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Abstract

In this paper we describe new formulations and develop fast algo-
rithms for implicit surface reconstruction based on variational and
partial differential equation (PDE) methods. In particular we use
the level set method and fast sweeping and tagging methods to re-
construct surfaces from scattered data set. The data set might con-
sist of points, curves and/or surface patches. A weighted minimal
surface-like model is constructed and its variational level set formu-
lation is implemented with optimal efficiency. The reconstructed
surface is smoother than piecewise linear and has a natural scaling
in the regularization that allows varying flexibility according to the
local sampling density. As is usual with the level set method we can
handle complicated topologies and deformations, as well as noisy
or highly non-unifrom data sets easily. The method is based on a
simple rectangular grid, although adaptive and triangular grids are
also possible. Some consequences, such as hole filling capability,
are demonstrated, as well as a rigorous proof of the viability and
convergence of our new fast tagging algorithm.

Keywords: implicit surface, partial differential equations, vari-
ational formulation, convection, minimal surface, hole filling

1 Introduction

Surface reconstruction from unorganized data set is very challeng-
ing in three and higher dimensions. The problem is ill-posed, i.e,
there is no unique solution. Furthermore the ordering or connec-
tivity of data set and the topology of the real surface can be very
complicated in three and higher dimensions. A desirable recon-
struction procedure should be able to deal with complicated topol-
ogy and geometry as well as noise and non-uniformity of the data
to construct a surface that is a good approximation of the data set
and has some smoothness (regularity). Moreover, the reconstructed
surface should have a representation and data structure that not only
good for static rendering but also good for deformation, animation
and other dynamic operation on surfaces. None of the present ap-
proaches possess all of these properties. In general there are two
kinds of surface representations, explicit or implicit. Explicit sur-
faces prescribe the precise location of a surface while implicit sur-
faces represent a surface as a particular isocontour of a scalar func-
tion. Popular explicit representations include parametric surfaces
and triangulated surfaces. For examples, for parametric surfaces
such as NURBS [22, 23], the reconstructed surface is smooth and
the data set can be non-uniform. However this requires one to
parametrize the data set in a nice way such that the reconstructed
surface is a graph in the parameter space. The parametrization and
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patching can be very difficult for surface reconstruction from an ar-
bitrary data set in three and higher dimensions. Also noise in the
data set is difficult to deal with. Another popular approach in com-
puter graphics is to reconstruct a triangulated surfaces using Delau-
nay triangulations and Voronoi diagrams. The reconstructed surface
is typically a subset of the faces of the Delaunay triangulations. A
lot of work has been done along these lines [3, 4, 5, 8, 12, 13]
and efficient algorithms are available to compute Delaunay trian-
gulations and Voronoi diagrams. Although this approach is more
versatile in that it can deal with more general data sets, the con-
structed surface is only piecewise linear and it is difficult to handle
non-uniform and noisy data. Furthermore the tracking of large de-
formations and topological changes is usually quite difficult using
explicit surfaces.

Recently, implicit surfaces or volumetric representations have
attracted a lot of attention. There are two main approaches for
creating and analyzing implicit surfaces. The traditional approach
[7, 18, 27, 29] uses a combination of smooth basis functions, such
as blobs, to find a scalar function such that all data points are close
to an isocontour of that scalar function. This isocontour represents
the constructed implicit surface. Although the implicit surface is
usually smooth, the construction is global, i.e. all the basis func-
tions are coupled together and a single data point change can result
in globally different coefficients. This makes human interaction, in-
cremental updates and deformation difficult. The second approach
uses the data set to define a signed distance function on rectangular
grids and denotes the zero isocontour of the signed distance func-
tion as the reconstructed implicit surface [6, 9, 16]. The construc-
tion of the signed distance function uses a discrete approach and
needs an estimation of local tangent planes or normals for the ori-
entation, i.e. a distinction needs to be made between inside and out-
side. Similar ideas have been applied to shape reconstruction from
range data and image fusion [11, 15] where partial connections are
available on each piece of data and some “zippering” is needed to
patch things together. The advantages of implicit surfaces include
topological flexibility, a simple data structure, depth/volumetric in-
formation and memory storage efficiency. Using the signed dis-
tance representation, many surface operations such as Boolean op-
erations, ray tracing and offset become quite simple. Moreover an
extremely efficient marching cubes algorithm [17] is available to
turn an implicit surface into a triangulated surface.

