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Abstract
The standard multigrid procedure performs poorly or may break down when used
to solve certain problems, like elliptic problems with discontinuous or highly oscilla-
tory coefficients. Here, we take the approach of using a wavelet transform and Schur
complements to obtain coarse grid, interpolation, and restriction operators. ILU(0)
and compression are used to improve the efficiency of the resulting method. Numerical
examples are presented.

1 Introduction

The multigrid method is very useful in increasing the efficiency of iterative methods used to
solve systems of algebraic equations approximating partial differential equations. However,
when confronted by certain problems, for example problems with discontinuous or highly
oscillatory coeflicients as well as advection-dominated problems, the standard multigrid pro-
cedure converges slowly, with a rate dependent on mesh size, or may break down.

One method to correct for this for elliptic problems with periodic coeflicients is through
use of homogenization (e.g., [19, 18, 24]). This approach is taken because the homoge-
nized operator provides a very good approximation of the important properties (eigenvalues,
eigenfunctions) of the original fine grid operator. A problem with these homogenization tech-
niques is that they are only applicable to periodic problems and can only be given closed
form solutions in certain cases. Also, no natural definition of the restriction and interpolation
operators follows from the homogenized coarse grid operator.

More recently, the standard elliptic problem,

—aAu+u = f, in§},
® = g, on 0§},



where « = const > 0, has been analyzed using wavelets to modify the multigrid methods.
For example, Andreas Rieder [26, 27] uses wavelet decompositions to obtain a multilevel
method. His approach uses a choice of the filter operators obtained from wavelets for the
restriction and interpolation operators.

Another problem analyzed in this paper is the advection-diffusion equation with dominant
advection term,

=V - (a(z)Vu) + b(z)Vu = f(z), z € Q,

where ||b]] > lla||, ¢ > 0. Many multigrid solutions to this problem appearing in the litera-
ture involve numbering and solving for the unknowns in a certain order (e.g., {3, 35]). Arnold
Reuskin uses an approximate LU-factorization of the matrix operator (after discretization
of the problem) to determine the interpolation, restriction, and coarse grid operators for the
multigrid method in [25]. His method uses the information {rom the underlying differential
equation in order to get the factorization. P. M. de Zeeuw uses matrix-dependent prolonga-
tions and restrictions, the Galerkin formulation of the coarse grid operator, and as a choice
of smoother either the incomplete line LU (ILLU) or incomplete block LU methods [13, 14].
Another article that employs matrix-dependent interpolations is [20]. Here, the coarse grid
operator is determined, using the Galerkin approach, to be a Schur complement.

In {17], the wavelet transform, which involves both high- and low-pass filter operators,
is used to derive a new approach, under the assumption that the matrix on the fine grid is
symmetric. Also, some one-dimensional examples are examined. The goal of this work is to
extend the results of the above approach to two dimensions, taking into account the implica-
tions on the scaling and wavelet operators and dropping the assumption of a symmetric fine
grid operator. The reason we consider this approach is that we see from, say, [16] and [1]
that the wavelet coarse grid operator provides a good approximation to the homogenized
coarse grid operator, and it has a natural connection to the interpolation and restriction
operators. Furthermore, wavelets can be applied to problems with periodic as well as non-
periodic coeflicients. Finally, the application of wavelet operators to vectors and matrices
maintains the properties of the original problem.

The initial procedure followed is much the same as that in [17]. As a result of removing
the restriction of a symmetric fine grid operator, we have been able to apply the wavelet
multigrid method to more, and different types of, problems than were examined in [17]. Tn
Section 2, we discuss some multigrid background. Section 3 discusses wavelets, in both one
and two dimensions, as background for later sections. Section 4 discusses the application
of the wavelet transform, defined in Section 3, to multigrid methods. A theorem relating
to the compressibility of the resulting coarse grid, interpolation, and restriction operators
is also presented. In Section 5, we discuss the application of ILU(0) to the component
to be inverted and also give the results of using ILU(0) and truncation to obtain sparse
versions of the inverse component. Section 6 presents some numerical results of applying the
wavelet multigrid method to a variety of problems, including advection-dominated equations
and Stokes problem. We demonstrate that in some cases the wavelet multigrid method
converges twice as fast as the standard linear multigrid method described in [6, 22]. Also, in
those cases where standard multigrid fails, the wavelet multigrid method converges rapidly,
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independent of the number of gridpoints. We also examine the application of the wavelet
multigrid method to anisotropic diffusion problems. In this case, semicoarsening is used
instead of full coarsening, giving a convergence rate that is rapid, with a rate comparable to
the algebraic multigrid method (AMG1RS5, an earlier version of which is described in [28}),
and independent of mesh size. Application of the wavelet multigrid method to a reformulated
version of the Stokes equations also yields good convergence results. For all of the numerical
results in this paper, the two-level V-cycle method is used with one Gauss-Seidel iteration

for both the coarsening and the correction phases, unless otherwise specified.

2 Multigrid
The problem we are concerned with solving is the system of linear equations
Au = b, (1)

where A and b arise from discretization of a differential equation on some grid QF, where h
represents the step size.

