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AN ERROR ESTIMATE FOR VISCOUS APPROXIMATE
SOLUTIONS OF DEGENERATE PARABOLIC EQUATIONS

STEINAR EVJE AND KENNETH H. KARLSEN

ABSTRACT. Relying on recent advances in the theory of entropy solutions for noniinear (strongly)
degenerate parabolic equations, we present a direct proof of an L! error estimate for viscous
approximate solutions of the initial value problem for 8iw + div(V(z) f(w)) = AA(w), where
V = V() is a vector field, f = f(u) is a scalar function, and A’(-) > 0. The viscous approximate
solutions are weak solutions of the initial value problem for the uniformly parabolic equation
Bew® + div{V () f(we)) = A(A(w*) + w®), £ > 0. The error estimate is of order /2.

1. INTRODUCTION

In this paper, we are interested in certain “viscous” approximations of entropy solutions of the
initial value problem

(1.1) {atw +div(V(@)f(w)) = AA(w), (z,1) € Qr,

’LU(SC,O) = wﬂ(m)s T e ]Rd:

where Qp = R x (0,T) with T > 0 fixed, u : Qv — R is the sough function, V : R — R is
a (not necessarily divergence free) velocity field, f : R — R is the convective flux function, and
AR -3 R is the “diffusion” function. Regarding the diffusion function, the basic assumption is
that A(') is nonincreasing. This condition implies that (1.1) is a (strongly) degenerate parabolic
problem. For example, the hyperbolic equation d,w + div(V(z)f{w)) = 0 is a special case of
(1.1). Problems such as (1.1) occur in several important applications. We mention here only two
examples: flow in porous media (see, e.g., [7]) and sedimentation-consolidation processes [3].

Since A(-) is merely nondecreasing, solutions are not necessarily smooth and weak solutions
must be sought. Moreover, as is well-known in the theory of hyperbolic conservation laws, weak
solutions are not uniquely determined by their initial data. To have a well-posed problem, we need
to consider entropy solutions, i.e., weak solutions that satisfy a Kruzkov-Vol’pert type entropy
condition. A precise statement is given in Section 2 (see Definition 1). For pure hyperbolic
equations, this entropy condition was introduced by Kruzkov [14] and Vol'pert [20]. For degenerate
parabolic equations, it was introduced by Vol'pert and Hudjaev [21].

Following Carrillo [5], it was proved by Karlsen and Risebro [12] that the entropy solution of
(1.1) (as well as a more general equation) is unique. Moreover, in the L>(0,T; BV (R?)}) class
of entropy solutions, they proved an L! contraction principle. Existence of an L%(0,T; BV (R?))
entropy solution of (1.1) follows from the results in Vol'pert and Hudjaev [21] or Karlsen and
Risebro {11] (the latter dealt with convergence of finite difference methods). The proof in [12] of
uniqueness and stability is based on the “doubling of variables” strategy introduced in Carrillo [5],
which in turn is a generalization of the pioneering work by Kruzkov [14] on hyperbolic equations.
Related papers dealing with the “doubling of variables” device for degenerate parabolic equations
include, among others, Carrillo [4], Otto [18], Rouvre and Gagneux [19], Cockburn and Gripenberg
[6] Biirger, Evje, and Karlsen [1, 2], Ohlberger [17], Mascia, Porretta, and Terracina [16], Eymard,
Gallouet, Herbin, and Michel [10], and Karlsen and Ohlberger {13].

Date: February 15, 2001.
Key words end phrases. nonlinear degenerate parabolic equations, velocity field, entropy solution, viscosity
method, error estimate.
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2 EVJE AND KARLSEN

In this paper, we are interested in certain approximate solutions of (1.1) coming from solving
the uniformly parabolic problem

(1.2) Sw + div{V (z) f(w?)} = AA®(w®), (z,t) € Qr,
' we{z,0) = we(x), z € RY,

where A®(w®) = A{w®) + ew®, £ > 0. We refer to w® as a viscous approximate solution of (1.1}.
Convergence of w® to the unique entropy solution w of (1.1) as ¢ | 0 follows from the results in
Vol'pert and Hudjaev [21]. Our main interest here is to give an explicit rate of convergence for w*®
as € | 0, i.e., an L' error estimate for viscous approximate solutions.

There several ways to prove such an error estimate. One way is to view it as a consequence
of a continuous dependence estimate. Combining the ideas in [12] with those in Cockburn and
Gripenberg [6], who used a variant of Kruzkov’s “doubling of variables” device for (1.1) with
V = 1, Evje, Karlsen, and Risebro [8] established an explicit “continuous dependence on the
nonlinearities” estimate for entropy solutions of (1.1). A direct consequence of this estimate is the
error bound [ — wljp1jgy) = O(VE), at least when w®,w belong to L*(0,T; BV(R?)) and V
is sufficiently regular. Ufortunately, the techniques employed in [8] require that one works with
(smooth) viscous approximations of (1.1). The proof in [8] (as well as the one in [6]) did not
exploit the entropy solution “machinery” developed by Carrillo [5}.

