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TOWARDS AN HYBRID MONTE CARLO METHOD FOR
RAREFIED GAS DYNAMICS

RUSSEL E. CAFLISCH* AND LORENZO PARESCHI!

Abstract. For the Boltzmann equation, we present an hybrid Monte Carlo method
that is robust in the fluid dynamic limit. The method is based on representing the solu-
tion as a convex combination of a non-equilibrium particle distribution and a Maxwellian.
The hyhrid distribution is then evolved by Monte Carlo with an unconditionaliy stable
and asymptotic preserving time discretization. Some computational stmulations of spa-
tially homogeneous problems are presented here and extensions to space non homoge-
neous situations discussed.
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1. Introduction.

2. The Boltzmann equation. We consider the initial boundary
value problem for the Boltzmann equation {3]
af

@) Zivve=ioyf), veR scacH,

(2.2) flz,v,t =0) = folz,v),

[en)flz,v,t) = / |ven(2)|K{ve — v,2,t) f{z, v4, 1) dv, forvm > 0,z

Vo-n<l

(2.3)
In (2.1) f = f(x,v,t} is a non negative function describing the time evo-
lution of the distribution of particles which move with velocity v € R? in
position z € JR? at time ¢ > 0. The smooth boundary 8 is assumed to
have a unit inner normal n(z) at every z € dQ.

The parameter £ > 0 is-called the Knudsen number and is proportional
1o the mean free path between collisions, The bilinear collision operator
Q(f, f), which describes the binary collisions of the particles, acts on the
velocity only and is given by

CARUENW = [ [ oty —onh ) ()Iw) - 707 (wn)] devdn.

In the above expression, w is a unit vector of the sphere 52, so that dw is an
element of area of the surface of the unit sphere 52 in R®. Moreover (v/,v})
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2 RUSS E. CAFLISCH AND LORENZO PARESCHI

represent the pre-collisional velocities associated with the post-collisional
velocities (v, v.) and the collision parameter w

1 1
(2.5) o' = E(U + v+ |v — va|w), v = E('v + Vs — v — va|w).
The kernel o is a nonnegative function which characterizes the details of
the binary interactions. In the case of inverse k-th power forces between
particles the kernel has the form

(2.6) o(lv —v.|,0) = ba(6)|v — v.]®,

where a = (k — 5)/(k — 1). For numerical purposes, a widely used model
is the Variable Hard Sphere(VHS) model [1], corresponding to b,(8) = C,,
where C, is a positive constant. The case a = 0 is referred to as Maxwellian
gas whereas the case o = 1 yields the Hard Sphere gas.

2.1. Boundary conditions. The boundary condition {2.3) is the so-
called reflective condition on 8§). The ingoing flux is defined in terms of
the outgoing flux modified by a given boundary kernel K according to the
integral in (2.3). This boundary kernel is such that positivity and mass
conservation at the boundaries are guaranteed

(27  K(v.—wv,z,8) >0, / Kve - v,z,t)dv=1.
ven{z)>0

From a physical point of view, we assume that at the solid boundary
a fraction « of molecules is absorbed by the wall and then re-emitted with
the velocities corresponding to those in a still gas at the temperature of the
salid wall, while the remaining portion (1 — &) is perfectly reflected. This
is equivalent to impose for the ingoing velocities

(2fF,v,t) = (1 — o) Rf(z,v,t) + aM f(z,v,t), €N, v-n(z)>0,
where a, _wif;h 0 < <1, is called the accomodation coefficient and
(2.9) Rf(z,v,t) = f(z,v—2n{n-v),t),

(2.10) Mf(z,v,t) = plx,t)fs(v).

In (2.10), if we denote by T, the temperature of the solid boundary, f, is
given by
2
v
fs('v) “"" exp(“"i’j—»:)s

and the value of 1 is determined by mass conservation at the surface of the
wall

(2.11) ,u(:c,t)f. o fol)w - nldy = f flz,v, t)|v - n|du.

<l
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We note that according o (2.8}, for & = 0 {specular reflection) the re-

emitted molecules have the same flow of mass, temperature and tangential

momentum of the incoming molecules, while for & = 1 (full accomodation)

the re-emitted molecules have completely lost memory of the incoming
molecules, except for conservation of the number of molecules.

