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Abstract

We show in this paper two ways to combine wavelet pack-
ets and total variation based deblurring methods. For this
purpose, we first recall that it is possible to approximate a
convolution by mean of an operator diagonal in a wavelet
packet basis, Then, we show two possibilities, which uses
this property, for combining wavelet packets and total vari-
ation approaches. We then show on experiments that, do-
ing this we can expect to have the advantages of both ap-
proaches while avoiding their drawbacks.

1. Introduction

This paper is mainly concerned with image deblurring and
with the application of a property of operator diagonal in
wavelet-packet bases for this purpose. More precisely, it
has been shown in [12] that the average over translations of
an operator which is diagonal in a wavelet packet basis is
a convolution. We will investigate two variational applica-
tions of this property to the issue of image deblurring.

The deblurring problem under our scope is to restore a
convolved and noisy image u, given the data

Uy = 8*U+Mn,

where s is a low-pass filter and n is a noise. Expressing
this in the Fourier Domain (we recall that the Fourier basis
diagonalizes the convolution operator), we obtain

g = Sit+ 1,
where we note with a hat the Fourier transform of a func-
tion. We clearly see here that, since ¥ can be very small or
even be zero, this problem is ill-posed.

The first reason why people have used the framework
of wavelet packet for image deblurring is that it permits to
have both a sparse representation of an image (and there-
fore to separate the information and the noise) and a good
frequencial localization. This has first been noticed by B.
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Rougé and has already been used in several articles (see
7,9, 10, 12, 16}). The methods, proposed in these arti-
cles, are based on a shrinkage of the wavelet packet coef-
ficients similar to the wavelet shrinkage approach, for the
purpose of denoising, of Donoho and Johnstone (see [6]).
However, these methods have recently been formalized in a
way which permits to envisage to combine wavelet packet
and variational methods. This paper investigates two possi-
bilities of such a combination.

There is an abundant literature on image deblurring. The
reader is referred to [1] for most of the linear methods and
to [5, 8] for overviews on the subject. In few words, the first
approach consists in enhancing images without regard to the
convolution kernel [11], The other methods are based on
regularization approaches of the problem: using statistical
properties (Wiener and Kalman filters) or regularity mea-
surements of the images such as the entropy (see [5] and
references there), the total variation (see [17]) or the char-
acterization of Besov spaces by wavelets coefficients (see

{3, 6}).

In Section 2, we make some recalls on wavelet packet
bases and state the result saying that it is possible to ap-
proximate a convolution operator by averaging over transla-
tions an operator diagonal in a wavelet packet basis. Then,
in Section 3, we propose a first application of this resuit
which combines the total variation and the wavelet packet
approach. This approach, compared to the usual Rudin-
Osher-Fatemi method, can be interpreted as the adaptation
of the parameter A (see {8) where we recall the form of the
Rudin-Osher-Fatemi functional) according to a criterion on
the wavelet packet decomposition of the image. In Section
4, we study a second approach where the role of wavelet
packet is more important. Indeed, in this case for A = co
the result of the methed is very similar to the result of the
FCNR (see [9, 10, 16]) and as A decreases the influence of
the total variation appears. The advantage here is that the
total variation permits to remove the ringing which can ap-
pear with the FCNR. At last, in Section 5, we display some



experiments which show to evidence the role of the param-
eters of the considered methods. Moreover, we compare the
methods introduced in this paper to both a wavelet packet
and Rudin-Osher-Fatemi methods and obtained satisfactory
results, One of the method permits to simultaneousty avoid
ringing and preserve textures.

2. Approximation of the convolution in
a wavelet packet basis

As we said in the infroduction, it has already been argued in
[12] that it is possible to approximate a convolution by mean
of the average over translations of an operator diagonal in a
wavelet packet basis. Let us make some recall on this fact
and introduce the notation we will use on the wavelet packet
decomposition.