We approach this fundamental problem on the continuous level
by constructing continuous models using differential geometry and
partial differential equations. We also develop efficient and robust
numerical algorithms for our continuous formulations. Moreover
we combine the level set method and implicit surfaces to provide
a general framework for surface modeling, analysis, deformation
and many other applications. In our previous work [31] we pro-
posed a new “weighted” minimal surface model based on varia-
tional formulations and PDE methods. Only the unsigned distance
function to the data set was used in our formulation. Our recon-
structed surface is smoother than piecewise linear. In addition, in
our formulation there is a regularization that is adaptive to the local
sampling density which can keep sharp features if the a local sam-
pling condition is satisfied. The formulation handles noisy as well
as non-unform data and works in any number of dimensions. \We
use the level set method as the numerical technique to deform the
implicit surface continuously following the gradient descent of the



energy functional for the final reconstruction. Instead of tracking
a parametrized explicit surface we solve an PDE on a simple rect-
angular grid and handle topological changes easily. In this paper
we develop a simple physically motivated convection model and a
fast tagging algorithm to construct a good initial approximation for
our minimal surface reconstruction. This will speed up our previ-
ous reconstruction by an order of magnitude. We also introduce
a smoothing algorithm similar to [28] as a post process to smooth
implicit surfaces or reconstructed implicit surfaces from noisy data.

In the next section we briefly review the variational formulation
for the weighted minimal surface model in introduced in [31]. A
physically motivated simple convection model is developed in sec-
tion 3. In section 4 we introduce the level set method for our prob-
lems and a simple denoising/smoothing formulation for implicit
surfaces . We explain the details of the numerical implementation
and fast algorithms in section 5 and show results in section 6.

2 A Weighted Minimal Surface Model

Let S denote a general data set which can include data points,
curves or pieces of surfaces. Define d(x) = dist(x, S) to be the
distance function to S. (We shall use bold faced characters to de-
note vectors.) In [31] the following surface energy is defined for
the variational formulation:

E(T) = [/1_‘ dp(a:)ds] ’

where T is an arbitrary surface and ds is the surface area. The
energy functional is independent of parametrization and is invariant
under rotation and translation. When p = oo, E(T") is the value of
the distance of the point & on T' furthest from S. For p < oo,
The surface energy E(T") is equivalent to fI‘ dP(z)ds, the surface
area weighted by some power of the distance function. We take the
local minimizer of our energy functional, which mimics a weighted
minimal surface or an elastic membrane attached to the data set, to
be the reconstructed surface.

As derived in [31] the gradient flow of the energy functional (1)
is

1<p<L oo, @
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and the minimizer or steady state solution of the gradient flow sat-
isfies the Euler-Lagrange equation

& (z) [Vd(a:) ‘n+ %d(w)n] =0, @3)

where m is the unit outward normal and & is the mean curvature.
We see a balance between the attraction Vd(x) - m and the sur-
face tension d(x)« in the equations above. Moreover the nonlinear
regularization due to surface tension has a desirable scaling d(z).
Thus the reconstructed surface is more flexible in the region where
sampling density is high and is more rigid in the region where the
sampling density is low. In the steady state equation(3) above, since
Vd - n <1, alocal sampling density condition similar to the one
proposed in [4], which says sampling densities should be propor-
tional to the local curvature of the feature. To construct the min-
imal surface we used a continuous deformation in [31]. We start
with an initial surface that encloses all data and follow the gradient
flow (2). The parameter p affects the flexibility of the membrane to
some extent. When p = 1, the gradient flow (2) is scale invariant
i.e., dimensionless. In practice we find that p = 1 or 2 (similar to a
least squares formulation) are good choices. Some more details can
be found in [31].

In two dimensions, it was shown in [31] that a polygon which
connects adjacent points by straight lines is a local minimum. This
result shows a connection between the variational formulation and
previous approaches. On the other hand this result is not surprising
since a minimal surface passing through two points is a straight line
in two dimensions. However in three dimensions the situation be-
comes much more interesting. The reconstructed minimal surface
has no edges and is smoother than a polyhedron.

3 The Convection Model

The evolution equation (2) involves the mean curvature of the sur-
face and is a nonlinear parabolic equation. A time implicit scheme
is not currently available. A stable time explicit scheme requires a
restrictive time step size, At = O(h?), where h is the spatial grid
cell size. Thus it is very desirable to have an efficient algorithm to
find a good approximation before we start the gradient flow for the
minimal surface. We propose the following physically motivated
convection model for this purpose.