For notational purposes, we briefly describe the V-cycle method used in this paper.
Given some interpolation operator, I, where the superscript refers to the fine grid and the
subscript refers to the coarse grid, and a restriction operator, Igh, we can define a multigrid
method recursively. The description of the two-level method follows. First, relax a few
(usually one or two) steps on the fine grid (2* to get an initial guess u®. Then, compute the
residual r* = b* — A"y", restrict the residual to the coarse grid %" : r?* = 2% and solve
the residual equation

A?hePh — 20
on the coarse grid. Then, set u® = u® + I, ¢* and relax again a few steps on the fine grid
(usually one or two steps). This describes the two-level method.. Based on this, we define
the V-cycle multigrid scheme recursively.

A good introductory book on multigrid methods is [6]. Another good reference is [22],
which contains several articles on multigrid methods, including a brief introduction to stan-
dard multigrid methods and an article on linear multigrid methods [34]. A good survey of
robust multigrid methods for elliptic equations can be found in [7].

Another type of multigrid scheme is algebraic multigrid, which only uses the structure
of the matrix in the problem to determine the coarsening process (choice of coarse grid and
definition of interpolation/restriction operators). This process is performed in order to ensure
that the range of interpolation approximates the errors not sufficiently reduced via relaxation.
For a more detailed description of algebraic methods, see [28, 12, 15, 8, 23, 5, 33, 31].
Also, in [2], an algebraic multigrid formulation of the hierarchical basis multigrid method
is discussed and compared to an incomplete LU-factorization. Algebraic multigrid methods
are of particular interest to us, in that they are the nearest methods to the approach taken
in this paper. We will take a moment to describe the method used in [28], since that is one
of the bases of comparison used later.



Ruge and Stiiben’s algebraic multigrid method, described in [28], has a somewhat adap-
tive nature, in that the restriction and interpolation procedures depend on the nature of the
matrix defining the problem on the fine grid. Basically the size of a matrix entry, relative
to other entries on a row, determines the strength of what the authors term connections.
Based on this, as well as certain other criteria, the set of coarse grid points is determined.
Interpolation is defined by: if the point is already on the coarse grid, the value remains the
same; if the point is on the fine grid, but not the coarse grid, a weighted sum of interpola-
tion points is used. The Galerkin formulation of the coarse grid operator is used, and this
procedure is then recursively applied to obtain more than two levels.

It is expected that V-cycle schemes should converge at a rate independent of the mesh size,
However, for certain problems, including problems with discontinuous or highly oscillatory
coefficients or for advection-dominated problems, the above is no longer true. One difficulty
is that the small eigenvalues of A may not be associated with smooth eigenfunctions, a key
assumption for the standard multigrid method. For such problems, it is not as simple to
approximate the smooth eigenfunctions on the coarse grids. New methods for restriction
and prolongation (interpolation) or for treating the entire problem must be found.

3 Wavelets

For notational purposes, a brief description of wavelets follows. For more details, please
refer to [9, 10]. Wavelets basically separate data (or functions or operators) into different
frequency components and analyze them by scaling. We can choose the wavelets to form a
complete orthonormal basis of L*(R). And, due to the scaling of the wavelet functions, they
have time- or space-widths that are related to their frequency — at high frequencies, they are
narrow and at low frequencies, they are broader. Therefore, they provide good localization of
functions in both the frequency domain and physical space, and representation by wavelets
seems natural to apply to analysis of fine and coarse scales.

Basically, a multiresolution analysis (MRA) consists of a sequence of closed subspaces V;
of L?(R) that satisfy

(i)V;H-}. C V;l':' Vj S Z: (2)

@V, = L*(®), (3)
jed

(i) ﬂ Vi ={0}. (4)

In order for the above to form a MRA, all the spaces V; must also represent scalings of
Vo. Other properties a MRA must satisfy include:

i) if f € Vp,then f(z —n) € Vp, ¥n € Z; (5)
i4) there exist scaling functions ¢ € V5 such that
{4(z —n):necZ} (6)

forms an orthonormal basis of V.



Note that this then implies that
{$jn =27 (2772 —n) 1 n € L}

is an orthonormal basis for V}, Vj € Z.
For every j € Z, let

WJ:{fGI/j.__l i< f,g >207 VQGV?}F

the orthogonal complement of V; in V;_1. Then, V; 1 = V; @ W; and W; L Wy for j # k.
Also, W; has the same scaling property as the Vj, and we can find ¢ € W, (the mother
wavelet) such that

{v(-—k):keZ}
is an orthonormal basis for Wy. This implies that
{Wix(z) = 2792z — k) : k € B}

is an orthonormal basis for W}, for any j € Z.
The simplest example of an MRA is the Haar MRA:

1 if0<z<] L 05z <y,
i z , .
qb(a:):{ - Pr) =< —1 1f%§3:<1,
0 otherwise, .
0 otherwise.

For each j, V; as defined by the Haar scaling functions is a space of piecewise constant
functions. (Also, note that we can easily prove that any f € L?*(R) can be written as a
linear combination of piecewise constant functions, e.g., step functions).

Define H; and G; to be the operators that transform the basis of the space V; to the
bases of the spaces Vj,.1 and W4, respectively. The properties of H; and G; are

(VH;H; + G;G; =1
(i) H;H = G;G5 =1

Choosing the elements of H; and G, to be real, we replace the conjugate transpose. by
the transpose. Now, define W, : V; — Vi1 @ W;,y. This transformation maps {¢;x} into

{¢j+14 ¥j+1,e}- Then, by definition,
_ [
MG_(@)'

Note that W; is orthogonal.