For simplicity, we only describe wavelet packet bases in
the case of functions of R, higher dimensional cases and
wavelet packet bases on an interval can be deduced from
this one by respectively taking tensor products and (for in-
stance) periodizing functions out of the interval (see [13]).
For more details the reader is referred to [4] or to Section 8
of [13].

In the following, we will denote by {h, g) a pair of con-
jugate mirror filters related with a multi-resolution analysis
(for instance g, = (—1)1""h;_,,) and by ¢ the associated
scaling function. Letting 1§ = ¢, we can define recursively,

forj € Nandp € {0,...,27 — 1}
J+1 Z hn'l!)p ZE - 23”) (1)
=—00
and
m .
Py = ) gnl(s — 2n). @
n=-—0od

Therefore, if we note ¢f, (z) = 7 (v — 27n) and WY the
vectorial subspace of L*(R) generated by {47, n € Z},
we know that {7 , n € Z}isan orthonormal basis of
Wp Moreover, we have

2p+1 2p vl
Wi e Wih, = W5

We also know that for any admissible tree (see Section 8
of [13D) (p1, fihi<i<z, {%Dﬁ‘,n}nez,iszsjb is an orthonormal
basis of W§.

In the foilowing, we will identify any (u,)nez € 12(Z)
with & = (EnEZ untl,) € WQ. Therefore, noting
uh = (@,97F ) and (u p)n = u} ,, we can deduce from
(1) and (2) that

J+1 n Z h’ u‘g 2ntm h’ ® up(z'ﬂ,) (3)
mEZ

where, foranyn € Z, by, = h_,, and

2p+1 P — = P
Uirln = E Im Uionim — ¥ Uy (2n) Cy
meEL

where, foranyn € Z,§p = g,
Therefore, for any admissible tree (p;, fi)1<1<1, We can
recursively define a kernel H}' such that

= Hj' « u(2'n)

.?: 2

After these recalls on the wavelet packet decomposition,
we can state the following proposition (which has already
been introduced in [12]).

Proposition 1 Let (¢7' Jnczi<i<r be a wavelet packet

iiom
basis, Let D be a linear continuous operator from 1*(Z)
into I*(Z), diagonal in the basis (¥} Ynez,1<i<r. As-
sume moreover that the eigenvalues ()\J,J n)nez 1<i<r, (re-
spectively associated to the eigenvector {gb i ﬂ}ﬂez 1<i<L)
do not depend on n. Then, the operator D deﬁned for any
u € 1%(Z), by
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Dw)=2"" 3" r_goDomn(u), (5)
k=0

where J = maxi<y<y Ji and Ty, represents the translation
operator of k € T, is a convelution continuous from [*(Z)
into 12(Z). Moreover, the Fourier transform of the convolu-
tion kernel 3 defining D is given, for £ € |—m, ), by

(E)P
P
SO
where we note, foranyl € {1,...,L} andn € Z, N} =
Pt
qrsnt

Once again, the proof of this result and some experi-
ments showing that (6) can be used to properly approximate
a convolution are given in [12].

Therefore, we can use a wavelet packet basis as an inter-
mediate step for the Fourier basis. Of course, the advantage
of this intermediate step is to have the possibility to decor-
relate the noise and the information, which is of a great in-
terest for the issue of image deblurring. In order to do so,
we need to choose a tree (we will only use the cubic spline
wavelet (see [13])) and the values of }‘;J: . For simplicity, we
will always take the “best tree” introduced in [9], Moreover,
we will estimate the A%/ by

Dl ¥
A = (Y0 Y0 7



which permits to minimize ]|S — D||3, where S{u) = s *u
and I7 is given in Proposition 1. Of course, all these choices
can be improved by using (6} to design the approximation.

The first application of this result is, of course, to rede-
fine the FCNR which has already been studied in [9, 16].
In the following, we will investigate the possibility of using
this result in the framework of variation methods.

