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EULER’S ELASTICA AND CURVATURE BASED INPAINTINGS
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Abstract. Image inpainting is a special image Testoration problem for which image prior models
play a crucial role. Fuler’s elastica was first introduced by Mumford [21] to computer vision as a prior
curve model. By functionalizing the elastica energy, Masnou and Marel {19] proposed an elastica
based variational inpainting model. The current paper is intended to contribute to the development
of its mathematical foundation, and the study of its properties and connections to the earlier works
of Bertalmio, Sapiro, Caselles, and Ballester [2] and Chan and Shen [, 7]. A computational scheme
based on numerical PDEs is presented, which allows the handling of topologically complex inpainting
domains.
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1. Introduction. Among museum conservators and restoration artists, inpaint-
ing refers to the practice of retouching or recovering damaged ancient paintings [9, 30].
The goal is to remove the cracks or recover the missing patches in an undetectable
manner.

The term of digital inpainting was initially introduced into image processing by
Bertalmio, Sapiro, Caselles, and Ballester [2]. The authors were the first to apply the
PDE method to inpaintings, by introducing their innovative construction of a third-
order PDE. Equally important in [2] is that the authors demonstrated the broad
applications of digital inpaintings in film restorations, text removal, scratch removal,
and special effects in movies. The same group of authors have also lately developed
a variational inpainting model based on a joint cost functional on the gradient vec-
tor field and grey values [1]. An earlier variational inpainting mode! was studied by
Masnou and Morel [19] in the context of disocclusion in computer vision (also see
the coming sections). Recently, Chan and Shen proposed the total variation (TV)
inpainting model {7] and a new PDE inpainting model based on curvature driven dif-
Jusions (CDD) [6]. In [7], Chan and Shen also introduced interesting new applications
in digital zooming and edge-based image coding schemes.

Inpainting is essentially an interpolation problem. What makes image interpo-
lation highly non-trivial is the complexity of image functions as discussed in more
details in [7]. A simple but often sufficlent mathematical model for (non-texture)
images is the BV (bounded variation) space, where one of the most crucial low-level
visual features-edge, is legalized (see Rudin, Osher and Fatemi [27, 28], and Cham-
bolle and Liens {4], for examples). Yet, in both the approximation community and
that of numerical analysis, as far as we know, there has been very little work on
interpolations in BV spaces. It is partially because that such problems have rarely
emerged in the literature outside image analysis, and perhaps more importantly, that
the problem itself is not well-posed. The latter is much easier to see from a simple
1-D example. Imagine we know the values (or even the derivatives) of a function f
at a — h and o - h. If f is smooth, then as h — 0, we can apply smooth interpolants
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such as Lagrange’s and Hermit’s to infer the values of f on (a — h, e+ h) with certain
guaranteed degree of precision. But for a BV function f, ali such smooth interpolants
fail o work properly no matter how small & is, since a “widthless” jump can always
occur in {a — h,a + k). This is the specialty of BV functions: by the TV (total vari-
ation) Radon measure, a single point is allowed to have nonzero mass, which makes
the corresponding interpolation problem ili-posed generally.

The good news is that images as BV functions are not too intractable. ¥ach
image is a 2-D projection of a window of our 3-D world, in which individual objects
often have their geometric or surface reflection regularities. Such regularities weaken
the ill-posedness of the inpainting problem.

Given an image, if we partially cover it up with a piece of paper of moderate size,
and ask a person to guess what is behind in the original image, almost surely, everyone
will come up with a “rational” best guess. For example, if a green apple was partially
occluded by the paper cover, then one tends to estimate the incomplete boundary
first, followed by an inpainting with the green color inside. All these decisions are
realized by best guesses, or more scientifically, by the Bayesian inference [10, 14, 22].
The two ingredients of Bayesian inference are the prior model and date model. The
data model is simple for inpainting problems: the available data is simply a part of
a complete image that we try to restore. Thus the prior model plays a crucial role
in our infering process or decision making. For the thought experiment mentioned
above, the a priori knowledge of the shape and color of an apple is helpful for a person
to make a meaningful inpainting.

In order to develop an inpainting model that applies to general problems, on
one hand, cne should never rely on the prior model of a specific class of image ob-
jects (such as apples), and on the other hand, the model must integrate into it the
above-mentioned regularities of image objects to better condition the ill-posedness.
The Rudin-Osher-Fatemi’s TV (total variation) [28] and Mumford-Shah’s smoothest-
object-and-shortest-edge models {23] are two well-known general prior maodels thas
have been widely applied in image restorations and segmentations. As Chan and
Shen pointed out in [6, 7], for the inpainting problem, they are less suitable in some
large-scale situations when they fail to realize the so-called Connectivity Principle and
create visible corners due to their straight line connections.

In the current paper, we study a variational inpainting model that is based on
a prior model for plane curves — Euler’s elastica. The gap between a prior model
for curves and that for images is bridged by the level sets (or isophotes): generally, a
curve prior model can always be “lifted” to an image prior model by being imposed
on all the isophotes of an image {similar to the co-area formuia in the theory of BY
functions [12]). Indeed, this is how Masnou and Morel first proposed this model for
image inpaintings in {19]. Our current paper is intended to study the mathematical
foundation and properties of inpainting models based on elasticas and curvatures, the
connections to the existing works on PDE or variational inpaintings, and construct
schemes that are based on numerical PDEs, instead of Masnou and Morel’s lincar
programming algorithm {19]. From the computational point of view, numerical PDE
is a more flexible approach for inpaintings in that it frees one from laboring on edge
detection or pixel coupling along the boundaries, and also that it puts no topological
restriction on inpainting domaias [19].

Euler’s elastica was first seriously introduced and studied in computer vision by
Mumford [21] as a prior curve model. They were employed in disocclusion programs
as an edge model to smoothly connect occluded edges and T-junctions [24], thus used
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as nonlinear splines as first discussed by Birkhofl and De Boor [3] in approximation
theory.

The paper starts with a brief introduction to Euler’s elastica, and Mumford’s
Bayesian rationale for it being a curve model {Section 2). Then as in classical ap-
proximation theory, in Section 3, we first study the generic (non-texture) local image
models in order to study inpainting as an interpolation problem. By the method of
moving frames, we are able to inpaint or interpolate the missing T-junctions or corners
inside the inpainting domain based on the elastica interpolants. We then explain the
approach that leads to Masnou and Morel’s algorithm on individually “engineering”
isophotes {19]. A level-set [26] kind of idea then formally “lifts” this isophote based
model to a variational functional that acts directly on gray level images. The rest of
the paper is devoted to the mathematical analysis and understanding of this elastica
based variational inpainting model.

In Section 4, by introducing the concept of weak curvature of a general BV fune-
tion, we legitimize the functionalization of the elastica energy in BV spaces. The
direct (variational) method for the elastica inpainting is generally difficult due to the
lack of classical fine properties (such as convexity and semi-continuities}. But for
the extreme case of TV inpaintings, we are able to establish rigorously the existence
theorems based on the theory of functions with bounded variations. We also dis-
cuss why the non-uniqueness of the solutions to a general inpainting model should
he somehow appreciated instead of being cursed. In this main section, we also prove
that the curvature power p in Masnou and Morel's p-elastica model must stay below
3 in order to allow the existence of a generic stationary pixel, namely a pixel xy,
where Vu(zg) = 0, yet the Hessian matrix H,{zy) is non-degenerate. The last part
of the section discusses various relaxation schemes for the companion constraints of
the inpainting energy.