The main purpose of this work is to show that one can indeed use the “doubling of variables”
device to compare directly the entropy solution w of (1.1) against the viscous approximation w® of
(1.2). Ilence there is no need to work with approximate solutions of (1.1). Although our proof is
of independent interest, it may also shed some light on how to obtain error estimates for numerical
methods. Most numerical methods have (1.2) as a “model” problem and, in this context, the size
of £ designates the amount of “diffusion” present in the numerical method. A step in the direction
of obtaining error estimates for numerical methods has been taken by Ohlberger [17] with his a
posteriori error estimate for & finite volume method. We will in future work use the ideas devised
herein to derive a priori error estimates for finite difference methods.

The rest of this paper is organized as follows: In Section 2 we state the definition of an entropy
golution and the main result (Theorem 1). Section 3 is devoted to the derivation of certain entropy
inequalities for the exact entropy solution and its viscous approximation. Equipped with these
entropy inequalities, we prove the error estimate (Theorem 1) in Section 4.

Added in process. After the main result of this paper was obtained, we became aware of a paper
by Eymard, Gallouet, and Herbin [9] which also proves an error estimate for viscous approximate
solutions. They, however, deal with a certain boundary value problem with a divergence free
velocity field and obtain an error estimate of order 5. As is the case herein, the proof in [9] does
not rely on a continuous dependence estimate.

Acknowledgment. This work was done while the first author (Evje) was visiting the Industrial
Mathematics Institute at the University of South Carclina. Part of this work was completed while
the second author (Karlsen) was visiting the Department of Mathematics and the Institute for
Pure and Applied Mathematics {(IPAM) at the University of California, Los Angeles (UCLA).

2. STATEMENT OF RESULT

Following [11, 12|, we start by stating sufficient conditions on V = (V4,...,Vy), f, 4,1 to
ensure existence of a unique L°°(0, T; BV(R?)) entropy solution of (1.1):

v e (i)’ ne=en) n(1iom)

2. Vie BV(RY), i=1,....4;

(2.1) 1 f € Lipioc(R); £(0) =0;

A € Lipioc(R) and A(-) is nondecreasing with A(0) = 0;
4o € LO(R?) L (RY) N BV (RY).

Equipped with (2.1), we can state the following definition of an entropy solution:
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Definition 1 (Entropy Solution). A function w(x,t) is colled an entropy solution of (1.1} if:
(1) w € LYQr) N L®(Qr) N C(0,T; L' (RY)).
(i) A(w) € L0, T; HY{RY)).
(il w(z,t) satisfies the entropy inegquality

J[ (o= Ko+ sentw - V() (#w) - £(0) - VAw)] - V4
(2.2) Qr
— sgn(w — k)divV(z) f(k)q’:) dtde >0, VEkER

for all nonnegative ¢ € C§°(Q7).
(iv) [lw(-,t) — wolipymaey = 0 as t | 0 (essentially).
Note that if we take k > esssupw(z,t) and k < essinf w(z,t) in (2.2), then an approximation
argument will reveal that

(2.3) / f (wge + [V() fw) ~ VA@W)] - V$) dede =0
Qr

holds for all ¢ € H*(Qr). Let (,+) denote the usual pairing between H1(R?) and H*(R?). From
{2.3), we conclude that
Byw € L2(0,T; HH(RY)),

so that

(24) - /0 " O, 6yt + / / (V@) f(w) ~ VAW)] - V§) dedz =0,  Vé € H'(Qr).
Qr

In other words, an entropy solution w(z,t) of (1.1) is also a weak solution of the same problem.

In this paper, we are interested in comparing the entropy solution w of (1.1) against the weak
solution w® of the viscous problem (1.2). From the results in Karlsen and Risebro [11] or Vol’pert
and Hudjaev [21], there exists a weak solution w® € L>(0,T; BV(R?)) of {1.2). Since A°(") in
increasing, the uniqueness result in Karlsen and Risebro {12} (see also Remark 1 herein) tells us
that this weak solution is in fact the unique one. Moreover, from the energy estimate we conclude
that w® € L%(0,T; H*(R%)). Of course, if V, f, A, uo are smooth enough, one can prove that the
weak solution w® of (1.2) is actually a classical (C%!) solution, see, e.g., Vol’pert and Hudjaev
[21]. Here it will be sufficient to know that w® belongs to L2(0,T; H:(R?)) (not C*).

We are now ready state our main theorem:

Theorem 1 (Error Estimate). Suppose that the conditions in (2.1) hold. Letw € L*°(0,T; BV (R%))
be the unique entropy solution of (1.1) and let w® € L2(0,T; HY(R))) ) L>°(0,T; BV(R?)) be the
unigue weak solution of (1.2). Then there exists a constant C, independent of &, such that

{2.5) llw® — wilz (@r) < Cve.