3. First combination of wavelet packet
and total variation methods

‘We are now going to introduce a variational application of
the approximation of the convolution to the problem of de-
convolution. This consists in introducing & wavelet packet
term in the method introduced by Rudin, Osher and Fatemi
in [17]. In order to have a well defined variational problem,
we boil down to the finite dimensional case where the sig-
nals are assumed to be of size N € N. Let us first make
some recalls on this latter method.

Rudin, Osher and Fatemi introduced the total variation
based deconvolution method, which consists in minimizing,
for N € N and a data g € RY, the functional

TV(u) + Mls xu—gll3, (8)

among © € RY, where X can be interpreted as a Lagrange
multiplier (see {2}) and the total variation is defined by

N-1
TV(u)= Y [tms1 — tim].

m=0

The main advantage of this method is that, since the total
variation does not expect too much smoothness at edges, it
permits to avoid ringing artifacts at their vicinity.

One of the possible improvement of this method is to
adapt the value of the parameter A to the region of the image
we are considering (this has been investigated in [18]). In-
deed, ideally, we would prefer to have a A larger on textured
region and a A smaller on smooth region where the image
contains almost no information. However, the segmentation
of the image is not a simple problem. Indeed, the segmen-
tation needs to be adapted to the local spatial behavior of
the image (for instance, if it is a textured or smooth region
or an edge) and to local frequencial information (typically,
a texture which has a “local frequency” belonging to a re-
gion where the Fourier transform of the kernel & is “large”
should be preserved and those corresponding to a “local fre-
quency” belonging to a region where the Fourier transform
of the kernel § is “small” or zero should be erased since they
correspond to a ringing artifact). This has led us to use the
wavelet packet transform to “segment” our image.

More precisely, we do not really “segment” the image
in a rigorous sense but make A depend on the value of the

wavelet packet coefficient of the data. Let us explain this in
details.

First, we remark that in the Rudin-Osher-Fatemi model
is hidden the fact that A is adapted to the frequencial local-
ization. This has first been remarked in [7] and is simply
due to the fact that, for instance, when the convolution with
s is invertible we can rewrite the functional

N—-1
TV @)+ > MéelPlir — g2,
k=0

where g7, = 2 for k € {0,-, N — 1}. Therefore, Rudin-
Osher-Fatemi functional can be interpreted as a denoising
(of aroughly deblurred version of g) with a value A varying
with the frequency localization. We can rewrite this func-
tional under the form

TV (u) + [|(Vx8) * (u — gDllZ. ©)

‘We remark here that we can use Proposition 1 to modify
and adapt the convolution in the right hand side term of (9)
in order to include some information on the spatial behavior
of the image. Therefore, noting A = (A?;)lsls L aset of
eigenvalue permitting to approximate the convolution with
s,and J = max;<i<r j1, we can modify this functional and
minimize

271
TV(u) + | Y 7k 0 Sx gro,yam,vas © Tl — 9013,
k=0

(10)

where Sy .. s7oa; is defined by its coordinates,
(S g.0n/5r/3 (V) W5 ), which are equal to
i g, 95 W) 2 o,

{ b Aﬁ:(ﬂ’ ;?i)rl,n> Jun

VAL (v, 97 ), otherwise. b

Heuristically, and with comparison to the Rudin-Osher-
Fatemi functional (8), we simply take A = A; where we
consider we do not have information and A = Az where we
consider there are informations (be it texture or edge).

Note that we know there exists a minimum of the func-
tional {10) since this latter is convex. As usual, we cannot
guaranty the uniqueness of the result since the functional is
not necessarily strictly convex. However, we could state,
about this issue, results similar to the one given in [2, 7],

We present in Section 5 some experiments on this
method. In our opinion, these experiments are very stimu-
lating. However, we feel that there are a lot of possible im-
provements for this kind of method. One of the most obvi-
ous is probably the “segmentation” which is currently done
with regard to the size of {g, 47, ). This does not discrimi-
nate textures and edges while we may like to have different



values of A for these two kinds of structures. Another possi-
ble improvement (at least in cases where the approximation
with s is not satisfactory enough) could be to do the exact
convolution with s and to modify S, , . /7 /5 insuch a
way that it does not take this convolution into account, In-
deed we only do the convolution with an approximation of s
in (11) (the AE") in order to gain in algorithmic complexity.