In Section 5, we derive the formal Euler-Lagrange equation for a general curvature-
based inpainting model. The most interesting and important result is on the behavior
of the flux field of the energy. It turns out that the flux field and its associated diver-
gence form perfectly unify the earlier work of Bertalmio et al. [2] on transportation
based inpaintings and that of Chan and Shen on CDD (curvature driven diffusion)
based inpaintings {6]. We conjecture that transportation and diffusion are the two
universal infinitesimal mechanisms for any low-level inpainting schemes.

Numerical schemes and computational examples consist into the last section.

we wish that the current paper can inspire much more works from our community
in the near future.

2. Euler’s Elastica and its Bayesian Rationale. A curve I' is said o be
Euler’s elastico if it is the equilibrium curve of the elasticity energy:

Eulvy] = /(a +bk?)ds, {2.1)

where ds denoctes the arc length elemnent, x(s) the scalar curvature, and g, b two
positive constant weights. Extra constraints may include the positions and normal
directions of the two ends. Euler in 1744 obtained the energy in studying the steady
shape of a thin and torsion-free rod under external forces {16].

Since both the arc length and curvature are intrinsic geometric features of a curve,
the elastica energy naturally extends to the curves living on a general Riemannian
manifold M. For example, if M is embedded in a Euclidean space RV, then a curve



4 Chan, Kang and Shen

~ on M can be expressed by the embedded coordinates:
s = @(8) = (z1(s),--- ,zn(s)).

Then # = dZ/ds is the tangent, and [[.d#/ds = ril defines the curvature, with J];
representing the orthogonal projection from TR to Tz M. For a general Riemannian
manifold M, the intrinsic derivative di/ds is defined by the Levi-Civita connection or
covariant derivative (see Chern et al. [8] for example). The attention to the extension
of elasticas onto a general manifold is motivated by inpainting problems on arbitrary
surfaces in R?, for example, to inpaint an incomplete image on the surface of a Coke
can in computer graphics.

By calculus of variations, it can be shown from the energy formula (2.1) that an
elastica must satisfy

26" (s} + K*(s) = %n(s).

For example, Mumford gives a detailed derivation in [21]. More generally, if the
elastica lives on a Riemannian surface, then there will be an extra term due to the
curving of the surface:

2k (5) + K2 (s) + 2G(8)k(s) = %n(s),

with G(s) denoting the Gaussian curvature of the surface. More studies in elasticas
on general Riemannian manifolds can be found in Langer and Singer [15].

Elastica was first seriously studied from the computer vision point of view in
Mumford’s paper [21], whose introduction section provides a delightful view on the
mathematical history of Euler's elastica. According to {21}, the key link between
elastica and computer vision is founded on the interpolation capability of elasticas,
as initially proposed by Birkhoff and De Boor [3]. Such “nonlinear splines” [3], like
classical polynomial splines, are useful tools to complete the broken or occluded edges
of objects in the 2-D projection of a 3-D scene {24].

A remarkable feature of elasticas revealed by Mumford [21] is their Bayesian
rationale, which positively supports the role of elasticas in image and vision analysis
as an interpolation tool. It also sheds light on the choice of “2” for the curvature power
in the energy formula (2.1). Here we present a slightly polished version of Mumford's
argument. This Bayesian rationale also supports the idea of applying elasticas to the
inpainting problem.

Consider the random walk of a drunk initially staying at the origin of a 2-D
ground. Assume that each step is straight. For some given fixed integer N, we try
to understand the distribution of all possible N-step polygonal walks. The moving
characteristics are
(a) Let hy denote the step size of the k-th step. Then {hy : k=1,2,-- , N} are

i.i.d of exponential type Aexp(—Ah) for some positive mean 1/A.

(b) Let 6; denote the orientation of the k-th step, measured by the angle between

the walking direction and the z-axis, and define fy = 0. Let Afy = B, — 81

(k =1,2,---,N) denote the turn made at the k-th step. The basic assumption

is that, at each step k, the larger the step size by is, the more uncertain the turn

A#y, will become. Precisely, Afy, is a Gaussian of N(0, hro) for some commonly

shared deviation o. Yet

{ﬂkZAGk/hk . k=1,2,--- ,N}

is an independent set and also independent of all the fy’s.



[y

BEuler's elastica and curvature based inpaintings

Thus, an N-step polygonal walk « is completely determined by the data
{hy, -+ hn}U{Af, -, AbN],
and the likelihood is quantified by
AVexp{=Alh +--- + hy))y dhy <+ dhy

x(v2ra) ™ exp (—5—35[(&91/}11)2 + 4 (AGN/hN)2]> dng ---dny.

Thus, up to a multiplicative constant, the probability density function is exactly

1 ]
exp (—)\L(W) - F“fizﬁv) )

where L denotes the length and {j<*|l, the discrete analogy of [, k®ds. Therefore, the
minimization of the elastica energy (2.1) with a = A and b = 1/{2¢?) is equivalent
to the Maximum Likelihood (ML) estimation of such random curves. This is the
Bayesian world view hidden in elasticas, which also rationalizes the elastica idea for
image inpaintings.

REMARK 1. Notice that the drunk walking model presented above does not come
from the discrete sampling of Brownian motions, since for the latter (in 2-D), h? (not
h) is exponential and the turn A8 is uniform along the unit circle. The dependence of
the turns on the step sizes makes the paths smoother than the sampling of Brownian
motions, which makes the model a valuable curve model in computer vision, where
reqularity is important. Figure 2.1 shows a computer simulation of the paths.

Fia. 2.1. Some sample paths for the drunk’s walking.

3. Local (Non-texture) Image Models and Elastica Isophotes.

3.1. Generic local {non-texture) image models. To model inpaintings (of
non-texture images), it is important to first start with local and small inpainting do-
mains. Focusing on locality is a common practice in numerical mathematics, where
from differentiation, integration, interpolation, to optimization, most well-known nu-
merical schemes (such as the Runge-Kutta schemes, Simpson’s integration rule, and
the Newton-Raphson searching strategy for zeros or valleys) are all inspired by the
local models of the target functions, such as the linear model, parabolic model, and so
on {13, 29]. Digital inpainting, after all, is the numerical interpolation of 2-D images.
Therefore, i$ is crucial to first understand what an image looks like locally.
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Approximations 10 Local hmages {II) Approximations to Local Images (1)
{by elusticas) by straight lines)

ol
®

Four Classes of Lacal images
) E
O
@)

Fic. 3.1. Lecal {non-tezture} image models and their approzimations

Imagine that we have a small aperture, say, a round plain lens with a small radius
r, and we only focus on the part that is captured within when it is moved over a 2-D
gray scale image. Suppose that the image contains mostly man-made (non-texture)
objects, and their characteristic scale > r. What kind of (local) image patches will
be observed most frequently?

They can be grouped into four classes, labeled by “H,” “E,” “C,” and “T” (see
Figure 3.1).

(a) Class H. A local image patch belongs to this class if and only if it falls within the
homogeneous region of an object. Such a patch has very little intensity variation.

(b) Class E. This occurs when the aperture captures a fraction of the smooth edge
between two objects or homogeneous regions.

(c) Class C. Like class E, but the aperture captures a recognizable corner. Corners
are also a universal feature of man-made objects, from tables, windows, books, to
posters.

(d) Class T. This is the case when the aperture captures a T-junction. T-Junction
is an important cue for occlusion and therefore the perceptual reconstruction of
object orders in the lost dimension of range [24]. A local T-junction patch is
characterized by three homogeneous gray scales uq,us, and uz, and two smooth
edges — one meets the boundary at its two ends while the other at one end only
due to occlusion.