3. ENTROPY INEQUALITIES

In Section 4, we will follow the uniqueness proof of Carrillo [5] to obtain an estimate of the
difference between w® and w. To this end, it will be necessary to derive two entropy inequalities
for the exact solution w and two approximate entropy inequalities for the viscous solution w®. The
purpose of this section is to derive these inequalities (see Lemmas 2 and 3 below).

Note that differently from the pure hyperbolic case [14], we need to operate with one additional
entropy inequality {actually an equality for the exact solution w) taking into account the parabolic
(dissipation) mechanism in the equation. Hence, we shall introduce a set H corresponding to the
regions where A(-) is “flat” and (1.1) behaves hyperbolic. More precisely, let A~ : R —+ R denote
the unique left-contimuous function which satisfies A= (A(u)) = u for all u € R. Then we define

H= {r € R : A™!() is discontinuous at r}.
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Since A(-) is a monotone function, H is at most countable. The dissipation mechanism in the
equation is effective only in the (z,t) region corresponding to the complement of H.
To prove Lemmas 2 and 3 below, we shall need the following “weak” chain rule:

Lemma 1. Let u: Qr — R be a measurable function satisfying the following four conditions:

(1) w € LHQT) N L=®(Q7) N C(0,T; L (R*)).
(2) u(0,") = uo € L}(RY) N L=°(R).
(3) Beu e L2(0,T; H-Y(RY)).

7N Af, N ~ T2fn m rr'l s vy
(9 Atw) € £7{(0,7; H' (R},

For every nonnegative and compactly supported ¢ € C™°(Qr) with Plimo = Pli=T = 0, we have

_fo (80,18 (A(w) dt—f[(f w,b(A(&)df)qS,gdtdm, keR,

where ¥ : R — R is a nondecreasing and Lipschitz continuous function.

The proof of Lemma, 1 is very similar to the proof of the “weak chain” rule in Carrillo [5] and
it is therefore omitted (see instead [12]).

The following lemma, which deals with entropy inequalities for the exact entropy solution w, is
a direct consequence of the very definition of an entropy solution.

Lemma 2. The unique entropy solution w of (1.1) satisfies:
(i) For all k € R and all nonnegative ¢ € C3°(Qr), we have

(3.1) EMPlw, k, ¢) > 0,
where
B9 (w,,¢) 1= [ [ (= Hiors + senlus — B[V () ) - £(0) ~ VA@W)] - V9
(3.2) v
— sgn(w — k)divV (z) f(k)gb) dt de.

We refer to (3.1) as a hyperbolic entropy ineguality.
(ity For all k such that A(k) @ H and all nonnegative ¢ € C§°(Qr), we have
(3.3) EP*(w Kk, ¢) =0

where

(k) = [[ (10— Ko + 80w — V(@) () - 55 - TA@)] - ¥
Qr

(3.4) — sgn(w — K)divV (z) f(k)¢ ) dt d

- hm//|VA w)l sgny ( — A(k)) ¢ di dx,

In (3.4) (and elsewhere in this paper), sgn, is the approzimate sign function is defined by

_ Jsen(m) || >m,
(3.5) sgn, (1) := {T/W i <. n>0.

We refer to (3.3) as a parabolic entropy inequality.

Proof. The first inequality (3.1) is nothing but the entropy condition for the entropy solution w,
so there is nothing to prove. Let us turn to the proof of the second inequlity (3.3), which borrows
a lot from Carrillo [5] (see also [12]). In what follows, we always let k, ¢ be as in the lemma and
the approximate sign function sgn,(-) is always the one defined in (3.5).



AN ERROR ESTIMATE FOR VISCOUS APPROXIMATIONS 5

Since w satisfies (2.4) and [sgn, (A(w) — A(k))¢] € L*(0,T; H'(R%)), we have
T
- fu (8w, sgn, (Aw) ~ A(k))9) dt
+ [ (V@) - 109) ~ 7 4)] - 9 [sgn, (40w) ~ BN
Qr

— divV (Y FE [gon (.
AR AR N R

~—~
-
——
s
I
|
oy
—
byl
~
S
&
S
[
o
[l

Introduce the function 4, (z) = sgn, (z — A(k}) and note that Lemma 1 can be applied, so that
- f (0w, sgn, (Alw) — A(R))$) di = f [ ( [ sgn, (A(€) — A(K)) d.g) B, dt do
o k

and hence

([ it~ s

T

(3.6) / [ (V@ (7w) - 50 - T 4w)] - fsgn, (Alw) — A()9]

— sgn, (A(w) — A(E))divV (z) f(k)qb) dt dz = 0.