We would like to point out that the discrete wavelet operators are computationally ef-
ficient. With respect to the Haar multiresolution analysis described above, application of
the low-frequency operator to an nxn matrix involves only 2n operations. The same holds
for the high-frequency operator. So, the application of the wavelet transform requires only
4n operations. In general, application of the wavelet transform requires O{n) operations,
assuming a finite number of coeflicients for the low- and high-frequency operators.

In two dimensions, we use the tensor product of one-dimensional multiresolution analyses.
Define V; by

V; = V; ® V; (tensor product) = span{®(z,y) = ¢(z)d(y) : ¢, ¢ € v}
Then, the V,’s form an MRA in L*(R?). Since the ¢(- — n),n € Z, form an orthonormal
basis for Vg,
{Ori(z,y) = plz — k)ply ~ 1) 1 k,L € Z}

forms a basis for V. Similarly,
{®jni(z,y) = din(@)dsuly) = 277027z — k, 27y — 1) 1 k,l € Z}
forms an orthonormal basis of V;. Now, for each j € Z, we define W to be the orthogonal
complement of V; in V;_4. So,
Viai=Viae Vi
=V, e W;) e (V;e W)
=V;eV)elW,eV)e (V;eW,) e W, e W)

So, W; is made up of three parts with orthonormal bases given by

tin(z)ds(y) for W; @ Vj,
$s ()i (y) for V; ® W;, and
Pix(@)ia(y) for W; @ W

Then, analogous to the one dimensional case, we define H; to be

H; = H}H7
and G; to be
.G?Hf
G, = HJyG;"
GQG;’
J

H; and G, have the same properties as H; and (i;. Define W; by

_(H;
Wi= (Gj) '
Then, W; : V; — V, 1 @ W, and W; is orthogonal.
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4 Applying Wavelet Transform to Multigrid

4.1 The One-Dimensional Case

The one-dimensional discussion of this method appears in [17]. In that paper, the fine grid
operator is assumed to be symmetric. A brief re-cap of the results follows, after which
we present a theorem related to the compression of the inverse component in the resulting
operators.

Given the problem

LU =F,

where L; represents the operator on the fine grid obtained by discretization of a one-
dimensional boundary value problem, the wavelet transform is applied to both sides of the
equation, yielding

W LW WU = WiF
o (U2 _ (Fr
— ovzvh) (1) = (1), (12)

where Uy, ¥y € V; and Uy, Fyg € W;. The subscripts L and H are used because the
component f1; of the wavelet transform can be likened to a low-pass filter (i.e., only low
frequency values can come in) and G is like a high-pass filter, allowing only high-frequency
values. So, Uy and Uy consist of the low- and high-frequency parts of U, respectively, and
similarly for F. And,

H,L,HF H,L;G¥
T — FHGAA i
Wabil; (GijHf GijG? )
Then, denoting,
7, = HiL, ],
Bj = H;L;G7T,
D; = G;L;GT,

Ej 1s defined as follows:

. T B.
L = WiLyW] = (BJ’-.’" D;{).
7

Taking the block UDL decomposition of Ej, where U is block upper triangular with unit
diagonal, D is block diagonal, and L is block lower triangular with unit diagonal; calculating
the inverse of the factorization; and solving for U, it is clear that the interpolation and
restriction operators should be defined by

b= Z(Hf — G;;FD;" 1B;-")
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and
on 1 on
1, :""(IZh) )
2
respectively, and the coarse grid operator should be
Lj+1 = T’J - BJDJ_le, (13)

which is the Schur complement of D; in f}j. Now, although the matrices T;, B;, and D; are
as sparse as the original operator L;, D, ! is not. But, we also observe that the fill-in that
results from inversion decays exponentially as we move away from the original tridiagonal
structure. This is evident in the structure of the coarse grid operator L;41 (compare [4]).

The above procedure may be repeatedly applied until the desired coarseness is reached.
Although the level of fill-in in the operator Dj_1 increases, the magnitude of the values
decreases as we go away from the diagonal. This property of exponential decay proved
below, which makes compressibility possible, is due to the characteristics of wavelets (again,
refer to [4]). One thing to keep in mind is that the number of gridpoints used must be an
even number, and, in two dimensions, the next to coarsest grid can have no fewer than four
gridpoints.

4.2 Investigation into the Exponential Decay in DJ,,-_1

Here, we investigate the exponential decay of the values of the elements of D;I on terms that
are not on the main diagonal or on the diagonals above and below it. First, we will show that,
using Haar wavelets, the matrix D; has the same tridiagonal structure as the operator L,
where L; represents the operator formed by discretization of the one-dimensional differential
equation

d d
2 (o) @) + bo) (o) = fa), win (14)
u(z) = g, z on 9%,
where ¢ is positive. The discretization of (14) takes the form

_ai+—12-ui+1 + (a'i-i—% + a"——-lz—)'u‘i - a‘i———é—u‘i—l n b{u,—H + ]bz|u2 — b;_ui_g

h2 h 3 (15)

where
1
b = 5 (6 — [bi), (16)

1
b,;l‘ - 5(52 + |b1|) (17)



Lemma 1. Given L, the operator obtained from discretizing (14) using the three-point dis-
cretization with upwinding ((15), (16), and (17)), the matriz D; = G;L;GT, where G is the

Haar wavelet operator, has the same tridiagonal structure as L;.