Notice that homogeneous regions are 2-D objects, edges are 1-D objects, and both
corners and T-junctions are isolated 0-D objects. Therefore, heuristically, in terms of
the probability (or frequency} of being observed through a small aperture, we have
the following relation:

Prob{H) » Prob(E) » Prob(C) or Prob(T).

Of course, the probabilities do not necessarily represent their perceptual importance
in terms of vision inference. In fact, it seems that often the scattered singular features
can generate strong response from the vision system and contain crucial perceptual
information {such as depth}.
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Notice that class C is indeed very much “man-made” like its ancestors in our 3-D
world, in the sense that a local engineering (or perturbation) of the corner can easily
change a class C patch to a class E patch. In this sense class C is unstable.

3.2. Local edge interpolation by elasticas: moving frames. Suppose an
image wg has a local patch D missing, and we try to inpaint uQ| p based on the
available information surrounding D.

By checking the boundary (or nearby) data along D, we can easily determine
which class u0| p belongs to: class H, class E, or class T' {without a priori knowledge,
one can never tell apart class C from class E based on the boundary information
only). The existence of a corner or she exact configuration of the T-shape inside
the inpainting domain will need extra information or requires additional models and
algorithms (especially for the coupling of the three end points in the T-junction case).
For the moment, fet us assume that eventually we do know the right class that uol D
belongs to.

A first level of approximation for each class of patches will be based on the straight
line curve model (refer to the upper right panel in Figure 3.1). For a class H type, we
can average the available boundary pixel values and inpaint ug| p by this mean value
¢. For a class E type, we connect the two edge ends on the boundary by a straight tine
and inpaint the two objects u; and us by their boundary mean values ¢; and c;. For a
class C type, we make two separate straight shoots from the two boundary end points
into the inpainting domain. The orientations follow their cue left outside D). The
two straight lines generate a corner and also segment the patch [ into two objects
wy and wg. Then u; and uy are inpainted by their boundary mean values. For the
last class T, we connect the coupled two boundary end points by a straight line, and
shoot from the third one straightly toward the inside of D, as for class C. Then the
three segmented objects uy,uy and u; arve inpainted by their boundary mean values
c1,cy and e3.

A second level of approximation is based on the elastica curve model {the up-
per left panei in Figure 3.1). That is, we shall interpolate the boundary end points
by elasticas, instead of siraight line segments. We can also improve the inpainting
accuracy by approximating the isophotes by elasticas in the resulting segmented ob-
jects, instead of the constant approximations. Therefore, we need first to inpaint the
missing edges (smooth, corner, or T-junction) to reduce class E, C, T to class H.

Along the boundary, each end point can be represented by (p, i), with p denoting
its position and 7 the normal to the edge, which can be computed from the available
image outside the inpainting domain D.

(a) For class E, we employ the elastica I" that satisfies the boundary conditions (p1,71)
and (ps,7i2) to inpaint the missing smooth edge.

(b) For class C, to inpaint the corner, we take a moving frame approach. The corner
is represented by an affine frame (p; @}, %), with p denoting its unknown position,
and 7} and 7} the two unknown unit normals to the smooth edges coming from
the boundary end points (p1,71) and (pe,7iz). For each i, the energy (2.1) of the
elastica that meets the requirement at {p;,7;) and (p, ;) is denoted by

Ey({pi, 7is), (p1 ﬁi))

Then the corner is inpainted by a joint optimization:

min By ((py, ), (p, 1) -+ Ea{(p2, o), (P, 713))- (3.1)

(piFY 7l
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For example, if in the elastica energy (2.1), we choose a large ratio b/a (or a =0
for the extremal case), then the solution to (3.1} shall be very close to the straight
line shooting method mentioned in the first level of approximation.

{¢) For class T, we first inpaint the two coupled end points by an elastica I, just as
what has been done for class E. To inpaint the occluded edge from the clue of the
third boundary end point (ps,3), we take again the the moving frame approach.
Let (p,7}) denote the junction position and the normal direction of the occluded
edge. Then, the junction inpainting is completed by solving

in Bz ((ps, fia), (P, 13))- (3.2)

g
Here an admissible p must stay on the disoccluded edge I'.

3.3. Local inpainting by individually engineering the isophotes. After
the feature edges have all been interpolated, all the four classes of local image inpaint-
ings are essentially reduced to the inpainting of class H, the homogeneous patches.
Such patches can also be inpainted by having the broken isophotes interpolated by
elasticas one by one from the boundary information. This is exactly the idea under-
lying Masnou and Morel’'s dynamical programming algorithm [19}.

Generically, one can assume that the missing smooth patch u0| p I8 regular in the
sense that it lies close to a regular point where Vug is non-zero (or by first applying
a small step of Gaussian diffusion). Thus the isophotes of ug on I} are well defined
and distinguishable, and each T is uniquely labeled by its gray level ug = A.

The trace of each T, on the boundary tells the coupling rule of boundary pixels.
Suppose pp, pa € O share the same gray level A, and the normals computed from the
available image data outside I} are 7, and 7. Then we inpaint the A-isophote I'y by
an elastica I'}:

= argmin ] {a+ bs*)ds = argmin Ea[val, (3.3)
pab{(prin )i (p2,72)) va Yl ((p1aiia ) (P2, fiz)}
where b means subjecting to the (boundary) conditions, i.e., va goes through p; and
pe, and ¥, L 7 at the two ends.
As A varies according to the available boundary data ug, (3.3) gives a family of
(and theoretically infinitely many) elasticas. On the other hand, if we denote this
bundle of elasticas by

F={Th s 0< A< 1),

then it is easy to see that F’ is also the minimizer of the following energy for all
boundary admissible curve bundles F = {v, : 0 <y < i}

Bl = [ Bl dr (3.4)

or more generally,

1
Eu[F] = fa w(N) Ealm] d, (3.5)

with some positive weight function w{)) (whose influence in applications will be ex-
plained later). Although the last two formulations seem to show hopes of engineering
the elastica interpolations in a mass production manner, there still exist two potential
problems due to the lack of communications among the elasticas:
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(1) Problem 1: two different elastica interpolants I'y and I', with A # p can meet
inside the inpainting domain D, while the original two isophotes never.

(2) Problem 2: even putting on hold Problem 1, generally, it is not guaranteed that
the elastica bundle

F={T\ : 0<A<1}

does “weave” the entire inpainting domain D and leaves no “holes.” Thus, the

inpainting can still be incomplete.

These issues have been taken care in Masnou and Morel’s algorithm [19]. Another
perhaps more convenient alternative approach is to work with the level-set function
wp instead. (The similar philosophy has now made the level-set method of Osher and
Sethian {26] a great success in the numerical computations of various interface motion
probiems.) An admissible curve bundle F = {vx}x, which not only satisfies the
boundary conditions, but also avoids the above mentioned two problems, is uniquely
and fully characterized by an inpainting function up that is “tangent” to ug along 0.
Conversely, working with up instead of the individual isophotes automatically avoids
the above two problems. Thus, first we need to translate the elasticity energies (3.4}
or {3.5) into ones that are directly applicable to the inpainting function up.