We present in the next section an other application of
Proposition 1 in the framework of variational deblurring
methods.

4. Second combination of wavelet
packet and total variation methods

One of the thing we did not mention in the recall on the
Rudin-Osher-Fatemi method of the preceding section is that
the main known drawback of this method is to create stair-
casing artifacts. This means that it tends to create large
homogeneous zones and therefore to erase some textures,
This has been studied by several authors among which we
can cite [ 14, 15]. If we look in detail at the arguments given
in [15], we see that one of the key properties which causes
this staircasing is the fact that we cannot have a “reasonable
local'” solution to the equation

F#x(sxu—yg) =0, {12}

where {§)n, = (s)_p. This is, in general, the case since
g contains noise and s is regular (for instance a low-pass
filter).

These considerations leads us to modify the functional
in order to have a data fidelity term whose derivative (the
left term in (12)) can be null. With that in mind, in (8),
we change the convolution operator in ||s * u — g]|3 by
an “adaptative convolution”, using Proposition 1. More
precisely, given a wavelet packet basis of the interval
(¢£!,n)l<Ingosﬂ<2~jg N » We compute some eigenvalues
A= (A?f hi<i<z. (for instance with (7)) in order to approx-
imate the convolution with s by an operator I} (defined in
Proposition 1).

Given a data g € RV, we can define an adaptative con-
volution by averaging, over translations of u, the operator
5S¢ a,0,6 which is defined by the coordinates of its image

(Sgn06(u), ¥E' ) and are equal to

Jrn
(82 ) =) +bo (0,07, 2 0
6(“’ d)j:,n) 1 lfd > (g! _;?;I’n) 2 —0’,
AR ({u,pf) ) +0) =do L if —a > (g,9F ),

W. Ring wrote his paper in the continuous framework of an open set
2 ¢ R (instead of {1, ..., N'}}. Therefore, he can assume that the equation
51 % {s1 % ¥ — g) = 0 does not have any solution on any open subset of
1. The hearistic translation of this hypothesis in our discrete framework
could be that we do not have any “reasonable local” solution.

forc > 0andé > 0,if ,\?[’ # 0, and 0, if ’\?: == (). We call
the average of §g, A8

271

_.MJ -~
Seaes =2 Z Tk 98 00,6° Tk,
k=0

where J = max; j;.

Note that, in order to define a convex data fidelity term
|Sg.1.0,6(12) — gl|3, the criterion which determines whether
we do the convolution or not deals with (g, ,) and not
{u, 9% ), which would be more natural. Indeed, in this
other case || Ax »,s{u) — g||2 is not convex as soon as one of
the )\?: is lower than 1, which is, in general, the case. There-
fore, we propose to minimize, among 14 € RV, a functional

of the kind
TV (u) + AllSy 20,6} — gli3 - (13)

Note that Sy x s is affine and so that the functional (13)
is convex and admits a minimum. Moreover, we can make
concerning the uniqueness of this minimum the same con-
clusion as for (10).

One of the advantages of this functional is that, this time,
there exists a reasonably smooth soclution ¢4 to the equa-
tion

S_;,)\,O',J(Sgn)\ao',fs(u) - 9) = 0: (14)

where S, 5 _ 5 is the derivative of 5y x,0,5.

Moreover, this solution is close to the solution of the
wavelet shrinkage method described in [16, 12]%,

Therefore, the role of the parameter A, o and § is clear:
¢ and § are used to control the noise and A is used to control
the ringing artifacts. It is also a point which is satisfactory.
Indeed, in Rudin-Osher-Fatemi method, when letting A as a
parameter, we, in practice, fix it in order to have a reason-
ably low amount of noise in homogeneous regions (where
the noise is the most visible). Though, we know that the
main advantage in the use of the total variation is its ability
to remove Gibbs effects (see [71). That is one of the oddness
which is solved by this new approach.