Note that since A(r) > A(k) if and only if r > k {here we make use of the assumption that k €
" parabolic region”, i.e., A(k) € H), sgn, (A(r) — A(k)) — 1 as 5 | 0 for any r > k. Similarly for
r < k. Consequently, as 5 { 0, fkw sgn, (A(£) — A(k)) df — |w — k| a.e. in Q7. Moreover, we have
| f]:" sgn, (A(§) — A(k)) d i < |w—e¢| € L, (Q7), so by Lebegue’s dominated convergence theorem

1;5}1”(] sgn, (A(€) — A(k))dg) thﬁdtdw_[f o — E|Bygb dt da

Next, we have

lm / f V@)(f(w) — F(k)) — VA@w)] - V [sen, (A@w) — A(k))§] di dz
= hm ]/ (@}(f(w) — f(F)) — VA(w)] - Vsgn, (A(w) — A(k))¢ dt de
+ hm ff (@) (f(w) — f(k)) — VA(w)] - sgn, (A(w) — Alk))Vodide

= lim f / (@)(F(w) — F(k))sgnl, (Alw) — A(R))Y Alw) i do

-’

v

I

~ lim f / |V Aw)[*sgnl, (A(w) — A(K))$ dt dz

+lim / ] sgn, (Aw) — A(K) [V (@)(f (w) — F(8)) — VA(w)] - Vot de.

I’
s

Iz
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Note that I can be rewritten as I = limy0 [f, V(2)divQ,(A(w))¢ dt dz, where

9,(2) = [ swat 7 = A0 (747 0)) -S4~ A@Y)) ar
1fmin(z,A(k)+??}

FATHr)) = FATH(AWR)) ) dr.
( )

N Jmin{z, A(k}—7)

Since A(k) ¢ H, it follows that f o A~! is Lipschitz continuous and thus Q,(z) tends to zero as
74 G for ail z € Range{A). By invoking Lebesgue dominated convergence theorem, we conciude
after an integration by parts that

I = ~lin, f fQ ] (Q,,(A(w))V(m) .V + Q,,(A(w))divV(m)qs) dt dz = 0.
Using that sgn(w — k) = sgn(A(w) — A(k)) a.e. in Qr (since A(k) ¢ H),

L= hm /[ sgn, ( — A(RN [V (z){f(w) — F(EY) — VA(w)] - Vo dtda

f/sgn(w WV (@) (w) — (k) — VAW)] - Védt d.

For the same reason, we have that

lim / f sgn, (A(w) — AR))divV (2) F (k) dt do = f f sgn(w — k)divV (2) £ (k) dt d.
Qr

Consequently, letting 5 | 0 in (3.6}, we obtain (3.3). O

Remark 1. Observe thet if A(-) is increasing, then o weak solution is cutomatically an entropy
solution and hence it is unique.

The next lemnma, which deals with approximate entropy inequalities for the viscous solution
w®, is a direct consequence of the definition of a weak solution of (1.2).

Lemma 3. Let EW? gnd EP* be defined in (3.2) and (3.4) respectively. Furthermore, define

(3.7) Ryise 1= e!T/fvwE -Vl dt da.

The unique weak solution w® € L2(0,7; HY(RY)) N L2 (0, T; BV (RY)) of (1.2) satisfies:
(i) For all k € R and all nonnegative ¢ € C§°(Qr), we have
(38) Ehyp(,we’k, ‘7—!’) 2 —Ryise.

We refer te (3.8) as an approzimate hyperbolic entropy inequality.

(ii) For all k € R such that A(k) ¢ E and all nonnegative ¢ € C5°(Qr), we have
(39) Epar(wga k'a ¢) 2 ”‘Rvisc‘
We refer to (3.9) as an approzimate parabolic entropy inequality.

FProof. In what follows, we always let k, ¢ be as indicated by the lemma. The proof of the inequality
(3.8} follows the proof of 3.1 rather closely. Since w® is a weak solution and [sgn17 (w®—k)¢] belongs
to L2(0, T; HY(R?)), we have

W/u <6;w , s, (w® —k)qb dt+[f V(z)(f(w®) — F(k)) — VA (w®)] - V[sgn, (w®) — k)¢

— divV (z) f (k) [sgn, (w) — k)q&]) dt dw = 0.
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By the chain rule, we obviously have

- fDT <8t'we, sgn,, (w® -~ k)qb) et

:f[ (fkwesgnﬂ(§~k)d5)3t¢dtdmﬂg/f lw® — k|84 dt da,
. 47

//|'w mk|6¢¢dtda:+hmf/ [V(@)(F(w) — F(R)) — VA ()] - V[sgn, () — k)]
(3.10) @r

so that

— sgn,, (w® — k)divV(z)f(k) ) dtdz = 0.
First, we have

lim ] f sgn, (W) — K)divV () f(k) di do = / / sgn(w® — k)divV (2) (k)¢ dt de.
Qr ' Qr

Next, we have

tim [ V@) - 0) ~ VA7) - V sy (0 = K)g] dedo
Qr
~tiy [[ V@) - 109) - VA )] - Iogn, (0 - Digdds
Qr
+ %ﬂ)lf/ [V (2} (w®) — F(k)) — VA (w®)] - sgn, (w® — k)Védtda
Qr