4. The Elastica Inpainting Model.

4.1. The functionalized elastica energy. Let w = up be an admissible in-
painting. Then along any isophote vy : u = A, the curvature of the oriented curve is

given by
. Vu
s=vi=v ().

as now well known and frequently applied in image analysis [20]. On the other hand,
let dt denote the length element along the normal direction 7 (or along the steepest
ascent curve), then we have

ax

Pl iVu| or d\=|Vu|dt.

Therefore, the integrated elastica energy (3.5) now passes on to u by

Ju] = By, F) (4.1)
1
:f w()\)f (a + br2)ds dX (4.2)
0 TaIU=A
_ [ vu\* ;

- fD wu) (a +b (v : %)2) |Vul de, (44

since dt and ds represents a couple of orthogonal length elements. Now the energy
is completely expressed in terms of the inpainting u itself. Notice that this formal
derivation is much alike the co-area formula for BV functions {12].

The weight function w()) can be set to 1. In applications, we can also define it
by looking at the histogram h(\) of the given image. (h{)\} denotes the frequency
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of pixels with gray level X.) The histogram of an image typically consists of several
“humps,” each of which corresponds to an object. Since perceptually the regularity
of the boundaries (or edges) defining the 2-D shapes of the objects is most sensitive
to human observers, we may weigh high along such edges whose gray values typically
lie near the “valleys” of the histogram. Therefore we may choose the weight function
in the form of

w(A) = W(1—h(\),

with W = W (h) being a suitable positive and increasing function.
The functionalized energy J{u] together with suitable boundary conditions seem
to formulate naturally an inpainting model. But we need to further clarify its meaning.

4.2. Admissible inpaintings and the weak form of curvature. From the
moment on, let us consider the functionalized Euler’s elastica energy

Jo[u] = [D (a +b (V - %)2) iVu| dz, (4.5)

with the conditions that
u|Q\D = uO}Q\D, / |Vu] =0, and |&(p)] < oo ae. alongdD, {4.6)
ap

where a.e. is in the sense of Hausdorff measure.
We have assumed that the original complete image uy (typicailly on a square
domain ) belongs to BV{{l) and has the property that

faD V) =0, (4.7)

in the sense of Radon measure [ |Vug|. Under such an assumption, the second bound-
ary condition on u follows naturally. Another more explicit way is based on the troce
of BV functions [12]. Let v~ and u™ denote the interior and exterior traces of u along
HD with respect to ). Then we have:

f |Vu) :f |ut — w7 dHy.
8D ap

Thus the second condition is equivalent to the continuity condition

v o=ut = ug, a.e. along 8D by dH,.

We shall call assurption (4.7) on the original complete image the feasibility con-
dition for ali low-level inpainsings (i.e. inpaintings which do not depend on global
feature recognitions or learning). It requires that there is no essentiol overlapping
between the boundary of the inpainting domain D and the edges of 2-D objects in
an image. Imagine the worst opposite situation. Suppose we have an image 4o which
pictures a lady’s face with clearly outlired red lips, and we now create the inpainting
domain D by cutting the image just along the outer edges of the upper and lower
lips. Then the boundary of D coincides with the edges of a 2-D object, and we have
an entire object missing! Any inpainting scheme, without the help of more advanced
knowledge (such as face recognition), will just paint the missing domain based on the
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surrounding pixel values and create a human face without a mouth. A low-level in-
painting, after all, is not expected to create a new object, but just to comnplete objects
based on the hints they left outside the inpainting domain.

Finally, the last condition in (4.6) demands finite curvatures along the inpainting
boundary. Therefore a sudden turn of isophotes is not permitted along 8D, and the
condition is thus a first order continuity constraint.

Despite that the quantity “curvature” for a BV function has been used for both
the elastica energy and boundary condition, its meaning has very much stayed at a
formal level, since an average BV function lacks the necessary regularity for discussing
curvatures in the ordinary sense.

Therefore we introduce the concept of weak curvature, which may not be the oniy
possibility of generalization, but seems to be general enough to serve image analysis.

Suppose u € BV{D). Then

Ay = / |Vul

is & Radon measure on D). Recaill that the TV norm is defined in the distributional
sense:

f IVu|=  sup f wV-gdz,
D geC{D,B:) ¥ D

where B, denotes the unit bal! centered at the origin in R?. Let supp(d,v) denote
the support of the TV measure. Then for any p € supp{d.v), on any of its small
neighborhood N,

duu(Np)ﬂf V| > 0.

Ne

Let p be a fixed radially symmetric non-negative mollifier with compact support and
unit total integral, and set (for 2-D}

1 T
Po = ;p (;) and g = pg * U

Then we define the weak absolute curvature &(p) of u at p by

v () )] o

where for those o’s which give {Vu,(p)| = 0, we define V - (Vu,/|Vu,l) to be co.
Finally, for any pixel p outside supp(d,r), we assign 0 to A(p), since u is a.e. a
constant near a neighborhood of p. Thus the weak absolute curvature is well-defined
everywhere for an arbitrary BV function.

There are two important situations in image analysis in which the weak curvature
is indeed the ordinary isophote or edge curvature for p € supp(d,v):

PROPOSITION 4.1. Suppose u is C? near p, and Vu(p) # 0. Then &{p) = |x(p)i.

Proof. Assume that the mollifier is supported on the unit ball B;. From the
definition of convolution

%(p) = limsup

g0

to(g) = po *ulg) = [B p(y)ulg + oy) dy,
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it is easy to see that there is a small neighborhood N, and some positive number
a, such that u.{q) is C? over (0,q) € {~a,a) x Np. Since Vu is continuous and
non-vanishing at p, we can further refine N, and a, so that all Vu(g -+ oy) (with
{0,q,%) € (—a,a) x N, x Bi) are concentrated enough around Vu(p). Then thank
to the averaging property of the mollifier, all Vu,(¢) = (Vu),(g) are non-vanishing,
which makes

iz {g) = Vuo(a)/|Vus ()]
C! on (—a,a) x Np. Then

Ko {q) =V -1ig(q)

is well-defined on N, and continuous in o, especially, at p,
|k(p)| = lim |kq(p)| = &(p).
g—+0

(B

The second case is when p lies on an intensity edge between two objects.

PROPOSITION 4.2, Suppose an oriented curve segment 7y i5 @ C? sub-manifold in
D. Assume that near a given pizel p € v, to one side of v, u = c¥, and to the other
side, u = ¢, two constant gray values. Then k(p) = |k(p)}.

Proof. Since curvature is a second order local feature, we can replace v near p by
the curvature circle with radius » = 1/|&(p)} and center g = p — 7, where 7 is one
of the unit normal vectors at p. Then both the data (¢™,¢™) and the geometry v are
locally rotationally invariant (with respect to the center) in a neighborhood of p. So
is 1. Since the mollifier p is radially symmetric and compactly supported, as long as
o is small enough, u, = p, *u must also be locally rotationally invariant with respect
to the center, which means locaily near p, v is also an isophote of u,. Thus under the
same orientation of -y,

ke (p) = K‘(p)'»

especially, &(p) = lim, |k, (p)| = |&(p)|. This completes the proof. O

One useful property of £ which can be proven easily is its invariance under linear
scalings of the gray levels. Let K7(p) denote the weak curvature of a function f at p.
The following simple property will be used later.

PROPOSITION 4.3. Let u € BV(Q) and v = a + bu for some constants a and
b 0. Then for any p € Q, Ru(p) = Ru(p).

With the help of the concept of weak curvature, the functionalized elastica en-
ergy {4.5) can be rigorously defined. A BV function u is said to be admissible if

R € Lao(D,dyr).