The convection of a flexible surface I in a velocity field () is
described by the differential equation

dr(t)
— = p(T'(t)).

o = v(T@(®)
If the velocity field is created by a potential field F, then v =
—V . In our convection model the potential field is the distance
function d(z) to the data set S. This leads to the convection equa-
tion

dr(t)
— = - . 4
o =~ V@) O

For example, if the data set contains a single point xo, the potential
field is d(a)=|x—ao| and the velocity field is v(x) = —Vd(x) =
—%, a unit vector pointing towards xo. Any particle in this
potential field will be attracted toward x( along a straight line with
unit speed. For a general data set S, a particle will be attracted to
its closest point in S unless the particle is located an equal distance
from two or more data points. The set of equal distance points has
measure zero. Similarly, points on a curve or a surface, except those
equal distance points, are attracted by their closest points in the data
set (see Fig. 1(a)). The ambiguity at those equal distance points is
resolved by adding a small surface tension force which automati-
cally exists as numerical viscosity in our finite difference schemes.
Those equal distance points on the curve or surface are dragged by
their neighbors and the whole curve or surface is attracted to the
data set until it reaches a local equilibrium (see Fig.1(b)), which is
a polygon or polyhedron whose vertices belong to the data set as
the viscosity tends to zero (see Fig.1(b)).

Here are some properties of this simple convection model: (1)
the normal velocity of the curve or the surface is less than or equal
to 1, (2) each point of the curve or surface is attracted by its closest
point in the data set.

Figure 1(b) is an illustration of the convection of a curve.
The initial curve (the dotted rectangle) feels the attraction of
x1, X2, T3, x4 and closes in. Then it begins to feel 5. The fi-
nal shape is a pentagon that goes through x1, 2, €3, x4 and x5
while x¢ is screened out.

Since the convection equation is a first order linear differen-
tial equation, we can solve it using a time step At = O(h)
leading to significant computational savings over typical parabolic
At = O(h?*) time step restrictions. The convection model by it-
self very often results in a good surface reconstruction. In section
5 we will construct a very fast tagging algorithm that finds a crude
approximation of the local equilibrium solution for our convection
model.



(@) (b)
(a) the attraction of a piece of curve by two points, (b) dotted line
is the initial curve, solid line is the final curve, dashed line is the
\oronoi diagram.

Figure 1:

4 The Level Set Formulation

In general we do not have any & priori knowledge about the topol-
ogy of the shape to be reconstructed. Topological changes may
occur during the continuous deformation process. This makes ex-
plicit tracking, which requires consistent parametrization, almost
impossible to implement. Here we introduce the level set method
as a powerful numerical technique for the deformation of implicit
surfaces. Although implicit surfaces have been used in computer
graphics for quite a while, they were mostly used for static model-
ing and rendering and were based on discrete formulations [7]. The
level set method is based on a continuous formulation using PDEs
and allows one to deform an implicit surface, which is usually the
zero isocontour of a scalar (level set) function, according to various
laws of motion depending on geometry, external forces, or a desired
energy minimization. In numerical computations, instead of explic-
itly tracking a moving surface we implicitly capture it by solving a
PDE for the level set function on rectangular grids. The data struc-
ture is extremely simple and topological changes are handled easily.
The level set formulation works in any number of dimensions and
the computation can easily be restricted to a narrow band near the
zero level set, see e.g. [1, 21]. We can locate or render the moving
surface easily by interpolating the zero isosurface of the level set
function. The level set method was originally introduced by Osher
and Sethian in [20] to capture moving interfaces and has been used
quite successfully in moving interface and free boundary problems
as well as in image processing, image segmentation and elsewhere.
See [19] for a comprehensive review.
Two key steps for the level set method are:

e Embed the surface: we initially represent a co-dimension one
surface T as the zero isocontour of a scalar (level set) function
o(x), i.e. T = {z : ¢(x) = 0}. ¢(x) is negative inside T’
and positive outside I'. Geometric properties of the surface T,
such as the normal, surface area, volume, mean and Gaussian
curvature can be easily computed using ¢. For example, the
outward unit normal n is simply % and the mean curvature
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e Embed the motion: we derive the time evolution PDE for the
level set function such that the zero level set has the same
motion law as the moving surface, i.e. the moving surface
coincides with the zero level set for all time. Since I'(t) =

{il) : ¢(w’ t) = 0}’

d(r(t),1) _
dt

dr'(t)

. Ve=0 ®)

o +

where we replace “L() with a velocity field v () defined for

T
all  and equal to & dgt) forzonT = {z : #(x,t) = 0}.