Moreover, with regard to the causes of the staircasing
given in {15], the existence of 1, cancels one of the reason
of the staircasing. We will see in the experiments that the
images restored by means of (13} are indeed free of stair-
casing.

5. Numerical results
5.1. Description of the data and notations

The experiments are based on two realistic degradation
models (the same as the ones presented in [7]) which are

2In fact, if, in {14), we take §E,A|a|5, instead of 5, 5 o8, Uoo is the
result of the FCNR for a particular set of parameter which depends on X,
oand 5.
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Figure 1: Profile of the Fourier transform of s; (see (15)).
The hatching represents the frequencies which are, in prac-
tice, lost during the degradation.

derived from satellite imaging. They correspond to two dif-
ferent satellites.

In both cases, the Fourier transform of the impulse re-
sponse is supported on [—m, 7} x [—m,7]. Moreover, we
will assume the noise Gaussian, even if the real noise is
the sum of three noises having different structures. The as-
sumed standard deviation of this Gaussian noise is, in both
cases, realistic and gives rise to the same difficulty as the
real noise.

s The convolution kernel of the first model is given by

ﬁ(&an) = 3_2'1’5|fi—2’)f,,|ﬂ| (ﬂ'%_g‘f_)_)

(=) (=2).

for &,n € [m, 7], where v¢ = 0.479, v, = 0.450 and
the standard deviation of the noise is o7 = 2.4 (see
Figure 1).

¢ The convolution kernel of the second model is given
by

S(6,m) = ekl
sin{48)\ { sin{4dn)
( 4% )( 4n ) {10

for £,n € [m, 7}, with the same values for ¢ and 7,).
The standard deviation of the noise is o2 = 0.5 (see
Figure 2).

We have already shown to evidence in [7] that the main

- difference between these two convelution kernels is that in

the first case the Fourier transform of the convolution kernel
only vanishes when one of the Fourier coordinates is in the
vicinity of — or w while in the second case we also miss
some intermediate frequencies (see the hatched zones on
Figure 1 and 2),

We also showed in this paper that variational methods are
better suited to this second degradation model (due to there
ability to retrieve lost frequencies) even if they tend to erase
some textures (at least in the case of the total variation).

az
|

] (] ] 7
% i A A
-

-~ w

Figure 2: Profile of the Fourier transform of s; (see (16)).
The hatching represents the frequencies which are, in prac-
tice, lost during the degradation.

We will compare the results of the methods in front of
the reference image, which is the best sampled image, we
can expect to recover, given the initial landscape and the
sampling rate. (Once again, see its definition in [7].} We
display some parts of this reference in the upper right cor-
ners of Figures 7, 8, 9, 10.

In the following sections, we will show experiments us-
ing a wavelct packet basis. This basis is always defined by
the mirror tree (see [9]), or its adaptation to s, with a spline
wavelet (see [13], pp. 236).

5.2. Role of the parameters in the proposed
methods

We display on Figure 3 and 4 the result of the method pro-
posed in Section 3 when trying to restore the image obtained
by the first model of degradation {see (15)). We have al-
ways let Ay = 0 to simplify the study of the role of the
other parameters. Note that, in practice, it could be interest-
ing to tune this parameter correctly, However, with A; =0,
the best set of parameters, we have found, is Ay = 10 and
o= 3.

In order to illustrate the role of these parameters, we dis-
play on Figure 3, restoration for a value of o = 3 for differ-
ent values of Ag. More precisely, we show:

s on left and right: two different parts of the same re-
stored image;

o from up to down: the result when Ay = 5, Ao = 10,
A2 = 60 and Mg = 1000.