Proof. Given the discretization from (15), (16), and (17), L, takes the form

e S T i L
Ljﬂ h? h h? h
ey o
A2 A
For simplicity, define
@)1 +azm%
a = W +
Gyl b7
}B - - hz %—Ti
v = i
h? h
Then, clearly, o« = —§3 — .
Suppose L; is a 4x4 matrix. Then,
a f 0
ol o« B
Ly = 0 v «
0 0 v
So,
&%
1(1 -1 0 0O
oo - 1 0
i = G5k 2 (0 0 1 -—1) 0
0

1 {3a -8
T o2\—y 3a/

SCTmo o

o= L W

= o

%
(18)
(19)
(20)

0 1 0

0 -1 0

B 0 1

" 0 -1

Then, clearly D; is tridiagonal. Looking at the pattern in the multiplication process, we
can see that we will still have a tridiagonal structure for L; obtained from a discretization
with more unknowns, since L; and G; have the same structure regardless of size. Therefore,
the product G;L; can have at most three terms in the first and last rows and four terms in
the center rows. Then, when multiplying again by G?, the resulting product is reduced to
having two elements in the first and last rows and three in the central rows. O



Theorem 1. Define D; = GijG;-F as in Lemma 4.2. Then, D;-“l will be such that there
exist constants C > 0 and 0 < p < 1 such that

(D51l < Cpl=. (21)
Proof. The proof is done by using a power series expansion to calculate D, !, First, we must

establish that % < 1 and % < 1. Note that 8, v < 0 and o > 0. Now, 8 = —f%i + % and

aH_l“'“‘ﬂl-_l s
o= ek b,
a,, 1 .
. ity b1
18| f N fJ
o aw%—i-ai_% 4 |bel’
h? h

which is clearly less than 1. A similar argument shows that %l < 1. We know that

3a —f
S
—y 3o
This can be written as
e 0 -4
D, = 1 3a N -y 0 ‘—ﬁ
3o —'.y 0
Therefore, we may write
1 0 -£ -
-1 _ 2 1 + ~5 0 _%
! 30! T .
1 —z= 0

Since we have established that ng» < 1 and Lgl < 1, a power series expansion may be used to
represent the inverse. Let

o -2
-2 o0 £
A= 3o . . 3 ' . (22)
_% H
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Then, we have

- 2 2 n—1 gn-—1
Djl—gg(ImA+A + o+ (=1)rTA

2n—1
< .
<< (%)

The above error estimate is a worst case estimate that comes easily from the fact that, at
worst, we are multiplying two entries and adding them to the product of two more to obtain
A% and the same holds for all other products, since A has only two nonzero terms in each
column. In reality, the error is somewhat less.
The norm of A can be bounded:
B+

4llo = l14] = —522,

so that 0 < ||4]| = p < 1, where

(23)

The first appearance of the (i7)th entry in the estimate for D;l oceurs in the |j — ¢|th term
in the power series approximation. From the structure of A, it is apparent that further
appearances occur in alternating terms of the expansion. This means that

(D7hy] < (AT 4 |l Agb-dt
< PPl ey
a1
- |-?—1|
e
= C’p'j“ii’
where
O —_ (1 _ p2)—1. (24)
Therefore, the estimate (21) holds, with C given by (24) and p given by (23). ]

4.3 The Two-Dimensional Case

Here, we will briefly describe the two-dimensional application of the wavelet multigrid
method. Full details may be found in [11].
Given the problem

LU=F, (25)
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where L; represents the operator on the fine grid obtained by discretizing a two-dimensional
partial differential equation, we apply the wavelet transform to both sides of the equation.
Denoting W; by W; for simplicity, we obtain

Wi LW YWiU = Wik

Uy I
U F

o) il B (26)
UHH FHH

where UL, FL & V;, and (ULH, UHL; UHH)T, (FLH; FHL, FHH)T < Wj. Note that for Simplic~
ity, we will also let H; denote H; and GG; denote G;. We also observe that in two-dimensions,
application of the wavelet transform only requires O{n} operations. The reader is referred
o [4] for more details regarding the fast wavelet transform.
Performing the multiplication on the left hand side, W;L; W , we then partition the

resulting matrix, which we will denote by LJ.

- T B.

Then, we determine the block UDL decomposition of Ej, where U is block upper tri-
angular with unit diagonal, D is block diagonal, and L is block lower triangular with umit
diagonal. Using this to find L;"', defining

Uy,
( UL) {1 Uw
Us) | Uns
Unu

and similarly for I , and solving for Us , we see that
F H UH

(UL)___( (Tj — B;D;*Cy) " (H; — B;D;'G;) )F (25)

Un D;'Cy(T; — B;D; 1(1) L(H, — BDEG)+D 1@,
S0,
_ (T; — B;D;'C;)™Y 0\ (H; — B;D;'G;
v = (i -cinyic; af) (O BPrO L) (- b6 g
Denote
h=/2(Hf — GTD;*Cy) (29)
and

It ‘/_(H B;D;'G;) (30)
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as our interpolation and restriction operators, respectively. Note that if the fine grid operator
L; is symmetric, then Cj = BT and I?* = $(I%)T. Using the interpolation and restriction
operators defined in (29) and (30), we have

U = I}, (T; — B;D;'C;) "\ I?*F + G| D;'G, F. (31)
We also note that in multigrid, we are working on the residual equation, i.e.,
e = Igh(Tj - Bij_lcj)_lf}%hT -+ G?D;]"GJ'T.