2.2. Fluid-dynamical limit. During the evolution process, the col-
lision operator preserves mass, momentum and energy, i.e.,

(212) | et nswm=o0 se)=10,
and in addition it satisfies Boltzmann’s well-known H-theorem
(2.13) | @t pios(i)an <o

From a physical point of view, Boltzmann’s H-theorem implies that any
equilibrium distribution function, i.e. any function f for which Q(f, f) =0,
has the form of a locally Maxwellian distribution

U —v 2
(2.14) M(p,u, T)(v) = "(2";:%—3/59"9 (“’ 2T| )

where p, u, T are the density, mean velocity and temperature of the gas
defined by

1 1
(2153}:\[':&3_)“(1'1), u:;[ﬂavfdv, T“’—”'ﬁ"‘;/}Ra[v—qudU-

As £ — 0 the distribution function approaches the local Maxwellian (2.14),
Tn this case the higher order moments of the distribution f can be computed
as function of p, ¢, and T, by using (2.14) and we obtain to the leading
order the closed system of compressible Euler equations of gas dynarnics

dp
a
(2.16) T;’Ef+vz-(;:m®u)~W',c;o=0
OF
—5—t—+vz (Bu+pu)=0
(2.17) p=pT, E:g—pT—i—%puz.

3. Time discretizations. A simple splitting of the time scales in
(2.1) consists in solving separately a free transport equation
af

(31) ‘5‘t‘+ﬂ'v::fmoa
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and a space homogeneous problem

(3.2 )

A peneral idea for deriving robust numerical schemes, by which we
mean schemes that are unconditionally stable and preserve the asymp-
totics of the fluid dynamic limit of {2.1), is to use suitable implicit time
discretizations for the stiff problem (3.2). In fact if a scheme is able to treat
the collision step {3.2} for vanishingly small values of £, then the splitting
scheme will become a first order kinetic scheme for the underlying fluid
dynamic limit.

For a nonlinear equation like {3.2) this is a challenging problem since
implicit schemes imply the solution of large systems of nonlinear integral
equations which will lead to a prohibitively expensive computational cost.

3.1. Time relaxed (TR) schemes. The schemes presented in [4]
are based on the idea to replace high order terms of a suitable well-posed
power series expansion of the solution to {3.2) by the local equilibrium
(2.14). The great advantage of these schemes is to be unconditionally
stable and explicitely implementable.

To this aim, we will assume that the collision kernel satisfies a cut-off
hypothesis.

Denote Qx(f, f) to be the collision operator obtained by replacing the
kernel o with the kernel oy

on(|v — w),w) = min {o(jlv — v.|,w), 8}, X >0.
Thus, for a fixed ¥, we consider the homogeneous problem
af 1

(3.3) 5 = 7 @=( )
Problem (3.3) can be written in the form

J 1
(3.4) 3{ = =[P, )~ i
taking ‘

(3PS, ) = QL. F) + F(v) fR fs (5 — o5 (v — vl )] (v2) dio dos,

with g = 473p and
38 QL) = [ [ oslv- vl w)fe)f) dodo.
R Jg?

We can obtain the following formal representation of the solution to
the Cauchy problem (3.4}

o

(37) Foty = e /o3 (1— )" i)

k=0
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where the functions f are given by the formula

o

{3.8) Frv1(v) k+1 Z “P{fr, fr—r), k=0,1,...

A class of numerical schemes, hereafter called time relaxed (TR) schemes,
based on truncating the previous expansion in a small interval At taking
fr =M for k > m + 1 with m > 1 has been proposed in [4}.

" These schemes have the following properties [4]:
» they are well defined for any value of uAt/e,
» they have the correct moments (since every fi has the same mass,
momentum and temperature of f),
they are at least a m-order approximation {(in pAt/e) of (3.7),
they will preserve the positivity of the solution,
for any m > 1, we have

n+1
i S (v) = M(v).

The last property implies the convergence towards the correct fluid-dynamic
limit. _

In [5] a better truncation, accuracy-wise, has been introduced which
corresponds to take fmi: = fm, ft = M, k 2 m + 2 in (3.7). Obviously
all the previous properties continue to hold also in this case,

Note that since the coefficients fi(v), k > 1, of expansion (3.8), include
numerous five fold integral like (3.5), the most efficient scheme for practical
applications is that for m = 1.