To develop the time evolution PDE for the level set function, one
needs to extend the velocity at the zero level set, which is given by
the motion law of the original surface, to other level sets in a natural
way. For geometric motions, i.e. where the motion law (velocity)
depends only on the geometry of the moving surface, the most nat-
ural way to define v is to apply the same motion law for all level
sets of the level set function, which will result in a morphological
PDE [2]. For example, the gradient flow (2) is a geometric motion.
Using the fact (see, e.g., [25, 31])

/ & (2)ds = / & (@)3(6(@))|V(@)|de,

where ¢(z, t) is the level set function whose zero level set is I'()
and d(z) is the one dimensional delta function, and extending the
motion (normal velocity) to all level sets we have the level set for-
mulation for the gradient flow (2)

9 1 . [y V6
§_1—7|V¢| [/d (w)5(¢)|V¢|dw] V- [d (w)W] » (6)

For the convection model (4), since the velocity field —Vd(x) is
defined everywhere, we can naturally extend the convection to all
level sets of ¢(x, t) to obtain

o¢ = Vd(x) - V. @)
ot

Although all level set functions are equally good theoretically,
in practice the signed distance function is preferred for numerical
computations. However even if we start with a signed distance
function the level set function will generally not remain a signed
distance function. As an example, in the convection model all level
sets are attracted to the data set simultaneously and they become
more and more packed together. We need a procedure to force them
apart while keeping the zero level set intact. We use a numerical
procedure called reinitialization, see e.g. [21, 25], to redistance the
level set function locally without interfering with the motion of the
zero level set. The reinitialization process will also provide us with
a signed distance function for rendering the implicit surface after
the deformation procedure stops.

If the data set contains noise, we derive a post-smoothing pro-
cess similar to that of [28] for our reconstructed implicit surfaces
using the variational level set formulation. Let ¢ denote the ini-
tial level set function whose zero level set is the surface we would
like to denoise or smooth. We define the denoised or smoothed im-
plicit surface as the zero level set of ¢ that minimizes the following
functional

Y GCRE IRy RO O

where H(z) is the one dimensional Heaviside function. The first
term in the above energy functional is a fidelity term that measures
the symmetric volume difference between two closed surfaces. The
second integral in the above functional is the surface area of the
zero level set of ¢, which is a regularization term that minimizes
the surface area of the denoised or smoothed surface. The constant
€ is a parameter that controls the balance between the fidelity and
the regularization. We again find the minimizer by following the
gradient flow of (8), whose level set formulation is:

¢: = |Vo|[er — (H(d) — H(o))]



To some extent this variational formulation is also related to To-
tal Variation (TV) denoising for images proposed in [24]. In fact it
is exactly TV denoising applied to H(¢), since the total variation
of a function can be represented as the integration of the parameter
length of all level sets of the function by co-area formula [14].

5 Numerical Implementation

There are three key numerical ingredients in our implicit surface
reconstruction. First, we need a fast algorithm to compute the dis-
tance function to an arbitrary data set on rectangular grids. Second,
we need to find a good initial surface for our gradient flow. Third,
we have to solve time dependent PDEs for the level set function.

5.1 Computing the distance function

The distance function d(z) to an arbitrary data set S solves the
following Eikonal equation:

[Vd(z)| =1, d(z)=0,z€S. 9)

From the PDE point of view, the characteristics of this Eikonal
equation are straight lines which radiate from the data set. This
reveals the causality property for the solution of the PDE, i.e., the
information propagates along straight lines from the data set, and
the solution at a grid point should be determined only by its neigh-
boring grid points that have smaller distance values. We use an
algorithm [10, 31] that combines upwind differencing with Gauss-
Seidel iterations of different sweeping order to solve (9) on rect-
angular grids. From numerical experiments it seems that the total
number of iterations is independent of mesh size, i.e. the complex-
ity is O(M + N) for N grid points and M data points.