If we assume that G;;[‘D;lGjT is small, i.e., r is almost in Range(Hf), then we can approxi-
mate the error by

e = It (T; — BijTle)‘lf,fhr.
So,
(T}‘. - Bijle)egh - Iﬁhrh.

The above assumption is good for most of the classical iterative methods, like Jacobi and
(Gauss-Seidel. Therefore, our coarse grid operator is

Lijsy=T;~ Bnglcj, (32)

which is the Schur complement of D; in L.
Observe that this operator is the same as the one we obtain if we solve for Uy, in (28).
Solving for Uy, yields

U, = (T; — Bi{D;*C;)"' Fy, — (T; — B;D;*C;) ™' B;D; ' Fy
= (I; — B;D;'C;) ™ (Fy — B; D} ' Far).

Also, if the fine grid operator is symmetric, then the coarse grid operator is fl}mBjD;lB}-“.
We will denote the multigrid method thus formed as the wavelet multigrid method. Notice
that although the wavelet and scaling operators are periodic, this method is applicable to
any problem, even to those which are nonperiodic.

5 Improving Efficiency of the Wavelet Multigrid Method

We would like to make this procedure more efficient, so as to be practically useful. Now,
although D; is not dense (it is, in fact, essentially a banded matrix), its inverse is dense due
to fill-in. But, we observe a significant amount of decay of the values on certain diagonals,
indicating that it is possible to increase the efficiency of the method in this area, thereby
improving the efficiency of the overall algorithm.

Orne step towards achieving this goal is to avoid computing the inverse exactly. To this
end, we use ILU(0) to compute the incomplete LU factorization, and then use a sequence of

13



forward and backward substitutions to compute the inverse. Although using ILU(0) reduces
the computational complexity of calculating D;-“l without compromising the convergence
of the method, the resulting inverse is still dense. This results in representations for the
coarse grid, restriction, and interpolation operators that are much denser than the fine grid
operator. To improve further on these results, we use a thresholding procedure — any values
that appear in the inverse in locations that hold zero values in D; are set to zero, thus
eliminating any fill-in over the original matrix, D;. We will call this method the truncated
wavelet multigrid method, and we will refer to the original method as the dense or full
wavelet multigrid method. The term wavelet multigrid method will refer to a generality
applying to both versions.

We will briefly discuss the complexity of the coarse grid operator for the truncated wavelet
multigrid method. After calculating D‘;'_l using the method of ILU(0) followed by truncation,
for the examples involving no coupling and using full coarsening discussed in the following
section, we find that the inverse is representative of a stencil that contains between seven and
twenty-three elements. This leads to a coarse-grid operator 1; — BjD;ICj that corresponds
to a stencil having between twenty-one and twenty-five elements. We observe, however, that
the matrix T} has the same structure as the fine grid operator, i.e., it corresponds to a stencil
with five elements. The additional elements, then, come solely from the product BjDE”ICj.

6 Numerical Applications

In this section, we display the numerical results of applying the truncated wavelet multigrid
method to various problems. For more examples of applications, see [11]. We compare
the convergence of the truncated wavelet multigrid method with the full wavelet multigrid
method; the algebraic multigrid method (AMG1R5), the method designed by John Ruge,
Klaus Stiiben, and Rolf Hempel, an earlier version of which is described in [28]; the standard
linear multigrid method, using nine-point interpolation, full-weighting restriction (a constant
multiple of the adjoint of the nine-point interpolation, scaled so that the sum of the weights
is one (see [6] and [22])), and a coarse grid operator defined by discretizing the equation
on a grid with the appropriate step size; the homogenization method (where appropriate),
using the homogenized coarse grid operator described in [18] and [19] and the nine-point
interpolation and full-weighting restriction operators. For all problems, unless otherwise
specified, numerical results are analyzed using, for the interior, a 16x16 grid, leading to
a 256x256 matrix and a 32x32 grid, leading to a 1024x1024 matrix. With respect to
standard multigrid, multigrid with homogenization, and algebraic multigrid, an odd number
of gridpoints is required, so that we have a 15x15 grid and a 31x31 grid in the inferior.

6.1 Elliptic Problems
First, we look at the elliptic problem,

=V - (a{z,y)Vu(z,y)) = 0,in§ (33)
u(z,y) = 0, on 99,
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where ) is the unit square and ¢ > 0. We lock at two cases: oscillation in the z-direction,
a{z,y) = 1+0.8sin(10v/27z) and oscillation along diagonals, a(z,y) = 1+0.8sin(10v/27(x—
y))-

For both cases, we see that the full wavelet multigrid method actually has a convergence
rate that is comparable to the algebraic multigrid method. In the case of oscillation in
the z-direction, using ILU(0) followed with truncation causes the Haar wavelet multigrid
method applied on a 16x16 grid to have a convergence rate that is worse than the algebraic
multigrid method. Using Daubechies wavelets, however, we see a convergence rate that is
very close to that of algebraic multigrid. For a 32x32 grid, both types of wavelets yield
approximately the same convergence rate as algebraic multigrid. For the case of oscillation
along diagonals, using either type of wavelets produces convergence rates that are almost
identical to those achieved by the algebraic multigrid method, regardless of the mesh size of
the fine grid. The convergence of the standard multigrid method is dependent on the mesh
size, having very poor convergence for a 16x16 grid and better convergence for a 32x32 grid.
The convergence of the standard multigrid method is better in this case as a result of the
finer mesh size on the coarsest grid, which captures more of the properties of the original
problem. For multigrid using three levels, however, the same problem is encountered for the
standard multigrid method, again due to the lack of detail in the coarse grid operator. The
wavelet multigrid method does not suffer from this problem. In all cases, the convergence
rate of the full wavelet multigrid method is independent of the mesh size. Figures 1 and 2
demonstrate the results on a 32x32 grid.