For all such functions, the generalized elastica energy

ol = fD (0 + bR)duv (4.9)

is well-defined and finite. Together with the boundary conditions {4.6), it defines the
so called elastica inpainting model.

The elastica inpainting model is difficult for the existence and uniqueness analysis,
due to the non-convexity of the energy and the involvement of curvature. However,
there is indeed a special, simple, yet very useful case when one can carry out the
analysis successfully. This is the TV inpainting model studied earlier by Chan and
Shen [7}.
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4.3. The TV inpainting model of Chan and Shen. The TV inpainting
model of Chan and Shen [7] is an extreme case of the elastica inpainting when one
weighs highly against the total variation, ie. a/b = cc. ‘Thus one is led to the
minimization of

TV(u) = fg Vul. (4.10)

As in the study of minimal surfaces {De Giorgi [11}}, the suitable companion condition
becomes:

uEQ\D = ”019\13’ (4.11)

where ) is the entire (often rectangular) image domain. We shall always assume that
) is a bounded Lipschitz domain. As in the study of minimal surfaces, Q can be
replaced by any open neighborhood of D [7]. We call the combination the noise free
TV inpainting model.

In [7] Chan and Shen focus on the general formulation, perceptual implications,
computations, and various applications of the inpainting problem, as deeply inspired
by the excellent work of Bertalmio et al. [2]. Here we present the existence theorem
and discuss the uniqueness issue.

THEOREM 4.4 (Existence of a Noise Free TV Inpainting). Suppose that the
original complete image ug lies in BV (Q), and takes gray values between (black)
and 1 (white). Then the noise free TV inpainting model (4.10) and ({.11), together
with the gray value constraint u € [0,1], has at least one optimal inpainting.

Proof. Since the original complete image up is admissible (i.e. satisfying the
constraint and with finite TV measure), we can always find a minimizing sequence of
admissible inpaintings (t,), for the model. Then both

fn |Vu,| and [Q g () |d

are bounded for all n since £ is bounded and u,, takes values in the gray scale interval
[0,1]. By the weak compactness property of BV functions, there is a subsequence,
still denoted by (un), for convenience, which strongly converges to some uy € Ly ()
in the L; norm. Apparently ¢, still meets the constraints

“tv‘g\p = ugfn\D and iy (z) € [0,1].

Also by the L! lower semi-continuity property,

fquw! gliminf/ |vu.n§=mmf V.
Q Q voJa

Thus ug, must be a minimizer. [
Suppose in an application, we have a priori knowledge from the original complete
image 1y that there is a small open neighborhood O of 8D, such that

f | Vo] < e,
(o]

for some small constant . It means that the original image has very little jump along
the inpainting domain (as controlled by ). Then besides the constraint (4.11), we
may also impose the boundary continuity condition

f |V < e. (4.12)
Q
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Exactly in the same fashion of the proof, we can establish the existence theorem for
this case.

Another important issue of inpainting is how to deal with noise, since in applica-
tions {such as the restoration of degraded photos or films), the left part of the image
u0| D is often noisy or containing misleading outliers {especially along the damaged
boundary of D). Chan and Shen (7} modified the TV inpainting model for noisy
images, in which the constraint (4.11) is replaced by the denoising one:

1 2_ 2

— = 4.13
Area(\ D) Jo\p (u ~uo)” = 07, (4.13)
where a? is the variation of the noise, which can be estimated from uo’ oD by statis-

tical estimators. By such constraint, we are assuming that hidden in ug is a “clean”
image u. such that

ug(x) = uc(x) + nlz),

where n(z) is the noise independent of u.. Since we only pay attention to its second
order statistics, implicitly we are assuming that n(z) is Gaussian with mean 0. Such
setting appeared earlier in the classical TV denoising and deblurring model [28).

THEOREM 4.5 (Existence of a TV Inpainting for a Noisy Image). Given an
image observation wg on 1\ D, assume that there ezists al least one image u. (i.e.
the original “clean” image) on 0, which belongs to BV(Q) and meels the denoising
constraint (4.13) and gray scale constraint ue € [0,1]. Then there exists at least one
optimal TV inpainting on O, which does inpainting inside and noise cleaning outside.

Proof. From the assumption on u., there exists a minimizing sequence of admis-
sible inpaintings {(itn)n. Thanks to the gray scale constraint, (1,), must be bounded
in BV(Q)). Thus there is subsequence, still denoted by {un}, for convenience, which
converges in L; norm to some upy, € L1{€2). Then the L; lower semi-continuity
guarantees:

[ IVt | < lim inf[ |Vig| = min/ [Vul.
o Q v Jo

We can further refine the subseguence so that
Up — Uy, a.e. onfl.

Thus ug, must meet the gray scale constraint, and more importantly, by the Lebesgue
Dominated Convergence Theorem,

f (1ry — o) dr = lim (1n — up)*d.
oD " JO\D
Therefore, u4,, 18 indeed an optimal TV inpainting. O
REMARK 2. If we drop the assumption that ug € [0,1], and thus remove the groy
scale constraint on w, then under the natural assumption (see [4]) that

R g 2de < o
s area({1\ D) /Q\D( 0 ~ {uo)) dw < oo,

one can still establish the existence theorem by applying Friedrich’s trace inequality (18]
and Fatou’s lemma. (Here (ug) is the mean velue of ug over the integration domain.)
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The solutions to both TV and elastica inpaintings can be non-unigque. But
the models cannot carry all the blames for such non-uniqueness. In fact, the non-
uniqueness can be eventually traced backed to the inpainting problem itseif.

To clarify the point, watch the image in Figure 4.1, whose middle square patch
has been encrypted by a random image. We now try to inpaint the square to restore
the original complete image.

FiG. 4.1. Non-unigueness: who is to blame, the model or the problem iiself?

It seems that we have a black (v = 0) bar and white (u = 1) bar against a gray
background {u = 1/2). A perceptually meaningful inpainting is to fill in either the
black color so that the image shows a black bar occludes a farther white bar, or the
white color for the opposite occlusion. Whick one is more likely? The available part
of the image (both the geometry and colors) is perfectly symmetric in terms of the two
bars. Thus it is a half-haif situation to human perception. Such perceptual uncertainty
is the foundation for the non-uniqueness of inpainting models. In this sense, the non-
uniqueness of an inpainting model (either the TV or elastica inpainting) is not to be
blamed, but must be appreciated, since it potentially models the uncertainty of human
perception in certain situations. (In terms of the Bayesian Decision Theory in vision
analysis, this is the situation when the risk (or cost) is a competitive multimodal
function.)

In many real applications, as Chan and Shen demonstrated in {6, 7], the solutions
offered by the inpainting models seem always to be meaningful to human vision.
This is because in applications, the locations and shapes of inpainting domains are
randomly distributed.

4.4. Local analysis near a generic stationary point: p < 3. Generally, for
any p > 1, one could also consider the p-elastica energy

Jolul = fg(a + bls|PYd,p,

where d,,v denoting the total variation measure of u, and if necessary, || is replaced
by the weak absolute curvature . {p = 1 is less ideal since the total curvature energy
allows sudden turns.) This general form of elasticity energy was also mentioned
in Masnou and Morel [19]. So the guestion arises naturally: is there any essential
difference between all different choices of p’s? We claim that indeed in some sense
p =3 is the threshold.
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THEOREM 4.6. Suppose u is C* near pizel z, and z is a generic stationary point
of u in the sense that

Vu(z) =0 and H,(2) is non-singular,

where H, is the 2 by 2 Hessian matriz of u. Then for all p > 3, Jp[u] = cc.

