x) < 0 outside C (i.e. in 2\ @).

As in [T}, also following [29], we can formulate our active contour model
in terms of level sets. We therefore replace the unknown variable C by the
unknown variable ¢. Using the Heaviside function H defined by:

1, fz>0
H(z)“{o, if 2 < 0,

we express the termns in the energy F in the following way:

Fler,e0,8) = My / lao () — 1 [Pz + g / o () — cz?dz
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or
Fles,e08) = M /; o) — 1 P B (9(z))dz
o [Q luo(e) ~ a* (1 — H($(e))dz + /Q VH($(@)] + v [Q H(d(z))do.

Considering H, and &, any C' approximations and regularizations of the
Heaviside function H and Delta function &g, as £ — 0, and with H] = &,
and minimizing the energy with respect to ¢y, ¢z, and ¢, we obtain:

_ Jpw@HG@)s - fou(e)(l — H($(@))ds
Jo H@@)ds T — H{g(@))dz

and 96 Vs
== 6.(9) {div(w

We see that ¢, and ey are the averages of the image ug inside C and outside
C respectively. Solving the equation in ¢ by an iterative scheme, we implicitly
move the curve C' toward boundaries in the image. The motion of the curve

is governed by the mean curvature div(%) and by terms depending on ug.

) — Ar|ug —0112 + Azlug wcz|2 _u].

In the end, we also obtain a two-phase segmentation of the image, given by
u(z) = a1 H($(z)) + (1 — H(¢(x))).

From now on, we set for simplicity Ay = Ag =1 and » = 0.

This model can be extended to the general piecewise-constant Mumford-
Shah segmentation model [21] (when we look for more than two segments),
originally proposed in two dimensions. It minimizes the energy

FM%(u, =% /Q () = f'de + 1207 (0), @)

where u = ¢; inside each connected component of 2\ C.

In order to find a piecewise-constant approximation of ug based on the
above Mumford-Shah model and level sets, we propose a multiphase repre-
sentation, which allows for multiple segments and triple junctions. The basic
idea is to use several level set functions. In [29] for instance, one level set
function is associated to each phase. But in our formulation, we consider-
ably reduce the number of level set functions, in the following way. As we
have seen, using one level set function ¢, we can partition the domain £2 in
up to two disjoint regions, given by {¢ > 0} and {¢ < 0}. Using two level
set functions ¢y, ¢o, we can partition the domain in up to four disjoint re-
gions, given by {¢1 > O:¢2 > 0}} {¢1 > 0a¢2 < 0}: {¢1 < 09¢2 > 0}} and
{¢1 < 0,¢2 < 0}; and so on, using n level set functions ¢1,...,¢,, we can
define up to 2" regions or phases. These are disjoint (no overlap) and form a
covering of {2 (no vacuum).



Let us write the associated energy for n = 2 level set functions:
Fle.®)= [ Jun(o) ~ P H( () H (ga(a))ds
+ [ 1uo(o) = P H(A @)L - Hlga(o))io
+ [ @) - e 1 - HL @) B da ()i
+ [ 1u0(e) ~ el (1 = B @)1 ~ Hla(e))io
tu | VHG@I+u [ VG,

where ¢ = {ca1, €10, €01, €00)s D = (¢1, da).
With these notations, we can express the image-function v as:

u(z) = crr H{(¢1 (7)) H (d2(x)) + croH{p1 (2))(1 — H(da2(z)})
+ co1 (1 — H(p1(2))) H (2 () + coo{l — H{n (x)))(1 — H(ga2(z)))-

The Euler-Lagrange equations obtained by minimizing F(c, $) with re-
spect to ¢ and ¢ are:

c11 = mean{ug) in {¢1 > 0,¢2 > 0}
c1p = mean{ug) in {¢ > 0,¢s < 0} 3)
co1 == mean(ug) in {¢1 <0, ¢y > 0}
cop = meon(ug) in {¢; < 0,¢s < 0},

%%l - 5s(¢1){ﬂdiv(%) - [((UG —en)? — (up — 001)2)H(¢>2) (4)
+ ((uo ~e10)* — (uo — 600}2) (1- H(¢2))] }: (5)

and
% = 55(452){#&1‘?(%%) - [((uo —c11)” — (uo — 601)2)H(¢1) (6)

(w0 — e10)* = (w0 — cw0)?) (1 = H(@))] }.  (7)

We note that the equations in & = (¢1,¢2) are governed by both mean
curvature and jump of the data energy terms across the boundary.