oscllation In x, 32x32 grid {31231 for AMG1RS, homog,, stand), 2 lovals, 1 G-5
T T T T

asdifation in x, 32x32 grid (31231 lor AMGIRS, homog., sland., 2 tevels, 1 G-5
T T T v

T Fiaar - LU(0) + trune —— daus - LU0} + \rune
=&~ Haar - donso -8~ daubd - densa
-~ AM&1RE

L L L ' 1 1 '
E 40 50 80 ) 10 20 a0 40 50 33
numbar of v-cycias nurbar of v—opelas

(a) (b)

Figure 1: Oscillation in z-direction, 32x32 grid. Compare Haar and Daubechies wavelet
multigrid with AMGIR5, homogenized, and standard methods. (a) uses Haar wavelets and
(b) uses Daubechies wavelets.

L .
G it 20

Next, we look at the checkerboard problem, which is defined by (33) with

100 if0<z,y<05o0r05<z,y<l,
a:{ i T,y or T,y (34)

1 otherwise.
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oscillalion on diagonals, 32x32 grid {31231 for AMGSRS, homog,, stend), 2 lavels, 1G-S oscillalion v disgonals, 32432 gd (31%21 for AMG1RS, homog., stand}, 2 levels, 1 G-S
T T T v T . v

T T
T dabd — ILG(9) + IniRe

-3~ daubd - dansa
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— — homogenkzed

--- slandard

== Haar - IL0{0) + ining
~@- Haar -dense

ronn of residual
horn 0! fesidual

) 2 4 & 4
pumbar of y-cyalas numbar of v-cyclas

(2) (b)

Figure 2: Oscillation on diagonals, 32x32 grid. Compare Haar and Daubechies wavelet
multigrid with AMG1R5, homogenized, and standard methods. (a) uses Haar wavelets and
(b) uses Daubechies wavelets.

The results for the checkerboard problem are quite good. The full Haar wavelet multigrid
method has a convergence rate that is as good or better than the algebraic multigrid method.
The truncated wavelet multigrid method also performs as well or better than the algebraic
multigrid, except in the case where two iterations of Gauss-Seidel are used. In that case, the
convergence rate of the algebraic multigrid method is slightly better. Clearly, the convergence
rate of the wavelet multigrid method is essentially independent of the fine grid size. The
standard multigrid method diverges for this problem. The results are shown in Figure 3 and
Figure 4.

B ehackatboard problam, 18x16 grid (15x15 for AMGIRS), 2 levels, 1 G-5 checkerboand protiem, 16x16 grid {15x15 for AMB1RE), 3 lavals, 1 G-5
T ¥ T T T T T T

— Haar — ILU{D) + Irune: —— Haay - ILU(0] < Intnc
-6 Haar-densa -6 Hear - dense

o] e -~ AMGIRS . . <= AMatRs
i d ot b .

o of residua

10 h ; ; n é i 07! 1 n Fl . L

]
numbet of v-aycles

(a) (b)

Figure 3: Checkerboard problem. Comparison of Haar wavelet multigrid method with
AMGIRS (standard multigrid fails to converge). (a) 16x16 grid, 2 levels, 1 Gauss-Seidel
iteration; (b) 16x16 grid, 3 levels, 1 Gauss-Seidel iteration.

)
numbar of v-cyclos
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chackerboard problsm, 32xa2 grid {31x31 for AMGIRS), 2 lavals, 1 G-8 checkorboard problam, 32x32 gid {3131 for AMGTRS), 3 levals, 1 G-5
¥ T T T 1 T ¥ ¥
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Rumbar of v—cyclas numbss of v-cyclas
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Figure 4: Checkerboard problem. Comparison of Haar wavelet multigrid method with
AMGIRS (standard multigrid fails to converge). (a) 32x32 grid, 2 levels, 1 Gauss-Seidel
iteration; (b} 32x32 grid, 3 levels, 1 Gauss-Seidel iteration.

6.2 The Advection-Diffusion Problem

Here, we are investigating the problem

—eAu+b-u = 0,inQ (35)
v = f(z), on 0%,

where  is the unit square and ||b|| >> € > 0. In this problem, we encounter difficulties with
multigrid methods due to the fact that some of the components of the solution oscillate along
characteristics [35, 36]. So, moving to the coarse grid with the standard multigrid approach
does not represent a good approximation to the problem on the coarse grid. We apply the
wavelet multigrid method to these problems to overcome this difficulty, since application of
the wavelet operator keeps the characteristics of the original problem.