This first order TR. approximation can generally be written in the form

(3.9) FrH ) = AN () + BT (v) + C()M ()

where A = pAt/e and the weights A, B and C are nonnegative functions
that satisfy

(3.10) AN +BA)+C(A) =1, YA
The truncation proposed in |5} cooresponds to
(3.11) A=1-7, B=1(1-7%), C=1%

4. Hybrid formulation and Monte Carlo methods. In this sec-
tion, we formulate an analytic representation for the demsity function f
which takes advantage of the relaxed time discretization presented in the
previous section. Next the analytic representation will be translated into a
numerical representation. Specifically one of the components of f will be
replaced by a discrete set of particles.
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4.1. Collision step. As derived in the previous section, the general
form for a single step of the TR discretization is

(4.1) frl=Aff+Bff +CM

in which f™ is the density function at time step n, f* = P{f", f")/1 is the
first order term in (3.7} and the coefficients A, B, C' are positive constants
as in the previous section.

In order to analyze and exploit the discretization (4.1), write f as the
linear combination of a Maxwellian density and a non-Maxwellian density,
as

(4.2) i) = (1~ 8%)g™(v) + 5" M(v)

in which g is a nonnegative scalar. The Maxwellian density M is chosen
to have the same mass, momentum and temperature as f™.

in (4.2) we have omitted the superscript n on M, since p, v and T are
independent of n during the collision step, and as a result M is independent
of n.

Now insert the representation (4.2) for ™ into the discretization (4.1)
and use the fact that

(4.3) H(M, M) =M.

The right hand side of (4.1) then naturally splits into a Maxwellian bart;
Bt M and a non-Maxwellian part (1 — g"t!)g"+!, in which

(4.4) g+t = A"+ B(B")?+C
(1— g™t = A(1—B™)g™ + B(1 — F) 2 f1(g™, ™)
(4.5) +2B(1 — ™)B" fi(g", M).

It follows that for C # 1

o't = (A+B(1+8"))" (Ag" + B(1 - 8" filg" 9"} + 2BB™ fi(g™, M) .
(4.6)

Equation (4.4) is an iterated map for the coefficient 4 and can be
rewritten using the conservation property (3.10} as

(4.7) gt — gt = B(F" - 1)(8" — C/B).

This discrete dynamical system has stationary points 3= 1if C/B > 1 and
8 =C/Bif C/B <1 [2|. Unfortunately the requirement C/B > 1 cannot
be verified uniformly in A = uAt/e. However, the fluid regime corresponds
to A > 1 so that C/B 3 | because of the asyroptotic preserving property.
This shows that g™ increases monotonically to 1 in the fluid region, as
desired. For example, for the first order scheme corresponding to (3.11)
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r. near the fluid

y 22330

-

C/B = 72}{1 — 7%). Hence A" — 1 if 7 > 1/+/2. Clearl
limit pAt/e > 1 and hence 7 = 1 — e~ #Ae ~ 1,

Next we describe our algorithm based on the evolution of the mixed
distribution f = (1 — 8)g + BM. The distinguishing feature of our method
is that the Maxwellian part of the distribution is represented analytically
and the non Maxwellian fraction is represented as a particle distribution

[

) 1 Nn
(48) gy =3 28—

Our starting point is the evolution equation (4.5) for g™, which can be
written as

P(g", g" P(g". M
(49) gnJrl - plgn +p2 |:q1 (g g ) +q2 (g ) ,
7 o
in which
A B(1+ ()

4.10 O L U L L3
(4-10) L= B+ ) P27 A+ B+ Ba)

-7 20™
{4.11) il s f

z-————-—-—-}_i-ﬁn, qz:l_{.ﬁ”‘

Note that if f* is a probability density, so is g™. Moreover, p1 > 0, p2 = 0,
pr+p=14g >0, g0 >0, q1 +q2 = 1, and therefore p; and p, can be
interpreted as probabilities, and g and gy can be interpreted as conditional
probabilities.

Therfore, Eq. (4.9) has the following probabilistic interpretation: a
particle extracted from g™ has no collision with probability pi, it collides
with another particle extracted from g™ with probability paq1, or it collides
with a particle sampled from the Maxwellian with probability paga.

Note that this probabilistic interpretation is uniformly valid in pAt/e.
Moreover as plt/e ~— oo, f® — 1 because of the asymptotic preserving
property of the quantities 4, B and C. Therefore the density function f™
has the correct fluid limit.

REMARK 4.1. If the number of particles is kept fixed, then their
weight changes, since the mass associated to the particles is proportional to
(1 - /™). Instead, we chose to use a variable number of particles with con-
stant weight per particle. This choice has several advantages. It improves
the efficiency of the method, since the number of particles (and hence the
computational cost) decreases without affecting the accuracy, and it sim-
plifies the exchange of particles between cells in a spatially inhomogeneous
problem.