In other words, generic stationary points are forbidden by the p-elasticity energy
when p > 3. Apparently such restriction is not natural for image functions, and it
thus seems that p € (1,3) is a good choice, which of course includes Euler’s energy
JQ [’U,]

Proof. Without loss of generality, assume that z = (0,0) and u(z) = 0. Since
curvature is a second order feature, we can assume that u coincides with its second
order Taylor expansion at z:

ulz) = wlxy, xz) = (El,EQ)A($1,I2)T,

where A is the non-singular Hessian H,(z). Thus A must be either elliptic or hyper-
bolic. Take the elliptic case for example. Since both |Vuj and x are invariant under
Euclidean transforms, we can assume that

A = diag(o3,03),

with o1 > @ > 0. First we consider the case that o) = o». For convenience, we can
assume that g; = 1. Then u = r? = x} + 2% and by Section 4.1

1
/ kP Vulde = / dA (/ I{.pd3>
B 0 u=AX

= /1 2rdr (2nr{1/r)7)

G

=47 /O.i(lfr)p“gdr.

Here for convenience, we have assumed that the C? neighborhood includes B;. Thus
Jp on B, is finite if and only if p < 3, and as a result, when p > 3, J, on £ must
biow up. The general case then follows easily by noticing that along any 1soph0te {an
ellipse):

2,2 2,2 _\ .2
oizy 4 osey = A =71

the curvature is bounded by
I )
r r

This completes the proof. [

4.5. Relaxation of the constraints. The formulation of the elastica inpainting
model {4.5) and {4.6) has been very much based on the image processing point of view
as we have explained in the paragraphs that immediately follow it. But it is unclear
whether the formulation is mathematically feasible. In fact, as well practiced in the
theory of BV functions and minimal surfaces, it is often more manageable to formulate
the problem on a larger domain than the original one. In this way, the boundary
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E (Extened region)

D {Inpainting Domain)

Fic. 4.2, Mpainting Domain D

conditions are altered and naturally built into the energy functional itself. The TV
inpainting model of Chan and Shen [7] mentioned above imparts this viewpoint. The
same thing can be done for the general elastica inpaintings.

Let E be a subset contained in §2 \ D such that E U D is open and contains the
closure of D (see Figure (4.2)). For example, depending on the situation, we can
simply take E =\ D. Suppose for the original image ug,

J‘E{UO] = L D(a + bF“z) d‘lmy
U

is finite. We inpaint “DI 5, by the minimizer of

Jolu} = f (a + bi*) dyv, (4.14)
EUD
with the condition that

ul g = g - (4.15)

In this way, the original other two regularity conditions across the boundary are
approximately built into the energy itself, and need no extra care.

If the available part of the image in the vicinity of D is corrupted by a homo-
geneous noise with variance o2, then the condition (4.15) is replaced by the fitting
constraint:

[ | — ug|? dz = o? avea(E). {4.16)
B

PROPOSITION 4.7. Let w € BY(E U D) be a minimizer to the elastica inpainting
(4.14) and (4.16). Then u automatically satisfies the mean value constraint:

(u) = (UU):

where {f) denotes the mean value of f over E.
Proof. The technique is similar to that used by Chambolle and Lions {4]. Assume
otherwise the opposite situation occurs: {u) # (ug}. Define v = u — {u — up). Then

/ v — ug|*dz = / [~ ugp — (1t — ug)’dz < / lu -~ up|?dz = ¢* area(E).
E E JE
where the strict inequality is due to the fact that among all constants, the mean is the

only best L fitting to a given signal. On the other hard, by the natural assumption
of ug on E in Remark 2,

f W) — up|*dz r:/ Hug) — up|?dz > o area(E).
E E
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Therefore, there must exist some s € {0,1) such that
/ |sv + (1 — s){v) — upl*dz = o area(E).
E

Define w = sv + (1 — s){(v). By the invariant property of the weak curvature in
Proposition 4.3, we have

Ja[w] = f {a+ b&%)|[Vuw} = s/ (o + bi®)|Vu| < f (a + bEH)| V] = Jo[ul,
BUD BUD EUD

where the strict inequality is due to the fact that u cannot be a constant, otherwise
the constant must be {ug) because of the fitting constraint, which is impossible since
the whole argument starts with (u) # (up). This eventually contradicts to the fact
that u is a minimizer. {

Finally, even the fitting constraint (4.16) can be built into the energy functional
by minimizing

J3u] = /:EUD(a + b&™)|Vu| + %j};(u — ug)?dz. {4.17)

It can also be easily shown that a minimizer of J3[u] automatically satisfies the mean
value constraint.

The last formulation bears a formal Bayesian explanation as Mumford did for
various segmentation models {22]. From the probability point of view, formally, the
conditional prebability

P(uglu) = const. exp (—A/z[ (u — U0)2d117>
E
is the date model or generative model, and probability
P(u) = const. exp(—Jz{u})

is the prior model. Together, the minimization of J ] corresponds to the method of
MAP, or Mazimum o Posteriori. The data model hints that the best fitting constant
A should be proportional to 1/02, the reciprocal of the variance, which can be very
helpful in numerical computations {(Chan, Osher and Sken [5}). On the other hand, the
prior model can be traced back to Mumford’s Bayesian rationale for Fuler's elastica
being a prior curve model, as discussed in Section 2.

5. The Euler-Lagrange Equation. The direct method for the variational elas-
tica inpainting is difficult due to the geometric quantity - curvature. Notice that the
curvature has even no linear structure. That is, one cannot say much about the cur-
vature k4, of the summation even the precise information on &, and k, is available.
Such obstacle blocks classical linear approaches based on Sobolev spaces or BV spaces.

In this situation, as well practiced in the PDE method in image processing, one is
led to the study of the formal Euler-Lagrange equation. Often the PDE’s can handle
geometry better than the variational problem itself, as in the case of mean curvature
motions {20].

In this section, we first derive the formal Euler-Lagrange equation for the fitted
elastica inpainting model (4.17), and then interpret it geometrically. We will show
that the geometric meaning unifies the early method of Bertalmio, et al. [2] based
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on transportation PDEs and that of Chan and Shen [6] based on curvature driven
diffusions, though the two have been obtained from very different considerations orig-
inally. We conjecture that transportation and CDD are the two universal mechanisms
for any low-level non-texture inpainting.

5.1. The derivation of the Fuler-Lagrange equation. In the formal deriva-
tion, we shall always assume that the image is smooth enough, say in W21, and the
curvature is well defined. The variation éu is always assumed to have compact support
so that integration by parts can be carried out without the boundary term.

THEOREM 5.1. Let ¢ € C1(R,10,00)) be a given function and

Rlu] = /FuD (k)| Vu| de.

Then the first variation is given by

&R o
VY
where the flux field V is
4 Lt o (R)|Vul)
Vo= (k) fl — Il o7 . (5.1)

Here # is the ascending normol field Vu /|Vu), and t'is the tangent field (whose ezact
orientation does not matter due to the parity of t in the expression). (See Figure 5.1.)
Proof. For much of the convenience to come, write < f >= | gup fdx. Then,

IR =< §(|Vulp(s)) >
=< PK) 5IVul >+ < |Vu| dg(k) >

=< ¢« )i E
= = < V- {p(e)] du > + < ¢ (1K) Vul 65 > .

dVu > + < ¢' (k)| Vu| d& >

Thus we need work out the variation of curvature:

Vu 1
bk = 6(V - Tl 1 =V. [EV Iv(duHVu 5(W)]
1 Vu
=V- [IV ! V{du) = {Vu Sl q}V(cfu)}

=V - [ {] — 7 @ 7}V (6u)].