~tim [[ V@) (W) ~ F)sgnl (0~ HVA)pdido
Qr

[

"

I

—-llm/f(AE) (wa}|V'w | sgn, (w® — k)¢ dt dz

/f sgnw® — B)[V(@)(f(w®) — F(R)) — VA (w*)] - Vi di do.
Note that I can be rewritten as Iy = lim,o [/, V(2)divQ,(w®)¢dt dz, where

z min(z,k+n)
0= [ s = B(70) ~ F0) dr = [ (1(r) = 1) dr > 0 as m

N Jmin{z,k—7}
By invoking Lebesgue dominated convergence theorem, we conclude that

= —lim f[ AWV (z) - Ve + Qp(Alw* ))divV(a:)gb) dtda = 0.

70

Summing up, we have
] (1 = ki +sentw? - DV @(70) - 70) - Va2w)] - ¢
Qr
(3.11) ~ sgn(w® — k)divV{z) f(k)o ) dt do

= hmff A% (w)|[Vw® | sgn, (w® — k)¢ dt dz > 0,
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for any 0 < ¢ € C§°(Qr) and any k& € K. From this we conclude easily that (3.8) holds

It remaing to prove the parabolic entropy inequality (3.9). Let 0 < ¢ € C§°(Qr), and k € R
be such that A(k) ¢ H. Starting off by choosing [sgn, (A(w®) — A(k))¢] as a test function in the
weak formulation and then continuing exactly as in the proof of (3.3), we end up with

EPY(uf k) = If}ﬁ’)l f/ eVw© - V [sgn, (A(w®) — A(k)}¢)] di dz.
Qr

The right-hand side of this equality can be expanded into

i / f (e (w) |V Psinl (Aw®) — AK)) + & s, (A(w?) ~ A(R) Vo - V) dido
Qr
> %ﬁffesgnn(A(wE) — A(R)YVu® - Védtdz > —& [f|w - V| dt dz.
Qr Qr
This concludes the proof of (3.9). G

4. PROOF OF THEOREM 1

Following Carrillo [5] (see also [12]), we shall in this section use Lemmas 2 and 3 to prove
Theorem 1. Let w® = w®(x, 1) solve (1.1) and w = w(y, s) solve (1.2). Following Kruzkov [14] and
Kuznetsov {15], we now specify a nonnegative test function ¢ = ¢(t,z, s,y) defined on Q7 x Q7.
To this end, let p € C§°(R) be a function satisfying

supp(p) C{o € R:|o] <1}, plo) >0Vo€R, pr(a) do = 1.

Forz € R?,t € Rand r,ro > 0, let wo(z) = 2p (E) - Lp (22) and pry(t) = =p (;}i;) Pick any
two points v, 7 € (0,T), v < 7. For any a9 > 0, define
¢

B (1) = Han(t ) — Han(t = 1), Hag(t) = [ Poo(€) dE.

s OO
With 0 < ro < min{(y, T — 7) and ap € (0,min(r —re,T — 7 — o)), we then set
(4'1) qb(w, LY, 3) = Yoy (t)w‘r (:C - y)pra {t— S)'

Note that supp(¢(z, -, y,5)) C (ro,T—ro) for all z,y € R?, s € (0,T) and supp((z, ¢, y,+)) C (0,T)
for all z,y € R?,t € (0,T). Consequently, {(z,t) ++ ¢(z,,y,s) belongs to C§°(Qr) for each fixed
(y,s) € Qr and (y,s) = ¢(z,1,7,5) belongs to C§°(Qr) for each fixed {z,f) € Qr.

Observe that with the choice of ¢ as in (4.1), we have

(4.2) O + Os¢p = [Paro (t—v) — poy(t - "')] W@ — ) Pro (t ~ 8), Ve + Vyd=0.
Before continuing, we need to introduce the two "hyperbolic” sets
5= {(2,0) €Qr: A (w,0) € H}, 3 ={(1,5) € Qr: Aw(y, ) € H},

and notice that
(4.3) Ve A(w®) =0 ae in H* and V,A(w) =0 a.e. in ¥,
(4.4) sgn(w® — w) = sgn{A{w®) — A(w)) a.e. in [(QT \ H) x QT] U [QT % (Qr \3{5)].

Using the approximate hyperbolic entropy inequality (3.8) for the viscous solution w® = w*(z, t)
with k& = w(y, s), we get for (y,s) € Qr

[ (10— wlows + sgat* - ) V@) (@) - 1) - VA - Va6
(4.5) Qr
—sgnf{w® — w)diva:V(:c)f(w)qS) dt dz ds dy > —Ryise-



AN ERROR ESTIMATE FOR VISCOUS APPROXIMATIONS 9

Using the approximate parabolic entropy inequality (3.9) for the viscous solution w® = w®(z,t)
with k = w(y, s), we get for (y,s) € Qr\H

[ (" = wious + sgnto - ) [V @)(F) - ) - VaAw)] - Vo
Qr

(4.6) — sgn(w® — w)div,V () f(w)q&) dt de
. ff oo |2 . -
> lim U |V A(w)| “sgnl (A(w®) — A(w)) ¢ dt dz — Ruice.
Qr
Next we would like to integrate (4.5) and {4.6) over {y, s} € Qr and (y, s) € Q- \ H respectively.