After each calculation, we can extract the length or the area of the evoly-
ing contour or surface using the formula [, [VH(¢(x))|dz, the area or the
volume of the detected objects (integrating the characteristic functions of
each component of the partition), and the average intensity of the image up
inside the object, given by the computed constants.
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3 Applications to bio-medical images

In this section, we show how the previous active contour model without edges
and its extension to segmentation can be applied to medical images. In our
numerical results, Ay = As = 1 and v = 0. The only varying parameter is p,
the coefficient of the length term, which has a scaling role. We will use the
notations A4; (or V;} for the area (or the volume) of the region given by ¢;,
by L (or L;) for the perimeter of the same region, and by A the area of the
active surface in 3D, and so on.

In Fig. 1, we consider an image representing bone tissues. We perform
the active contour model, and we show the evolving curve, together with the
segmented image u, given by ¢; if ¢ > 0 and ¢ if ¢ < 0. We illustrate here
that interior contours are automatically detected, also that complex shapes
can be detected, with blurred boundaries. Here, g = 0.001 - 2552, ¢; = 218,
e = 115, A = 22368, Ay = 17830, L = 2171.49.

In Fig. 2 we show a final active surface (n = 3}, to detect the boundary
in a brain MRI volumetric image. We only show a part of the surface, in
a 61x61x61 cube. Again, we can extract the area of the detected surface
boundary, and the enclosed volume. In Fig. 3 we show a cross-section of the
3D results: the evolving curve in a slice. We also show the final segmentation.
Here, g = 0.01 - 2552, The final geometric quantities are: ¢; = 164, ¢z = 1,
V1 = 304992, V, = 1194140, A = 69682.5.

Finally, in Fig. 4 and 5 we show our segmentation model, using two level
set functions, again on a MRI brain image. Here, four phases are detected
{see Fig. 4), and in Fig. 5 we show the evolution of the curves, together with
the corresponding piecewise-constant segmentations. Here, g4 = 0.01 - 2552,
11 == 45, Cip = 159, Cpy = 9, Cop = 103, All = 2572, Alg = 6656, Am =
11401, Agg = 8874, L1y = 2063, Lo = 3017, Loy = 3749, Lyy = 5250.

Acknowledgments. The authors would like to thank the Editor Ravi
Malladi, for the invitation to contribute to this book. Also, we would hike
to thank Arthur W. Toga and Paul Thompson, from Laboratory of Neuro
Imaging, Department of Neurclogy, and Sung-Cheng (Henry) Huang, from
Molecular & Medical Pharmacology and Biomathematics, {(UCLA School of
Medicine), for providing us the MRI brain data and for very useful discus-
sions.



Fig. t. The active contour model applied to a bone tissue image. Left: evolving con-
tour. Right: corresponding two-phase piecewise-constant segmentation. The model
can detect blurred edges and interior contours automatically, with automatic change
of topology.




Fig. 2. Part of a final active surface obtained on a volumetric brain MRI data. We
show here a 61x61x61 cube from the 3D calculations performed on a larger domain,
inclosing the brain.



Fig. 3. Cross-section of the previous 3D calculation, showing the evolving contour
and the final segmentation on a slice of the volumetric image. We illustrate here
how interior boundaries are automatically detected.
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Fig. 5. Evolution of the four-phase segmentation model, using two level set func-
tions. Left: the evolving curves. Right: corresponding piecewise-constant segmenta-
tions. Initialy, we seed the image with small circles, to obtain a very fast result.
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