1
|Vl
Here I denote the identity transform, and P = f @ is the orthogonal projection onto
the normal direction. Therefore

< & (1) V| 6k > =< ¢ (8)| V] V {l—é——!{f _ AV >

=< =V (¢'(8)|Vu]) g7 {I ~ A @i}V (6u)] >

|v |
=< —{I-il® ﬁ}{‘—,,g—!vw'(nnw|)}ku) >

=< V-{u—mm{lv V(6 ITuD)] b >,
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where we have applied the fact that 7 — P is symmetric. Therefore

O e V[0 - T’v}ﬂ“ @)V (¢ ()| Vul)]
1 ARV
=-V. V.

-+ -+

We have used the fact that [ = @A +{®1, and @V = { 8f /3L This completes
the proof.
i

=¥

. * \\
Level ines +
A

1
i .

Fic¢. 5.1. The normal and tangent vectors.

Thus the gradient of a general functional R[u] is in the divergence form. The
vector field V shall be called the fluz field of R[u]. The theorem shows that the flux
field has a natural decomposition in the normal and tangent fields. Moreover, it is
morphologically invariant.

ProrosiTioN 5.2. The flux field V is morphologically invariant.

Proof. Let g be any {smooth) morphologicai transform of the gray scales:

u —+ g(u), g'(w) > 0.

we need show that for any image w, the fluxes v, = K?Q(u). Notice that &, 71, and £ are
all morphologically invariant. Moreover,

1L g Vohyp_ 1 9 m)iVul) -
[Vg(u)] ot g'(u)|Vul o
) AW 1 A RITeD
g'(u)|Vul ot (Vi o '

where we have applied the fact that u, and therefore g'(u) are both constants in the
tangent direction. Thus Vg(u) =V, O

Masnou and Morel (private communication) also worked out the Euier-Lagrange
equation (5.1) earlier, though it was not expressed in the above concise geometric
formula.

COROLLARY 5.3. For the elastica tnpainting model ({.17), the gradient is

= z——V‘ff-{h}\E(u—uO),
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where,
- ; 2b Or|Vu| -
V= N - e 2
(a+br*) Al Sl o t {(5.2)
Ap(z) = X 1g(z), the indicator of E. (5.3)

Therefore, the infinitesimal steepest descent marching is

du —

— =V-V =g (u—u). (5.4)
ot

In numerical computation, as Marquina and Osher [17] proposed, the weighted steep-
est descent method generally converges faster than the original one:

%%L = |V V-V = [Vu] Ag (u — ug)- (5.5}
By such modification, without the fitting term, the evolution equation is morpholog-
ically invariant since the flux field is and the g'(w) factors cancel out each other from
Au /8t and |Vu|. If further b = 0, we have the well known mean curvature motion [201.

Our numerical PDE scheme in the coming section is applied to the modified
steepest descent equation {5.5).

5.2. The inpainting mechanisms of transportation and diffusion. We
now show that the flux field V beautifully offers a unified viewpoint on the earlier
work of Bertalmio et al. on transportation based inpainting [2] and that of Chan
and Shen [7} on CDD (curvature driven diffusions) based inpainting. In return, these
earlier works reveal the fine structure of elastica inpaintings from the PDE point of
view.

The first PDE based inpainting model of Bertalmio et al. [2] is based on the
beautiful intuition of smoocthness transportation along isophotes:

au

—e- = V' u- VL(u), 5.6

- () (5.6)
where, V4u = (—uy, 1) = {Vu| { is the 90-degree-rotated normal vector, and L(w)
can by any smoothness measure of the image u. For example, in the numerical experi-
ment of [2], L is chosen to be the Laplacian Au. The model carries the transportation
nature since as the evolution approaches its equilibrium state, we have

f-VLu)=0  and agg,“)zo,

which means, along an isophote, the smoothness measure is conserved. Thus in terms
of the available boundary data, the image evolves like transporting the boundary
smoothness along the extended isophotes into the inpainting domain.

However, due to the lack of communications among the isophotes, the transporta-
tion may result in kinks or contradictions inside the inpainting domain, just as shocks
may develop in traffic models. Thus in {2}, the equation (5.6) is implemented with
the help of intermediate steps of anisotropic diffusions. As we shall see below, such
intwition is well backed up by the elastica inpainting.
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On the other hand, in [6], in order to realize the so-calied Connectivity Principle
in perceptual disocclusion, Chan and Shen proposed the CDD inpainting model:

du g(x)

i v (EVHIVU> , (65.7)
where g : R — {0, +00) is a continuous function satisfying g(0) = 0 and g{oo) = +oo.
If the position of g is replaced by 1, then this is the classical TV anisotropic diffusion.
The introduction of g(«) is to penalize large curvatures and encourage small ones, since
D = g(k)/|Vu} is physically the diffusivity coefficient. Under such action, objects
(like a black bar) broken by the inpainting domains are generally encouraged to be
reconnected, since separated parts usually have curved or cornered fronts with large
curvatures.

It has remained a mystery why we can have two seemingly very different inpainting
mechanisms: the model in [2] transports information along isophotes, while the CDD
(and TV) inpainting model [6] diffuses information across. We now explain that the
elastica inpainting model unifies the two by bearing both the transportation and CDD
mechanisms.

We have established in Theorem 5.1 that the flux V for the inpainting energy
R[u] consists of two components: the normal part

fjﬂ = Cb{n}ﬁ:
and the tangential part

o L e mIva)

- ARl 5
! V| ot

Therefore, the normal flux V. exactly corresponds to Chan and Shen’s CDD pro-
gram (5.7} with

The different requirements on g and ¢ is due to the fact that the CDD inpainting
scheme is based on the diffusion only. On the other hand, the tangential component

can be written as
” 1 3(¢'(R}IW!)> L
Vo= — — V™u,
‘ (tw? ol )

and thus its divergence

V.V =Viu v ( -1 8(¢’(nuvu;)>,
[Vaul? ot

since V1u is divergence free, which corresponds exactly to Bertaimio et al.’s scheme
(5.6) with the smoothness measure given by

—1 8(¢'(x)|Vul)
Vul? ot

We can further work out the expression to

Ly =

-1 1
Lo= oz (EWI & (x)

dx

5T # (k) [V @ Vu|(, f)) .
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Here [V @ Vu](e, ) is the Hessian bilinear form of . Thus in a simple case like
#(s) = |s}, and & # 0, we have

+1

Ly =
¢ Vul?

V& V), {),

which, up to a multiplicative rescaling, resembles the choice of Laplacian in [2l:
Au = trace(V ® Vu) = [V ® Vu|(#,7 ) + [V & Vul(f,1).

In summary, the elastica inpainting scheme combines both the transportation
mechanism of Bertalmio et al.’s model and the CDD mechanism of Chan and Shen’s
model. Tt thus provides a theoretical foundation for these two earlier works on PDE
based image inpaintings. In return, the earlier works also shed lights on the meaning
of the flux field V and the interpretation of the elastica or curvature based variational
inpaintings. In particular, we are assured by the existing works that the numerical
PDE approach will be feasible, although the direct variational method has turned out
to be very difficult.