To this end, we need to know that the involved functions are {y,s) integrable. Consider first
(y,8) — [[sgn(v —u)V, A(w®) - Vo dt de. We denote this function by D(y, s).

Qr
To see that D(,-) is integrable on Q7, we observe that for each fixed (y,s) € Qr
sgn{v — u)Va A(w) = V, |A(w®) — A(w)| for a.e. (z,t) € Qr,

and hence

Dy, s) = [f [ValAw®) - Aw)]] - V.t da.
Qr

Since the function (z,t) — ¢(z,t,y, s) belongs to C§(Qr) for each fixed (y, s) € @r, an integration
by parts in z gives

D(y,s) = ——//|A(ws) — A(w)| Ay dida.
Qr

Integrating over (y, s) € @y and estimating yield
| [[ pwoasas| < [[]] (1400 @)l + Gt ) At .t,5) de o sy,
Qr QrXQr

By changing the variables (z := x —y, 7 = t — $) and taking into account that w®,w € L' {(Q~),

\ / D(y,s)dsdy| < [[[[ 146 @00 br D100 (5} s
Qr

+ f / f / |AQw(z — 2, = 7)) a0 (DA s (2)] pro(7) dt dz dr dz

< MA@z el Aswrll@y + JA@Lr @) | Aswril oy sy < oo

Hence we have that D({-,-) is integrable on Q.
In a similar vain, one can also show the integrability of (y, s) — [f |w® —w|8¢ dt dz,
Qr

(¥, 8) ngsgn(’ws = w)V (@) (f{(w®) — f(w)) - Voo didz,
(y, ) HQ” sgn(w® — widiv,V(z)f(w)p dtdz, and (y,s) = Ryisc-

It remains to consider the integrability of the function
Qr\H 3 (y,8) — limgyo ff]Vm.A(wE)izsgn;?(A(wg) — A(w))¢ dt dz, but this follows from (4.6).
Qr
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We have by Lebesgue’ dominated convergence theorem and the first part of (4.3)

f/ (1““/ f V2 Aw Sgﬂ;:(A(wE)“A(w))qbdtdx) ds dy

Qr\H
P = lim /[[[ iv,,A('wEﬂ sgn, (Alw®) — Alw)\¢ dt dz ds dy.
i‘i.f} 7o
QT\GC)XQT
Whg)l fff/ |V A(w® )| sgny,( — A{w}) dt dz ds dy.
n
(RQe\F) = (Qr\H)

Let us now integrate (4.5) over (y,s) € Qr and (4.6) over (y,5) € Q¢ \ H. Adding the two
resulting inequalities yields

f/f / (1w — wldd + sgu(w” — w)[V(@)(F(wF) - f(w)) - VoAdw®)] - Vas

Qr XQr
—sgn(w® — w)divmV(m)f(w)qb) dt dz ds dy

f / f f (*“’E — w|d;$ + sgn(w® —w) [V(e)(f(wf) — f(w)) ~ Vo A(w®)] - Voo

(Qr\H)=xQr
(4.8) ~ sgn(® - w)div, V (2) f(w)$) dt dw ds dy
" ffff (1" — wldud + sgn(w® —w) [V (@)(F(w°) — F(w) - VaA@w?)] - Vad
HxQr

—sgn(w® — w)divmV(a:)f{w)qi) dt dz ds dy

> lim /f[/ |V Alw | sgn; (A(w®) — Aw))¢ dt da ds dy — Ryise,

70
(QT\H)x(Qr\H*)

where Ryise 1= [ Byisc ds dy and we have used (4.7).
Qr
Similarly, using the hyperbolic, parabolic entropy inequalities (3.1), (3.3) for the exact entropy

solution w = w(y, s} with k¥ = w®(z,t) and then integrating over (x,f) € Qr, we get

/ff lw — w®|8s¢ + sgnfw — ) [V(y)(F{w) — f(wf)) — VyA(w)] - Vyo

QrxQr
(4.9) — sgn(w — w)div, V(1) f(wf)ga) dt d ds dy
> lim f f / f |V, A(w) s’ (A(w) — A(w®))dt do ds dy.

40
{(QT\H)x (Qr\H)
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Using (4.3) and (4.4), we find that

- f/ffsgn(wg — W)V A(w) - Vb dt de ds dy

QpxQr
f[ff sgn(A(w®) — A(w))Vy A{w) - Vypdidz ds dy
Qr x(Qr\H=}
. frer ) 7 N o
= —lim jjjj sgn,, (A{w®) — A(w)) Vo Alw®) - V¢ di dz ds dy

(4.10) al0
QT x(Qr\H=)

m—hm /fff VyAlw) - Vo A{w®)sgn, (A(w®) — Aw))é dt dz ds dy.