An acceptance-rejection technique, similar to the one used for DSMC,
can be adopted to derive a Monte Carlo algorithm. The algorithm to
update 3™ and g™ starting with N, particles can be written as

ALGORITHM 4.1, :
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.set =, N, =0
. compute an upper bound ¥ of 0;; (us in DSMC)
. compute T = exp{—pZAt/e) and the corresponding quantities py, pa, q1, q2
. compute the number of dummy collision pairs:
® Noar = paga N, /2
® Nyg = pogq1 Ny /2
5. perform Ngg dummy collisions between g-particles, i.e.
o eztract (i,7) without repetition
o compute 1;; = exp(—po;;Atfe) and the corresponding quanti-
ties Aij, Bij, C,'j
* By = A"+ By (6")* + Cij
e if o Rand < gy; then perform the collision between v; and v;
{as in standard DSMC)
- fH e~ gt 28,
- No+— N, +2
6. perform 2Ngn dummy collisions between the g-particles end the
Mazwellian,
s extract i without repetition
s sample one particle, m, from the Mazwellian
® compute Tiy, = exp{—poi, At/e) and the corresponding quan-
tities Aim, Bim: Cim
Bim = AimB" + B (B7) + Cim
if o Rand < oy, then perform the collision between v; and the
Mazwellion
—_ ﬂn'H — ’Bn+1 +ﬂim
—~ N+ N +1
a ﬁn+1 o ﬂn+1/Nc
8. update N: Npy1 = Round{N,(1 — g"*1))
9. correct 3™} in order to preserve mass
The above scheme conserves momentum and energy only on the av-
erage, but not exactly (except for " == 0). This is because the collisions
with the Maxwellian M, if performed independently from each other, do
not maintain exact conservation of momentum and energy. By taking this
into account, a conservative algorithm can be constructed by modifying the
moments associated to the Maxwellian fraction ups and Ejs at the end of
each time step.
This is obtained by imposing

(1 - ,@n+1)Ep +ﬁn+1EM — EO, (l —,@"+1)'U.p +ﬁn+1uM — uﬂ’ "> 0,

e Le DY R

where 1, and E, are the mean velocity and energy of the particles. The
previous system can be solved with respect to ups and Ejps if 8™ is not too
small.

If the distribution is very far from equilibrium, i.e. if 8, < 1, then be-
cause of fluctuations, it may happen that the energy decreases too much,
and it is impossible to change the parameters of the Maxwellian to impose
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conservation. On the other hand, in this case, only a very small fraction of
collisions will be non conservative, and therefore the lack of exact conser-
vation will not affect the quality of the result.

4.2. Transport step. Note that in the space homogeneous case, the
Maxwellian equilibrium fraction 87*! can only increase, and, consequently,
the number of particles can only decrease if we start from a a completely
discrete distribution (8® = 0). When N**! < N™ some particles are
just disregarded. As we shall discuss in the sequel, convection distorts the
Maxwellian, and provides a mechanism for creating new particies,

When the transport step (3.1} is applied in a time interval Af to
a mixed distribution of the general form f*(z,v) = (1 — f*)g™(z,v) +
8" M™(z,v) (here the superscript n must be kept) we obtain

(4.12)  flz,v,At) = (1 — ™)™ (z — vt,v) + 8" M"(z —vAt,v).

The distribution of particles g™(x — vt,v) can be obtained as in standard
Monte Carlo methods by exact free flow. Denoting with = and o] re-
spectively the positions and the velocities of particles that characterize
the distribution g™ after the collision step, the new particles positions are
computed accordingly to

(4.13) z; =zl + v A, ¢=1,..,N™

This originates the new particle distribution §*(z,v) and hence a represen-
tation of the solution at the next time level £* of the form

414) @)= (1 - )5 (3,9) + TM Mz — vikt, ),

which should be projected back to an expression like (1 — 8*)g*(z,v) +
B* M*(xz,v), in order to apply the next collision routine.
A simple way to do this is to set 8* = 0 and therefore

§"(3,0) = (1 — B3 (2,0) + B"M™(z — vAL,v),

by transforming all the analityc distribution function M™(z — vAt, v) into
particles by sampling. If we denote by m, is the mass of a single particle,
by N the number of particles that characterize §*(x,v) after free flow and
by p* the total mass in the cell computed from (4.14), then setting

N*=R0und(p ),

Mp

we must sample Ny, = N* — N > 0 particies from M™(z ~ vAt,v} and
then correct §* in order to preserve the mass. Unfortunately this creation
of particles will not be very efficient, in particular when 8" = 1, i.e. close
to the fluid limit, In this case, in fact, at every time step we will discard
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almost all particles during the collision step (¥, ~ 0) and then transform
everything back to particles after the transport (N = N*).