To discretize, we use the usual five-point centered discretization for the diffusion term and
a first order upwind scheme for the advection part of the equation. So, —eAu is discretized
to be

(Tl 20y T Ui T 2 T
h? h? '

Letting b = (°, "), and looking at the term b%u,, the first order upwind scheme looks like
D5y, + |BEgluag — 07T
h H

where 4™~ = 0.5(bf; — |b7;|) and 6>F = 0.5(b7; +[f;]). The term b¥u is discretized similarly.
Symmetric Gauss-Seidel is used as the smoother in order to ensure that we perform sweeps
in the direction of the characteristics over the entire flow field.

b™u (ih, jh) =
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The wavelet multigrid method will not be compared to AMGIRS5 in this subsection,
because AMGIRS does not have the option of using symmetric Gauss-Seidel as the smoother.
The standard multigrid, however, has been rewritten to allow for symmetric Gauss-Seidel as
the smoother. First, we have a comparison of the methods for (35), where b = ((2y — 1)(1 —
z2), 2zy(y — 1)) and f(z) is defined by

f(x):{l if 4 = 0, (36)

0 otherwise.

Note that the discontinuous boundary condition will give rise to a boundary layer near the
left-hand boundary. Also, the characteristics are parabolic, resulting in flow entering and
exiting through the left-hand boundary. We set € = 107> for the experiments. Convergence,
as compared with multigrid only employing standard point Gauss-Seidel, has improved for
both the standard multigrid method and the wavelet multigrid method. In fact, for both
methods, convergence is independent of mesh size, as can be seen in Figure 5.

sdvaction-ditfusion problem, 16x16 grid [16x15 for stard}, 2 levels, 1 symm. G-5 Edvaction—dHusion problsm, 32x32 grid (31x31 for stand.), 2 levels, 1 symm. G-5
T T . T = T T . v T T ;

T Haar < ILO(0) + tune |3
-@- Hoar - dense
=+ swhterd

norm of residual

L L L "
3 35 4 .5 &

x 2 L L L L L L :
o 05 1 15 25 3 35 [ ) [ 1 t5 2 25
nurnber of y—cyclas.

(a) (b)

Figure 5: Comparison of wavelet multigrid method with standard multigrid method, using
symmetric Gauss-Seidel as the smoother. ¢ = 107 and flow is parabolic, entering and exiting
at the left-hand boundary. Boundary conditions are discontinuous, resulting in a boundary
layer. In (a}, a 1616 grid is used and in (b), a 32x32 grid is used as the finest grid.

In another example, b = {dz(z — 1)(1 — 2y), —4y(y — 1)(1 — 2z)), giving recirculant
flow (i.e., closed characteristics), and f(z) is defined as above. For this particular case, the
convergence is quite impressive. For the 16x16 grid (15x15 grid for the standard method),
the standard multigrid method fails completely, although convergence does occur for a finer
grid spacing. Here, too, however, the wavelet multigrid method outperforms the standard
multigrid method, converging twice as quickly. The results are shown in Figure 6. For this
problem, the wavelet multigrid method has a convergence rate that is independent of the
grid size. Similar results occur when the boundary condition is replaced by the sinusoidal
condition,

f(z) = sin(nz) + sin{137z) + sin(ry) + sin(13ry).
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advaation-dithusion prablem, 16x16 grid, 2 lovals, 1 symm. G-8
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Figure 6: Comparison of wavelet muitigrid method with standard multigrid method, using
symmetric Gauss-Seidel as the smoother. ¢ = 107° and flow is recirculant. Boundary
conditions are discontinuous, resulting in a boundary layer. In (a), a 16x16 grid is used and
in (b), a 32x32 grid is used as the finest grid.

Finally, we use the boundary conditions given by (36), but we change the advection
component so that the characteristics are closed and the flow is skewed, so that it does not
line up with the grid. Here,

b = (sin(mwy, ) cos{wzy) + sin{mys) cos(mzs),
— cos{my, ) sin(mz; ) — cos(my.) sin(mxz)),

where
£ =2 4+05 mp={z —1)2+05 y =9*+0.5, yo = (y — 1)? +0.5.

In this problem, the standard multigrid fails to converge, but the wavelet multigrid method
performs very well (see Figure 7). Convergence is rapid and the convergence rate is essentially
independent of the mesh size. The contour plot of the solution, which shows the boundary
layer, is given in Figure 8.

6.3 The Anisotropic Diffusion Problem

Here we look at the problem

gy — €Uy = 0,in O
v = 0, on 0f, (37)

where §) is the unit square and € > 0.
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Figure 7: Wavelet multigrid method, using symmetric Gauss-Seidel as the smoother. ¢ =
10™% and flow is skewed. Boundary conditions are discontinuous, resulting in a boundary
layer. Standard multigrid fails to converge. In (a), a 16X 16 grid is used and in (b), a 32x32
grid is used as the finest grid.

contour plot of solution: advection—diffusion problem, skewed characteristics, 32x32 grid
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Figure 8: Contour plot of the solution of the advection-diffusion problem with skewed flow

and discontinuous boundary conditions, resulting in a boundary layer. Results are shown
for the 32x32 grid.
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Semicoarsening is used for this problem, so that the smoothed error will be approximated
well on the coarser grid. Coarsening is done in the direction of the anisotropy, which, for
the case of (37), is the x-direction. Figure 9 demonstrates that this approach is extremely
successful. Not only is convergence greatly improved {over the wavelet multigrid method
using full coarsening), but the convergence appears to be independent of the mesh size, as
desired. Note that convergence is comparable to that achieved by algebraic multigrid.

anfsaliopic difusion, 16x18 grd {15x15 for AMG1RS), 2 levels, 1 G-8 snisotropic dilfuslan, 32x32 grid (31231 for AMGIRS), 2 lavels, 1 G-8
T T T T T T T T g

= Fant ~ LU} + unc ! —H
-3~ Haar - densa
w - AMGIRS. o b

narm of residuak

L : .
4 5 L 7 a 9
number of v-cycles

(a) (b)

Figure 9: The anisotropic diffusion problem. Comparison of truncated wavelet multigrid,
full wavelet multigrid, and AMG1R5 on a (a) 16x16 grid and (b) 32x32 grid.