6. Computation and Examples.

6.1. Numerical implementation. In this section, we explain the numerical
scheme for the evolution equation (5.5}:

U IVl V-V = 1900 A (= o),
where the flux V and Ag are as given in Corollary 5.3. Remind our readers that
the factor |Vu|, as suggested by Marquina and Osher in (17}, is for accelerating the
time marching. (In computation, the factor may be replaced by its regularized one
|Vu| = /e +{Vul?.)

Let (2, j) denote the digital pixel locations, and time be digitized to n =0,1,---
with a chosen small time step h. Thus “F} A denotes the value of u at pixel (i,f) at
time nh. Then

41 n n
U(:;} = u(i,j) -+ h (lv’lt?i’j)l F(u(h_’})) - iVu?l’J)l ’)\E,(i,j) (Ua,j) - uO,{-i,j))) ;

where I'(uf; 1) =V - 17’;’3.) and ug is the available image.

We now focus on the spatial digitization of the right hand side at a fixed time
nh. Thus we shall conveniently leave out the superscript n. Following Marquina and
Osher [17], the accelerating factor {Vug ;| in front of F{ug ;) is approximated by

the ceniral differencing:

1
Vugpl = 5\/(u{z‘+1,j —ugie1,))* (U1 — vi-0)% (6.1)

and the factor [V ;] in front of Ag (; 5 {ugi,;) = vo, i) by the upwind scheme:

[V pl = \ﬂupwiﬂd Dawgiy)* + (upwind Dyt )

upwind Dy jy = { Flug) ~ vimrg) i () = 09 (R - ug, (i) > 0
T Ty = veg) 1 @) = @) Wy = to60) <0

The upwinding on y is similar.
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G-1,j+1) | (ij+1] T+ O Grid {Pixel)
1 ] i
1 1 1
: : : [ Half point
G- G iy L)
: L [0  Points used for Dx at (i+1/2, j)
: ) |
t
[T SR o\ NS . S AN Points used for Dy at G+1/2.))
G-1-1) 1 G0 il

FiG. 6.1, Grid for the finite differencings

Now we focus on the discretization of F(ug ) = V - f/'(,-,j). Write V = (V1,V?),

and
" 1,2 Ug Uy e 1,2 Uy Uy
e = [ e, te= )= -, ] -

A=t = (Fop ) 0 (e i)

Then
Vi=(a+bs")n' — % (t' D, (x| Vul) + 12 D, (x|Vu])) ¢!
u
0 Dyu 2h
= (a + br*) vl + W (= Dyu Do (6Vu}) + Dou Dy(s|Vul)) Dyu,

where the partial derivative symbols D, and D, are introduced to ease the placement
of subscripts. The expression of V? can be worked out similarly. Based on the half-
point central differencing, we have

Flug,) = V- Vig = DV + DyViy,
. 1 _ 1 2 _ 2
- (V(H%,j) V(-im%,j)) + (V(i,j+%) V(m‘—%))'
Thus we need specify the half-point vatues for all the involved quantities. Take

the z-half-point (2 -+ 1/2, 7) for example. For the curvature, we take the min-mod [25]
between the whole pixels:

sign{c) er $1g0(8) in(jal, 181).

Bird,) = minmod (11,59, 5,53 )» minmod{a, 3) =

D,’s at an z-half-point (i +1/2,j) are approximated by the central differencing of the
two adjacent whole pixels (i + 1,5) and (4, 7). For examples (see Figure 6.1},
1
Datigiprya,gy = 5 (tir1.) — i)
1
Do{slVul)rireg = 5 (819 Vel = R Vulip) -

Here {Vuly ) is as in (6.1). Dy’s at an z-half-point (i +1/2,7) are approximated
by the min-mod of D,’s at the two adjacent whole pixels (i +1,7) and (4,7) (see
Figure 6.1). For instance, for Dyugii/2 .5,

. 1 1
Dyuig12,5 = minmod (§(U(i+1,j+1) = uir15-n)s 5 (Uigen = “(z,jwl))) . {6.2)
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The same thing can be done for D, (k|Vul} at (i +1/2,j). Then |Vu|? at (i +1/2,7)
is naturally defined as the sum of squares of Dyugiy1/2,5) and Dyt ) Therefore,
eventually, all quantities involved are expressed by the gray levels u ;) at all whole
pixels.

Numerical experiments in Figure 6.2 have shown the advantage of the min-mod
discretization for D, at z-half-points, compared with other two competing methods
(w = u or k|Vul}: the forward substitution of Dyw(it1/2,5y by Dywi ), and the
average substitution by

1
7 (G = U0 e Ui i1))

As in computational fluid dynamics, the min-mod method seems to catch sharper
edges (or shocks) and result in less blurring.

Originat withaut B Fomvard

b1

Avnrage Min-Mad

FIG. 6.2, Experimental results show the advantage of the min-mod discretizalion in {6.2). The
upper left one is the original complete image of a ribbon. The inpainting domain is o sguore cover-
ing the middle part of ribbon. The other three images are the outputs of the numerical inpainting
schemes based on the forward substitution, the average discretization, and the min-med discretiza-
tion, separately. (See the scction for more deteils,) The min-mod scheme seems to yield better edge
sharpness, as expected from the shock wave computations in commputational fluid dynemics.

6.2. Examples. In this section, we show several numerical examples of elastica
inpaintings.

Figure 6.3 shows an application of the TV inpainting model (with b = 0 in the
elastica model) in text removal. As we mentioned earlier, one major advantage of the
numerical PDE approach over the dynamical programming algorithm is its permission
of arbitrary topology of the inpainting domain. The letters in this example indeed
demand such permission.

Figure 6.4 demonstrates a photo shop application of elastica inpaintings in the
digital restoration of an old scratched photograph. (Image source: [2].) The example
shows what an inpainting model must be able to accomplish: to consistently reconnect
all the broken isophotes, including broken edges with low contrasts (like the shadow
of the nose).

The next two figures explain two effects of curvature based inpaintings. The ex-
ample in Figure 6.5 shows that if more weights are put against the curvature term in
the elastica model, the inpainted isophotes and edges become smoother and perceptu-
ally better. The second example in Figure 6.6 explains that as more weights are put
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The image ocgludad by texts

Texis remaoval

Fic. 6.3. An ezemple of TV inpainting for tezt removal, with b= 0 in the elastica model.

The image 1o be inpainted The elastica inpainting

20 40 60 B8O 100 120 140 20 40 60 BQ 100

120 140
FI1G. 6.4, An ezample of elastica inpainting for scrafch removal in an old black-white photogroph.

against the curvature term, the model tends to favor the Connectivily Principle in
perception [6, 24]. That is, unlike the extreme case of the TV inpainting, the model

encourages connection.

Originat Irmags TV inpainting : a =0

bla=10 b¥a=20

FiG. 6.5, Effect I of elastica inpaintings: e larger weight b against the curvature term produces
smoother isophotes and edges, and betier wisual results.

The last figure shows two more examples of elastica inpaintings, where one can
further appreciate the power of the elastica inpainting model and the numerical PDE
approach. Large scale “communications” among the separated parts are made possible
simply because of a good image or curve prior model -— Euler’s elasticas.
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Original image with Inpainting domain ta=0

F1a. 6.6. Effect IT of elastica inpaintings: o large weight b against the curveture term favors
the Connectivity Principle: the model encourages the connection of separuted parts.

Qngrad ags Inpainting Damam riginatimaga Inpainang Darsin

w

TV wpaning Cunatura iepeirtivg TV inpainting Canvatuen Inpainting

.:..*..u ‘. /\\/\

Fis. 6.7. Two more examples of elastica inpaintings.
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