Suppose we have a set of data points and a rectangular grid. We
use an initialization procedure, of complexity O(M + N) to as-
sign initial values for N grid points and M data points. Those
gird points that belong to the data set are assigned zero. Those grid
points that are neighbors (i.e., vertices of grid cells that contain data
points,) are assigned the exact distance values. These grid points
are our boundary points and their distance values will not change in
later computations. We assign a large positive number to all other
grid points. These values will be updated in later computations. \We
can deal with more general data set as long as the distance values on
grids neighboring to the set are provided initially. In one dimension,
the following upwind differencing is used to discretize the Eikonal
equation (9) at ¢th grid point that are not boundary points,

[(di —dic)T)? +[(di —diz)T)> =A%, i=1,2,...,I (10)
where h is the grid size, T is the total number of grids and (z)* =
r >0

0 z<0
erations successively, i.e., fori = 1 : I'andi = I : 1, to solve
this system of equations. At the ith grid, using the current val-
ues of d;_1 and d;, there exists at least one solution for equation
(10) [min(di—1, di+1) + 5, maz(di—1, di+1) + Z], which only
depends on neighbors with smaller values. We take d; to be the
smaller one if there are two solutions. It can be shown that these
two sweeps will get the exact solution of the discrete system (10),

which is of first order O(h) accuracy to the real distance function.
In two dimensions, a slightly more complicated system,

[(dij —diz13)™7 +[(dij —dirr1))™]

+[(dij — di 1)1 + [(ds; — dij11) 1] = B,
i =1,...,I, j = 1,...,J, has to be solved using sweeps of
Gauss-Seidel iterations of four different orders,

Vi=1:1,j=1:J (2)i
B)i=I:1,j=1:J (4)i

. We use two different sweeps of Gauss-Seidel it-

In most numerical computations, a total of five or six sweeps is
enough in two dimensions. Similarly a three dimensional extension
is straight forward. This distance algorithm is versatile, efficient
and will be used in later stages of the surface reconstruction.

5.2 Finding a good initial guess

We can use an arbitrary initial surface that contains the data set such
as a rectangular bounding box, since we do not have to assume any
a priori knowledge for the topology of the reconstructed surface.
However, a good initial surface is important for the efficiency of
our PDE based method. On a rectangular grid, we view an im-
plicit surface as an interface that separates the exterior grid points
from the interior grid points. In other words, volumetric render-
ing requires identifying all exterior (interior) grid points correctly.
Based on this idea, we propose a novel, extremely efficient tagging
algorithm that can identify as many correct exterior grid points as
possible and hence provide a good initial implicit surface. As al-
ways, we start from any initial exterior region that is a subset of
the true exterior region. Here is the description of our fast tagging
algorithm and the proof of its viability. For simplicity of exposition
only, we shall consider a uniform grid

(l‘i,yj) =Tij = (/LA,]A)a 17.] = 07:|:1,:|:27_

in 2 dimensions, where A is the grid size. The results work in any
number of dimensions and for more general grid structure.

Let d;; = d(x;;) be the unsigned distance of x;; to the data set
S (i.e. to the closest point on S). We say x;; < @k, Or ;; iS
closer than xx; or «;; is smaller than xx; if dij < dg:.

We define S to be the set of grid nodes x;; for which d;; < A.
(Note: if every data point lies on a grid node, then S = S).

We wish to obtain a set €2 for which S ¢ € and for which the
boundary 99 serves as a very good initial guess for our final recon-
structed surface. From our convection model, we need to rapidly
find a crude approximate solution to the steady state equation

Vd(z)-n =0,

where n is the unit outward normal of the boundary 0€2. This equa-
tion can be written (in 2D) as

degpz + dydy =0, (11

where ¢ is the level set function whose zero level set is 992 that
surrounds S2. We wish to march quickly in a manner reminiscent
of the fast algorithm of [26], but for a very different problem — this
is not the eikonal equation, and steady states generally depend on
the initial guess. There are some similarities in that a heap sort
algorithm is used as is the Cartesian structure of the grid.

For a point x;; we define its neighbors as the four points
Ti+1,5, i j+1. A boundary point of a set © is defined to be the
set of a;; in Q for which at least one of its four neighbors are in the
exterior of Q2. The boundary of  is denoted by 692.

Given Qo for which S we shall march quickly towards Q C Qg
whose boundary 92 will act as our initial level surface for the con-
vection and convection-diffusion algorithms defined below. This is
our fast tagging algorithm.

We begin by considering 82 which we order in a nondecreasing
sequence via a heap sort algorithm. We denote 8¢ as a temporary
boundary set at stage 0. We shall inclusively create £2,, and a tem-
porary boundary set 892,.,; C 99, so that, after a finite number of
steps the largest point in 89, ; is also in S2, at which point the
algorithm terminates and €2, is the final ©2. At each marching step,
we either tag the largest (furthest) temporary boundary point into
the final boundary or turn the largest (furthest) temporary boundary



point into an exterior point. This fast tagging algorithm is of com-
plexity O(NV log IV); the log IV term appears because of the sorting
step.