2 L L
o A 2 a

We will briefly discuss the complexity of the coarse grid operator for the truncated wavelet
multigrid method in this special case. After calculating JDj_1 using ILU(0) and truncation,
we find that Dj_1 corresponds to a stencil having only five elements. This leads to a coarse-
grid operator T; — B;D; le that corresponds to a stencil having approximately thirteen
elements. The increase in density is due to the product BjD:‘i“lC’j.

6.4 Stokes Problem

Here, we consider the Stokes equations
—Au+p, = f*in{}
~Av+p, = f'in{
uy +v, = 0on§.

As is done in [30], summing the first two equations and using the continuity condition
(ug -+ vy = 0), we obtain the following system of equations:

—Du+p, = f“inQ (38)
—Av+p, = f’in{} (39)
Op = fi+f/inQ (40)

Uz +vy, = 0on JQ. (41)
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Values for © and v are given on the boundary of 2.

These equations are discretized using centered differencing for the first order terms
(Pz, Py, Uz, vy) and the usual five-point discretization for the second order terms (Aw, Av, Ap).
Both f* and fY are assumed zero for the numerical calculations and {2 is the unit square. We
use forward differencing (left-hand side and bottom of the square) and backward differenc-
ing (right-hand side and top of the square) to discretize the continuity equation {41). This
discretization is used to obtain equations for the outermost interior values on the left and
right boundaries of the square (for u} and on the top and bottom (for v). This can easily
be done, because u and v are specified on the boundary of the unit square. So, we calculate
vy for ¢ = 0 and z = 1, and then subtract this term from the right-hand side in our matrix
equation and put the discretization for u, into the matrix. The same holds true for the
top and bottom, with u, being calculated when ¥y = 0 and ¥ = 1 and v, being discretized.
The boundary values of p are obtained by using (38) for z = 0 and z = 1 and (39) for
y = 0 and y = 1. Since the corner values of p do not appear directly in the discretization, we
assign to them the value of the average of the adjacent boundary values for p. The V-cycle
multigrid algorithm is followed, with Gauss-Seidel as the smoother, but fifty iterations are
performed on the coarsest grid in lieu of an exact solve (since the matrix is singular). Fewer
iterations are necessary on the coarsest grid if more than two levels are used (so that the
coarse grid is actually sufliciently coarse).

One note must be made regarding this discretization. In order to have a solution of the
Stokes problem, the velocity field on the boundary, u = (u,v)? must satisfy the condition
fu-ndS = 0, where S = 9Q (see, e.g., [32]). For the discretization employed here, this
condition is insufficient to guarantee convergence. The velocity field on the boundary must
also be chosen such that the condition f g—i dS = 0 is met.

Now, for the Stokes problem we have three unknowns, u, v, and p. Therefore, the wavelet
multigrid method must be modified. For example, let H,, be the scaling operator that will be
applied to the discrete values for u. Similarly, define H{, and H,. We also define the wavelet
operators G, Gy, and (G, accordingly. Let

H, 0 0
Hi=(0 H, o0
0 0 H,

Define G; in the same manner. Then, the wavelet transform W; must be defined as

H.
wi=(e)

The wavelet transform thus defined is orthogonal, and the new scaling and wavelet operators
satisfy the conditions (7) - (9). The wavelet multigrid method still follows as in Section 4,
letting



and

f'u.
F = ( P + boundary terms.
\Ji +1y/
In Figure 10, we demonstrate the effectiveness of the wavelet multigrid method in solving
the Stokes equations with boundary conditions of

1 fory=1,
u =
0 otherwise,
v = 0.
The dense wavelet multigrid method clearly has rapid convergence for this problem. Sim-
ilar convergence results are achieved for other boundary conditions tested that satisfy the

restrictions given above, such as u = v = 0 everywhere on the boundary, except at y = 1,
where u = sin(nz).

Stokes prob, 16x16 grid {averaging af comers), 2 levals, 1 G-§, nonhomioy. BCs
T T T T T

norm of residual

1 L i L
[} 2 4 [ B 16 12
number of ¥-cyclaz

Figure 10: The Stokes equations on a 16x16 grid, nonhomogeneous boundary conditions.

7 Conclusion

The new multigrid method described here, called the wavelet multigrid method, has proven
to be very useful in a wide variety of problems. In many of those problems where standard
multigrid methods fail to converge independently of mesh size, the wavelet multigrid method
does ensure such convergence. Also, due to the properties of wavelets, in many cases we can
efficiently apply the wavelet multigrid method through use of compression. With respect to
solving the anisotropic diffusion problem, semicoarsening ensures good convergence results.
These results have shown that it is worthwhile to further explore the usefulness of this
method.
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