We see here that A; has a role similar to one it use o
play in Rudin-Osher-Fatemi method. The larger is Ay the
motre we can see noise. However, the difference is that here
the noise does not completely blows up since wavelet packet
coefficients of the blurred image whose modulus are smaller
than o have not been deconvolved (they no longer appear in
(10), since A; = 0). Indeed, for A large and Ay = 0, the
minimization of (10) yields a kind of hard thresholding of
the wavelet packet coefficients.

On Figure 4, we represent a part of the restored image
for the same parameter A = 10, but for, from up to down,
og=0,0 =3,0 = 7and ¢ = 15. We clearly see here



Figure 3: Restoration of an image degraded by (15) by min-
imizing (10) for ¢ = 3, Ay = 0 and (from up to down)
Ao = 5, A2 = 10, Ay = 60 and Ay = 1000. (On left and
right are displayed two extracted parts of the same image.)

the fact that o permits to “segment” the image and to chose
what we want to deconvolve. For a o small, we obtain result
similar to the one obtained by the minimization of Rudin-
Osher-Fatemi functional (except the fact that the convolu-
tion is approximated by an §). When o increases, we see
more the effect of the total variation in regions where the
spatial/frequencial localization contains only noise, while
textures and edges are almost not affected by this change,
Of course, when o is too large, The result is similar to
the one we would have obtained with Rudin-Osher-Fatemi
method for A == A; == 0 which is in practice too small (note
that in this case the displayed result has fully achieved the
steady state).

‘We can make for the method introduced in Section 4 the
same experiments as for the one introduced in Section 3.
Moreover, we would have almost the same comments and
results when letting o change. However, we illustrate the

Figure 4: Restoration of an image degraded by {15) by min-
imizing (10} for Ay = 0, Az = 10 and for (from up to down)
c=0,0=3,6 =Tand & == 15.



Figure 5: Restoration of an image degraded by (16) by min-
imizing (13} foro = 1 and (fromup todown) A = 2, A = 8,
A =30 and A = 1000. (On left and right are displayed two
extracted parts of the same image.)

Figure 6: Restoration of an image degraded by (15) by min-
imizing (13) for o = 2 and A = 1000. (On left and right are
displayed two extracted parts of the same image.)

role of the parameter A in {13) on Figures 5 and 6.

Indeed, on Figure 5, we display several restorations of
the image blurred by the second degradation model (see
(16)). All these images are computed for the same parame-
ter o = 1, but for different values of A. More precisely, we
display

¢ On left and right: two different parts of the same re-
stored image.

¢ From up to down: the restoration for A = 2, A = 8§,
A = 30 and X = 1000.

We clearly see here that for A = 1000 the result has
the same characteristics as the result of a restoration by a
wavelet packet method such as the one described in {16, 9],
(These latter are basically some soft thresholding of the
wavelet packet coefficient.) It retricves the texture and con-
tains ringing artifact. When A decreases, we see that the
texture is still preserved but the ringing artifact vanishes.
Of course, for a value of A too small (here A = 2), both the
texture and the ringing are removed, since the total variation
term contributes too much to the functional. However, there
is an interval of values in which we preserve the texture and
remove the ringing.

We can also understand here a difference between the
minimization of (10) and (13) by comparing the lowest row
of images on Figure 3 and images of Figure 6. These latter
images are extracted from a restoration of an image blurred
with (15) by minimizing (13) with & = 2 and A = 1000.
(This o is the one of the best set of parameters {with A =
10).) The result is more noisy for the minimization of (10).
This correspond to the intuitive interpretation of (10) and
(13). Indeed, for Ay large (in (10)), we compute an “inverse
filter” where we have information, while for a X large in
the minimization of (13) we have a result close to a wavelet
packet soft thresholding (which contains less noise).



Figure 7: Experiments on the restoration of an image de-
graded by (15). Up-Left: the blurred image. Up-Right: the
reference. Middle-Left: restoration by a wavelet packet co-
efficient shrinkage method. Middle-Right: restoration by
Rudin-Osher-Fatemi method. Down-Left: restoration by
minimizing (13). Down-Right: restoration by minimizing
(10}.