The tagging algorithm is as follows: Consider the largest

a:(n) S BQn,t.

ij
(&) If there is at least one interior neighbor of wﬁf) which is not

closer to S, put a:,fj") into the tagged boundary set and define

aﬂn-‘,—l,t = aQn,t - {wg—b)}ygn+l = Qn-

(b) If all interior neighbors of a:f;” are closer to S, put wgrf) into
the exterior and include its interior neighbors into the new
temporary boundary, i.e., define 2,41 = Q. — {&}} and
Omt1,t = O0my1 — {000 — O i}

Repeat this process until either (a) the temporary boundry set be-
comes empty, or (b) maximum distance of the untagged temporary
boundary points, (the set 8,,:) to S is less than A.

We now prove the algorithm is viable and converges. If condition
(a) is satisfied at stage 7, then since Q11 C 9, 27T <

EJ") If condition (b) is satisfied then 9€2,,+1,. will include new
points that are neighbors of wﬁf) and are closer to S than wE;)

Thus w§?+1) < wE;) This ends the proof that the algorithm is

T

viable and converges.

Remark1: Our tagging algorithm produces a very crude ap-
proximation to the steady state solution of the convection equation,
which we rewrite: Vd- V¢ = 0. We solve this crudely on a grid for
a function ¢;j which has value either +1 or -1. We initialize so that
¢ij = 1 in the exterior of Qo, ¢;j = —1 inside o. At every grid
point ;5 to be updated we march in an "upwind” direction, which
means the new ¢;j depends only on values at the four neighbors
which are further from S than «;j. Thus we order the temporary
boundary points and update the largest untagged point via a crude

process
¢ij = P[¢?—1,ja¢?+1,j:¢?,j—l7¢?,j]

where P denotes a procedure that picks one of the values from its
arguments that corresponds to a more remote point as follows: if
there are any more remote interior points, it picks the one which
is furthest from S. Else it picks the furthest exterior point. This
is equivalent to using a convex combination of either interior or
exterior points to approximate Vd and enforce ¢ to be constant
along Vd It is easy to see that this approximates the level set
equation (11) and is exactly our tagging algorithm.

Remark?2: At every stage of our tagging algorithm, all points x7,,
which are interior points of Q,, and which are more remote than
the point being tagged, =7;, will remain in Qn for all N > n,
and hence in the final set €2, since the maximum distance on the
untagged temporary boundary is decreasing. Thus we generally
obtain a nontrivial limit set €.

Figure 2 illustrates how our fast tagging algorithm works. Start-
ing from an arbitrary exterior region that is a subset of the final exte-
rior region, the furthest point on the temporary boundary is tangent
to a distance contour and does not have an interior point that is far-
ther away. The furthest point will be tagged as an exterior point and
the boundary will move inward at that point. Now another point on
the temporary boundary becomes the furthest point and hence the
whole temporary boundary moves inward. After a while the tempo-
rary boundary is close to a distance contour and moves closer and
closer to the data set following the distance contours until the dis-
tance contours begin to break into spheres (circles in the 2D figure)
around data points. We now see that the temporary boundary point
at the breaking point of the distance contour, which is equally dis-
tant from distinct data points, will have neighboring interior points

that have a larger distance. So this temporary boundary point will
be tagged as a final boundary point by our procedure and the tempo-
rary boundary will stop moving inward at this breaking point. The
temporary boundary starts deviating from the distance contours and
continues moving closer to the data set until all temporary bound-
ary points either have been tagged as final boundary points or are
close to the data points. The final boundary is approximately a a
polyhedron (polygon in 2D) with vertices belonging to the data set.

This general tagging algorithm can incorporate human interac-
tion easily by putting any new exterior point(s) or region(s) into our
tagged exterior region at any stage in our tagging algorithm. After
the tagging algorithm is finished we again use the fast distance al-
gorithm to compute a signed distance to the tagged final boundary.