QT X {Qr\H¢=)

= —lim ff/f VyA(w) - Vo Aw®)sgn; (A(w®) — A(w))é dt de ds dy.

0
{(Qr\3) x(Qr\JL7)

Similarly, again using (4.3) and (4.4), we find that

~ [ff/ sgn(w — wF)V, A(w) - V,p dt du ds dy

(4.11) QrxQr

ni0
(QT\I) x(Qr\H*=)

Using the second part of (4.2) when adding (4.8) and (4.10) yields
] (1 = wiges+ senw® —w)[v @) () = fw))] - Vi
QrxQr
— sgnf{w® — w)div,,V(:c)f(w)d)) di dz ds dy

> lim /ff[ (19400 -V, A(w) - V. A@w))

(Qr\FHE) x(Qr\H)

(4.12)

x sgn, (A(w®) — A(w))¢ dt dz ds dy — Reysse-
Similarly, adding (4.9) and (4.11) yields
J[][ (1= w106 + sentw - w9 [V @) (1) - £07)] - 9,0

QrxQr
— sgn(w — ws)divyV('y}f(wE)qb) dt dx ds dy
> lim f / / [ (19, 4@ - Ved(wr) -y Aw))

740
(Qr\FH=) = (Qr\F}

(4.13)

x sgny, (A{w) — A(w®)) dt dz ds dy.
Following Karlsen and Risebro [12], we write
sgn(w® — w}V (z)(f(w®) — f{w)) - Voo — sgn(w® — widiv.V(z)f(w)é

= —lim ///f VaA(wr) - VyA(w)sgny (A(w) — A(w®))¢ dt dx ds dy.

11

= sgn(w® —w) (V(@)f(w®) ~ V{y) f(w)} - Voo + sgn(w® — w)dive {(V () f(w) — V(=) f(w)) 4],

sgn(w — w)V (y)(f{w) — f(w")) - Vy¢ — sgnfw — w)div, V{y) f(w")¢

= sgn(w® — w)(V(2)f(w’) = V({y)f(w)) - Vyé — sgn(w® — w)div, [(V(2)f(w) - V() (")) 4].
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When adding {4.12) and (4.13), we use the second part of (4.2) and the identities
sgn(~r) = —~sgn(r) a.e. in R, sgny,(—r) = sgn; (r) a.e. in K.
The final result takes the form
(4.}_4) - f/f |w5 - w|(6t¢ + 63(?5) dtdrdsdy < Rgjes + Rviﬂc + Reony < Evisc + Reonv,

Qe xQr

where the expression for 8,¢ + 8,¢ is written out in (4.2), Reony = [[[] Icony dt dz ds dy,
QrxQr

Loony 1= sgu(w* —w) (diva [(V () () — V(@) f())¢] — div, [(V{@) S (") = V() f () 6]),
and Rgjss := — lim I [ Vo A{w®) ~ VyA(w)I2sgn;? (A(w®) — A(w)) ¢ dt dz dsdy < 0.

MQr\3E) < (Qr\I)
Having in mind the first part of (4.2), we get by the triangle inequality

- f f f 0 (2, £) — w(y, )| (B + 5 0) di dz ds dy < e so + Ruoso + R,
Qr xXQr
where

Rupe oy 1= — ff]f [0 (2, 1) — w(@, )| [Pao (t — ¥) = paalt — 7)]wr(® ~ ¥)pre (t — 5) dt dw dsdy,

QrxQr

== [[[[ Wot@,) = 00 Dl[bas(t = ) = pagt = en(@ ~ Vot = 9 e ds

QrxQr

Rusii= = [ [[[ 10@0,8) = 000,8)][pas(t = ) = pan 6 = 7)) — v}t = 5) dt s ds dy.
QrxXQr
First of all, a standard L' continuity argument gives lim,, 10 B = 0. Next,

Hm Ry » = ./Rdf Iw z,7) — wly, )| — |w(z,v) - wly, )|)w,~($m y) dz dy

Oco 0
(z=m-y)
< s ) — (e e) dy s
R4 JRE
< lwle(o,T;Bv(Rd)) [md jzlwr(z)dz < Cyry
where C1 = |w|pe(o,7;8v(r4)- Finally, we have
hm Bye / |w® (z,7) — w(z, T}|dw—f |w{z, v) —w(z, )| da.