5.3. Comparison of the proposed methods
with Rudin-Osher-Fatemi and classical
wavelet packet methods

We display on Figures 7 and 8 the results of the restoration

of an image degraded by mean of (15). Once again, on Fig-

ure 7 and 8 (Figure 8 has been sharpened) are two different
extracted parts of images which are:

o Up-Left: the blurred image.
¢ Up-Right: the reference.

» Middle-Left: restoration by mean of a wavelet packet
coefficient shrinkage method with o = 4 (see [12, 9,
16}).

e Middle-Right: restoration by minimizing Rudin-
Osher-Fatemi functional with A = 5.

o Down-Left: restoration by minimizing (13) with A =
10and o = 2.

¢ Down-Right: restoration by minimizing (10) with
/\1 =0, Az =10ando = 3.

It appears that the proposed methods yield in general
better results than the classical ones, Indeed, they are free

Figure 8: Experiments on the restoration of an image de-
graded by (15). (The images have been sharpened.) Up-
Left: the blurred image. Up-Right: the reference. Middle-
Left: restoration by a wavelet packet coefficient shrink-
age method. Middle-Right: restoration by Rudin-Osher-
Fatemi method. Down-Left: restoration by minimizing
(13). Down-Right: restoration by minimizing (10).



Figure 9: Experiments on the restoration of an image de-
graded by (16). Up-Left: the blurred image. Up-Right: the
reference. Middle-Left: restoration by a wavelet packet co-
efficient shrinkage method. Middle-Right: restoration by
Rudin-Osher-Fatemi method. Down-Left: restoration by
minimizing (13). Down-Right: restoration by minimizing
(10).

of ringing and properly restore the texture, simultaneously.
The main difference between the results of these two meth-
ods is that (10) tends to yield sharper result but present some
staircasing (even if it is small).

Note also that for both restoration with {10) and (13),
we take a value for A (or Ag) larger than for the Rudin-
Osher-Fatemi restoration and a value of ¢ smaller than for
the wavelet packet restoration. We also take a value for o
larger in the case of (10} than in the case of (13), since in
(10) the only denoising in the data fidelity term concerns the
small coefficient which are not taken into account if they are
smaller than o.

We also display on Figures 9 and 10 restorations, with
the same methods, of an image degraded with (16). We also
display two different extracted parts of the restored images
on Figures 9 and 10 (Figure 10 has been sharpened). On
Figures 9 and 10 the images are extracted from

s Up-Left: the blurred image.
o Up-Right: the reference,

e Middle-Left: restoration by mean of a wavelet packet
witho = 1.

Figure 10: Experiments on the restoration of an imnage de-
graded by (16). (The images have been sharpened,) Up-
Left: the blurred image. Up-Right: the reference. Middle-
Left: restoration by a wavelet packet coefficient shrink-
age method. Middle-Right: restoration by Rudin-Osher-
Fatemni method. Down-Left: restoration by minimizing
(13). Down-Right: restoration by minimizing {10).



e Middie-Right: restoration by minimizing Rudin-
Osher-Fatemi functional with X = 8.

s Down-Left: restoration by minimizing (13) with A = 8
and o = 1.

PR

s Down-Righi: resioraiion by minimizing (iG) with
A]_ = 0, )\2 =40 and o = 0.7.

The only method which permits to restore the texture and
avoid ringing is the one which consists in minimizing {13).
The fact that the minimization of (10) yields ringing is prob-
ably due to the fact that the data fidelity term of (10) tends to
create more ringing than the one of (13). Indeed for a value
of Ag large, the minimum of (10) is to a hard thresholding
of the wavelet packet coefficients what the minimum (13)
is to a soft thresholding in wavelet packet coefficients. It
therefore contains more ringing artifacts. However, it could
be interesting to investigate a little more this aspect since,
theoretically, this ringing should not be present (even if it is
harder to remove it than in the case of (13)).
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