The tagging method above requires an initial guess for the ex-
terior region. This can either be the bounding box of our com-
putational rectangular domain or an outer contour of the distance
function, d(x) = e. An outer contour of the distance function can
be found by starting with any exterior point, such as the corners
of of our rectangular domain, and expanding the exterior region
by repeatedly tagging those grid points which are connected to the
starting exterior point and have a distance larger than e as exterior
points. When the tagging algorithm is finished the boundary of the
exterior region is approximately the outer contour of d(x) = € or
roughly an e offset of the real shape. When using this d(z) = e con-
tour, first proposed in [31], one needs to exercise caution in choos-
ing e. For example, if € is too small, we will have isolated spheres
surrounding data points. If the sampling density of the data set is
fine enough to resolve the real surface, then we can find an appropri-
ate e and get a very good initial surface with O(INV + M) operations.
When combined with the above fast tagging algorithm, we can find
a good initial approximation very efficiently. For non-uniform data
points the intersection of a bounding box and a distance contour
with moderate €, which is a simple Boolean operation for implicit
surfaces, often gives a good initial surface.

—— marching boundary
---- distance contour
e datapoint

Figure 2:

5.3 Solving the partial differential equation.

After we find the distance function d(x) and a good initial implicit
surface using the above algorithms, we can start the continuous de-
formation following either the gradient flow (2) or the convection
(4) using the corresponding level set formulation (6) or (7). Our nu-
merical implementations are based on standard algorithms for the
level set method. The one dimensional Delta function é(x) and
Heaviside function H (x) are approximated numerically if needed.



Details can be found in, for example, [21, 30, 31]. The convection
model is simple and fast but the reconstructed surface is close to a
piecewise linear approximation. In contrast, the energy minimizing
gradient flow, which contains a weighted curvature regularization
effect, is more complicated and computationally expensive but re-
constructs a smooth weighted minimal surface. These two contin-
uous deformations can be combined, and in particular, the gradient
flow can be used as a smoothing process for implicit surfaces. In
most of our applications, about one hundred time steps in total are
enough for our continuous deformation. Since we use a reinitial-
ization procedure regularly during the deformation, we finish with
a signed distance function for the reconstructed implicit surface.

5.4 Multiresolution

There are two scales in our surface reconstruction. One is the res-
olution of the data set. The other is the resolution of the grid. The
computational cost generally depends mainly on the grid size. To
achieve the best results those two resolutions should be compara-
ble. However our grid resolution can be independent of the sam-
pling density. For example, we can use a low resolution grid when
there is noise and redundancy in the data set or when memory and
speed are important. From our numerical results figure 9(c) our
reconstruction is quite smooth even on a very low resolution grid.
We can also use a multiresolution algorithm, i.e., reconstruct the
surface first on coarser grids and interpolate the result to a finer
resolution grid for further refinement in an hierarchical way.

5.5 Efficient storage

To store or render an implicit surface, we only need to record the
values and locations (indices) of those grid points that are next to
the surface, i.e., those grid points that have a different sign from
at least one of their neighbors. These grid points form a thin grid
shell surrounding the implicit surface. No connectivity or other
information needs to be stored. We reduce the filesize by at least
an order of magnitude by using this method. Moreover we can
easily reconstruct the signed distance function in O(V') operations
for the implicit surface using the following procedure. (1) Use the
fast distance finding algorithm to find the distance function using
the absolute value of the stored grid shell as an initial condition.
(2) Use a tagging algorithm, similar to the one used above to find
exterior points outside a distance contour, to identify all exterior
points and interior points separated by the stored grid shell and turn
the computed distance into the signed distance. For example, if
we store the signed distance funtion for our reconstructed Happy
Buddha from almost half a million points on a 146 x 350 x 146
grid in binary form, the file size is about 30MB. If we use the above
efficient way of storage the file size is reduced to 2.5MB without
using any compression procedure and we can reconstruct the signed
distance function in 1 minute using the above algorithm .

6 Results

In this section we present a few numerical examples that illus-
trate the efficiency and quality of our surface construction. In
particular we show (1) how the level set method handles sur-
face deformation and topological change easily, (2) how quickly
our tagging algorithm constructs a good initial guess, (3) how
smooth the reconstructed surfaces are by using either the con-
vection model or the minimal surface model, (4) how our al-
gorithm works with non-uniform, noisy or damaged data, and
(5) how multiresolution works in our formulation. All calcula-
tions were done with a Pentium Ill, 600Mhz processor. Data
points for the drill, the dragon and the Buddha were obtained

from www-graphics.stanford.edu/data/3Dscanrep and data points
for the hand skeleton and turbine blade were obtained from
www.cc.gatech.edu/projects/large_models. Only locations of the
data points are used in our reconstructions.