REMARK 4.2. The same result can be obtained transforming the Mazwellian
M™ into a particle distribution (for ezample using Pullin’s algorithm (7] this
can be done in a conservative way) at the end of the collision step, similarly
to the algorithms developed in (3], [6]. In this way the previous sampling
will be equivalent to the free flow of particles sampled from M™.

The possibility to obtain numerical algorithms with a better computa-
tional efficiency, for example using an estimator of the number of particles
that will be discarded during the collision step in order to avoid the gener-
ation of too many particles after the transport, is actually under study.

5. Numerical Results. In this section we test the hybrid time re-
laxed Monte Carlo {TRMCH) by comparing it with standard DSMC. We
consider here some preliminary results on space homogeneous problem, In
our tests we use the set of parameters defined by (3.11) and perform a sin-
gle run, with a number of particles sufficiently large to control the effects
of the fluctuations. We express the results as a function of the scaled time
variable t/e which we denote again by t in order to simplify the notations.

- 5.1. Maxwell molecules. Next we consider the 2D homogeneous
Boltzmann equation for Maxwell molecules. An exact solution of the equa-
tion corresponding to the initial condition

2
(5.1) Jolw) = —-exp (~0),

is given by

(5.2)  flo,t) = 5;—0 [1 - %(1 —o) (1 _ -2%)] oxp (_%) ,

where C(t) =1 - {1/2) exp{—£/8).

The comparison with the exact solution is obtained by reconstructing
the function on a regular grid of spacing Av = 0.25 by the weighted area
rule, : '

All the simulations have been performed for ¢ € [0, 16] by starting with
N = 10° particles.

In Fig. 6.1 we show the L? norm of the error in time for both DSMC
and TRMCH on the time interval [0,8]. In the first test we use the same
time step At = 0.4. The results confirm the gain of accuracy of the TRMCH
method on the transient time scale (left). For £ > 4, the methods are
almost equivalent since the maximum value reached by A" at the end of
the simulation is about 0.12 and hence most of the distribution is composed
of particles.

Using a time step of At = 0.6 for the TRMCH and At = 0.15 for
the DSMC the gain of accuracy is less evident but more uniform in time
(right). Here the final value of 8" is about 0.25.
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5.2. VHS molecules. The last test problem deals with the numerical
solution of the Boltzmann equation for Hard Sphere molecules (VHS, for
a=1) with Cy =1

The initial condition is the same used for the Maxwell molecules (5.1).
The “exact” solution has been computed using the DSMC method with
2 x 10% particles and At =5 x 1073,

As in the previous case, the dens;ty distribution is obtalned by re-
constructing the function on a regular grid of spacing Av = 0.25 by the
“weighted area rule” and the simulations have been performed for ¢ € 0, 16]
by starting with N = 10% particles.

In Fig. 6.2 we show the time evolution of the fourth order moment of
the solution. The results confirm the gain of accuracy and the reduction
of Auctuations of the TRMCH method with respect to the DSMC method
for larger time steps.

Next we report the number of dummy collisions and the number of
effective collisions per time step performed by DSMC and TRMCH (Fig.
6.3).

In spite of the fact that the time step for TRMCH is larger than that of
DSMC, the number of dummy collision is higher for DSMC. The reason is
that this number is proportional to pAt for DSMC, and it is proportional
to 1 — exp(—puAt) for TRMCH. This is an additional reason of the better
efficiency of the TRMCH with respect to DSMC.

Finally we give in Fig. 6.4 the variations of ™ and of the number of
particles in time for the TRMCH method.

6. Conclusion and perspectives.

Acknowledgements. L. Pareschi would like to thanks the Mathe-
matics Department of UCLA for the kind ospitality during the time part
of this work was carried out.
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Fic. 6.1. Maxwell molecules: L? norm of the error vs time. DSMC (+) and
TRMCH (o). Top: At = 0.4. Bottom: At = 0.15 (DSMC), At = 0.6 (TRMCH).
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TRMCH (o), and “exact” {line) solution. Top: At = 0.1 for DSMC and At = 0.2
for TRMCH. Bottom: At = 0.1 for DSMC and At = 0.4 for TRMCH.
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At = 0.2 for TRMCH. Bottom: At = 0.1 for DSMC and At = 0.4 for TRMCH.
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