Summing up, from (4.14) we therefore get the following approximation inequality

70,00

(4.15) [ |wf(z, ) — w(z, ) de < / |w® (x, ¥) — w(z,v)|dz + Cir + lim (Rvisc + Rconv).
R R4

We start with the estimation of Ryisc, which can be done as follows:

B <3 J[] 10260 o 0102in 5 = (¢~ 5) dt dadsdy

lleTxQT
(4.16) %_i‘fz f /R fR 18,07 Bt (m — )] iy it
i1 v d d

d o
< sK/er [ |8m,.w5|dtdsc S eTK[r|w®|peo(o, 1BV (R < CaTefr,
i1 /¥ JRE
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where K = fmdié'(crﬂ do and Oy 1= K|w®| Lo (0,7;8vR)-
Before we continue with the estimation of Reony, let us write Ioony = I1,, + I2,,,, Where

Liony = sgn(w® —w) [(V(y)f(w) = V(@) f(w)) - Vap — (V{2)f(w®) = V{y) f(wF)) -quf’} )

2. = sgn{w® —w) (divyV(y)f(wE) - diva(:r:)f(w)) o,

50 that Reony = Riony + Rionys Beony = JSff Tlony dtdxdsdy, R%,., = [fff IZ ., dtdzdsdy.

QrxQe Qe xQr

>y

Let us start by estimating R},,. To this end, introduce F{w®, w) := sgn(w® —w)[ f (w®) — f(w)]

conv:®

and observe that since Vy¢ = ~ V¢,
R = ff/f ((V(m) - V(y))F('wE,w)) Voo didedsdy.
QrxQr

The function F(-,) is locally Lipschitz continuous in both variables and the common Lipschitz

constant equals Lip(f). Since w* € L®(Qr) N L™ (0,T; BV(R?)), V,F(w*,w) is a finite measure

and [[|8;, F(wf,w)|dtdz < Lip(f) [[|0:,w|dtdz, i =1,...,d. Integrating by parts thus gives
Qr Qr

Blon == [[[ [ (v2V @)@, 0 (0r (o ~ 0ot - 9) de dadsdy

?TXQT |
RY,
][ @ =V - VaF @, whbes o — g)pet — s) dedsds dy.
@TXQT )

For Rl . we calculate as follows:

d
B2z <1i0) Y [[[[1Vi@) = Vi) [0 [ B @ = )t = ) it o dy

=10 X Qo

d T
LS B Vi(z) = Vi(y)| [8s,° | wr (z — y) d dy dt
103 [ [, ) -] [0m e
d pr
{z=z—y) ..
Zu V; —Vily)] |8, 0" ) |wn(2) dz dy dt
(DD [ [, [ 2) =] oo+ 2,0 entz) dy

4 r
<tp0pNY [ [ [ 1210 0 2 O () sy

< TLip(V)Lip{(f)|w® |1 0, 1:8v (&) '[Rd |#|wy () dz
< rTLip(V)Lip(f)|w®| oo, 8v (R < CalT,

where Lip(V) = max;—,.. ¢ Lip(V;) and C3 := Lip(V)Lip(f)|w®|p=(o,1;8v(r4))- Note that we
have used the Lipschitz regularity of the velocity field V' (see (2.1)) to get the desired result.

Regarding the term B2, let us first rewrite it as

Rl = f f [ f div V (@) F (0 , )t (e (2 — ) (¢ — 5) dt dz ds dy

?TXQT

"

~
2,1
Rcémv
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+ f/f/ sgn(w® — w) (divy V{y) — div, V(z)) F(w )a, (B)wr(z — ¥)pr, (t — s) dt dz dsdy .
QrxQr

o

o

2,2
Riine

We estimate R22_ ag follows:

conv

d
B2 < 1@ Namian) D [ [ [ [10070) = 0uiVit@) g B (@ = )it = 5) d o dsdy

o]

TRTXQT

0 S
= Wi 8y Vily) — 8a, V(@) |we(z — y) dz dy dt
16 imon 3 [ [, [ J00750) = 2be@fonte ) oty
d o
(z=2z—y)
= Vg oo 8, Vily) — 0,.V; -(2) dz dy dt
1@ m@n 3 [ ., [ Jou¥it) 075t + A onte) azt

d
< TY £ 0| z=(r) 3100, Vi gy g [R Jzlon(z) dz < i,

i=1
where Cy = ||f(w")||pe(gr) Zfﬂl|8,;‘.V|BV(Rd). Note that we have used the BV regularity of
8., V,i=1,...,d, to get the desired result. Since Rl;. = RZ!_ . we end up with
(417) Reonv = Rclzenv + Rgcmv < CsTr, Cy = Iﬂa.X(Gg, 04)
Set (g = max(Ch, Ca, Cs). Then from {4.15), (4.16), and (4.17), we get

/ |w®{z, 7) — w(z, 7)| dz
Rd
T

(4.18)
< /Rd |w(z,v) — w(x,v)| dz + Cs ((1 +T)r + ?T) 2 s ((1 +T)r + 2) ‘

By choosing r = +/T'e, we immediately obtain
(4.19) [ bt () —wlz, 7)ide < CevTe,
kd
for some constant Cr independent of 2. To obtain (2.5), we simply integrate (4.19) over 7 € (0,T).
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