The first group of examples show surface reconstruction from
synthesized data. Figure 4 show surface reconstruction, a torus,
from damaged data, which is like hole filling. Figure 5 shows the re-
construction of a sphere from a box using eight longitudinal circles
and eight latitudinal circles. For this example we do not have any
discrete data points. We only provide the unsigned distance func-
tion. This can also be viewed as an extreme case of non-uniform
data. Figure 5(a) shows those circles and figure 5(b) shows recon-
struction using the convection model. Figure 5(c) shows the final
minimal surface reconstruction following the gradient flow on top
of figure 5(b).

The second group of examples are from real data. Timings, num-
ber of data points and grid size are shown in table 3. CPU time is
measured in minutes. CPU (initial) is the time for the initial recon-
struction using the distance contour and the fast tagging algorithm.
CPU (total) is the total time used for the reconstruction. Since our
PDE based algorithms are iterative procedures, different conver-
gence criterion will give different convergence times. For data sets
that are fairly uniform, such as the drill, the dragon, the Buddha
and the hand skeleton, we start with an outer distance contour and
use the fast tagging algorithm to get an initial reconstruction. The
initial reconstruction is extremely fast, as we can see from table 3.
After the initial reconstruction, we first use the convection model
and then use the gradient flow to finish the final reconstruction. In
our reconstruction, the grid resolution is much lower than the data
samples and yet we get final results that are comparable to the re-
constructions shown at those websites above.

Figure 6 shows the reconstruction for a rat brain from MRI slices.
The data set is very non-uniform and noisy. We start with the in-
tersection of a bounding box and an outer distance contour with
relatively large e = 12h, which is shown in figure 6(b). The next
example, figure 7 is our reconstruction of a 1.6mm drill bit from
1961 scanned data points. It is a quite challenging example for
most methods for surface reconstruction from unorganized data as
is shown in [11]. Figure 8 shows the reconstruction of a hand skele-
ton. Figure 9 shows the reconstruction of the Happy Buddha. Fig-
ure 9(a) shows the initial reconstruction using the fast tagging al-
gorithm only. We start with an outer distance contour, d = 3h,
initially and it takes only 3 minutes for half a million points on a
146 x 350 x 146 grid. Figure 10 is the reconstruction of the dragon.
Figure 9(b) is the final reconstruction. Figure 9(c) is the reconstruc-
tion on a much under resolved coarse grid 63 x 150 x 64 using the
same amount of data points. It only takes 7 minutes and the result
is quite good. For the example of the dragon, we show the initial
reconstruction in figure 10(a), reconstruction using the convection
model only in figure 10(b) and the final weighted minimal surface
reconstruction in figure 10(c). Figure 10(d) shows the reconstruc-
tion using a much lower resolution data set on the same grid and the
result is quite comparable to figure 10(c). The final example shows
the reconstruction of a turbine blade on a 178 x 299 x 139 grid for
almost a million data points.

7 Conclusions

We present a variational and PDE based formulation for surface re-
construction from unorganized data. Our formulation only depends
on the (unsigned) distance function to the data and the final recon-
struction is smoother than piecewise linear. We use the level set
method as a numerical tool to deform and construct implicit sur-
faces on fixed rectangular grids. We use fast sweeping algorithms
for computing the distance function and fast tagging algorithms for



Model Data Grid CPU CPU

points size (initial) | (total)
Rat brain 1506 80X77x79 12 3
Drill 1961 24x250x32 0.1 2
Buddha 543652 | 146x350x146 3 68
Buddha 543652 | 63x150x64 3 7
Dragon 437645 | 300x212x136 4 77
Dragon 100250 | 300x212x136 3 66
Hand 327323 | 200x141x71 5 10
Turbine blade | 882954 | 178x299x139 25 60

initi
and

Figure 3: timing table

al construction. Our method works for complicated topology
non uniform or noisy data.
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(a) data points (b) front view of the final reconstruction (c) side view of the final reconstruction

Figure 4: hole filling of a torus

(a) initial data (b) reconstruction using convection (c) final reconstruction

Figure 5: reconstruction of a sphere from circles

(a) data points (b) starting surface (c) final reconstruction

Figure 6: reconstruction of a rat brain
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Figure 7: reconstruction of a drill



(a) initial reconstruction (b) final reconstruction (c) reconstruction on a coarse grid

Figure 9: reconstruction of the Happy Buddha
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(c) final reconstruction (d) low resolution reconstruction

Figure 10: reconstruction of the dragon
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Figure 11: reconstruction of a turbine blade



