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Abstract. Classical homogenization is an analytic technique for approximating
multiscale differential equations. The numbers of scales are reduced and the re-
sulting equations are easier {0 analyze or numerically approximate. The class of
problems that classical homogenization applies to is quite restricted. We shall de-
scribe a numerical procedure for homogenization, which starts from a discretization
of the multiscale differential equation. In this procedure the discrete operator is
represented in a wavelet space and projected onto a coarser subspace. The wavelet
homogenization applies to a wider class of problems than classical homogenization.
The projection procedure is general and we give a presentation of a framework in
Hilbert space, which also applies to the differential equation directly. The wavelet
based homogenization technique is applied to discretizations of the Helmholtz equa-
tion, In one problem from electromagnetic compatibility a subgrid scale geometrical
detail is represented on a coarser grid. In another a wave-guide filter is efficiently
approximated in a lower dimension. The technique is also applied to the derivation
of effective equations for a nonlinear problem and to the derivation of coarse grid
operators in multigrid. These multigrid methods work very well for equations with
highly oscillatory or discontinuous coefficients.

1 Introduction

In the numerical simulation of partial differential equations, the existence of subgrid
scale phenomena poses considerable difficulties. With subgrid scale phenomena, we
mean those processes which could influence the solution on the computational grid
but which have length scales shorter than the grid size. Fine scales in the initial
values may, for example, interact with fine scales in the material properties and
produce coarse scale contributions o the selution.

There are traditional ways to deal with this problem. A number of methods
exist, which are based on physical considerations for a specific application, such as
turbulence models in computational fluid dynamics, {44], and analytically derived
local subcell models in computational electromagnetics, [42]. Geometrical optics or
geometrical theory of diffraction approximations of high frequency wave propaga-
tion are other classical techniques to overcome the difficulty of highly oscillatory
solutions, [28].

All these techniques result in new sets of approximative equations that do not
contain the small scales, but which anyway attempt to take the effect of these scales
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into account. A more general analytical technique for achieving this goal is classical
homogenization, which will be discussed below.

1f the small scales are localized, there are some numerical procedures which are
applicable. Local mesh refinement is guite common but could be costly if the small
scales are very small or distributed. There are also problems with artificial reflec-
tions in mesh size discontinuities and time step limitations for explicit techniques.
Numerical shock tracking or shock fitting can also be seen as subgrid models, [1].
Material interfaces can be handled by grid adaptation or the immersed interface
method, [32].

In this paper we present a general procedure for constructing subgrid models to
be used on a coarse grid where the smallest scales are not resolved. The objective is
to find models that accurately reproduce the effect of subgrid scales and that in some
sense are similar to the original differential operator. The starting point is a finite-
dimensicnal approximation of a differential equation. Let L, be a linear differential
operator for which £ indicates small scales in the coefficients. The solution u. of
the differential equation

Leue = fe, (1

will typically inherit the small scales from the operator L. or the data f.. Consider
for example the simple model problem

d (. .d B
Lowe == (@) ) wl@) = S@),  0<e <, )
ue(0) = ue(1) = 0. (3)
The coefficient 9°{x) may be oscillatory,
g°(z) = glz/e),  g(y) L-periodic, (4)

or have a localized sharp transition,

f, z<{l—g)/2,
(@) =g, (1-8)/2<a<(1+e)/2 {5)
g1, == (1-—-g)/2

Our goal is to find an accurate and computationally efficient finite dimensional
approximation of (1),

Leattea = fea. (6)
Difficulties originate from the small scales or high frequencies in (1). If £ denotes
a typical wave length in v. and b a typical element size or step size in {6), then h
must be substantially smaller than e in order to resolve the g-scale in the numerical
approximation. This can be costly if ¢ is small compared to the overall size of the
computational domain. Ideally the discretized operator in (6) should be designed
such that G.4 is a good approximation of u. even if k is not small compared to ¢.
This goal resembles that of classical analytical homogenization.

1.1 Classical Homogenization

Homogenization is & well established analytical technique to approximate the effect
of smaller scales onto larger scales in multiscale differential equations. There are
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explicit formulas for some classes of problems with periodic or stochastic coefficients.
The problem is often formulated as follows. Consider a set of operators L. in (1),
indexed by the small parameter . Find the limit solution 4 and the homogenized
operator L defined by

Leue = f, 21_1’:% Ye = U, Eﬂ. - f. (7)

In certain cases the convergence above and existence of the homogenized operator
can be proved, [5].

For simple model problems, with coefficients that are periodic on the fine scale,
exact closed form solutions can be obtained. For instance, with g(y) positive, 1-
periodic and bounded away from =zero, we have for the one-dimensional example

@),
L= (emt), ret = ([2) ®

With the same § we get for the hyperbolic operators,

L= vy, L=2 452 ®
These model examples are used in Sect. 4.1 and Sect. 4.2.

In higher dimensions, the solution to (7) is a little more complicated, although
for some model problems the structure of the homogenized operator can still be writ-
ten down, as long as the coefficients are periodic or stochastic. In the d-dimensional
elliptic case, let G{y) : R? »+ R**? be uniformly elliptic and g-periodic in each of
its arguments. Let I3 denote the unit square. It can then be shown, [5], that

n=-v(a(3)v), I=-v-@v) ¢=[cw-cumELa,

where dy/dy is the jacobian of the function y(y) : RY 3 R?, given by solving the
so called cell problem,

v-ew XY _v.60), yeu (11)

with periodic boundary conditions for . Note that & is a constant matrix.

1.2 Numerical Homogenization

Classical homogenization is very useful when it is applicable. The original problem
with small scales is reduced to a homogenized problem that is much easier to
approximate numerically. See the left path in Fig. 1. The subscript A indicates
numerical approximation. If analytical homogenization is not possible, numerical
homogenization should be applied in order to arrive at a method with reasonable
computational complexity. With numerical homogenization, we mean a technigue
to produce a discrete operator L. such that Jjue — fica|| is small and where the
complexity of solving Leaiea = fea does not grow fast with e 2.
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LEuE = fE
//\\
ftﬂ = fT LEAU’EA = fsA
Latipa= fa Leatiea = fen

Fig. 1. Schematic steps in homogenization

The numerical homogenization can be done directly as indicated by the middle
path in Fig. 1, or by first discretizing the original problem and then compressing
the operator L.a and the data f.a as indicated by the right path. In this paper we
shall present wavelet based methods in order to achieve numerical homogenization.
‘We will consider the case of compressing a discretized problem but the technique
could also be used for direct discretization.

There are other similar methods based on coarsening technigues from algebraic
multigrid, see for example, Knapek [29] and Neuss et. al. [35,34]. In the finite
element setting there are a few successful methods for numerical homogenization.
In the work of Hughes and collaborators 126,25, Hou and collaborators [16,24] and
also in Matache and Schwab [33], the effect of the microstructure is incorporated
in a Galerkin framework.

1.3 Wavelet Projections

Given the full discrete operator on a fine grid, Lca in Fig. 1, we wish to find an
operator of lower dimension that extracts only the coarse scales of the solution. Let
V; and W; refer to the usual scaling and wavelet spaces of some orthogenal wavelet
system. Then, for a solution in Vi1 = V; & Wy, the coarse scale is represented by
V;, and we are thus interested in the operator that yields the solution’s projection
onto V;. We shall here denote the finite dimensional operator L.a by L;41 in order
to indicate scale.
Consider the equation

LinszU=F, UFeVipn, (12)

originating from a discretization of a differential equation (1), where U approxi-
mates the solution to the continnous problem. We introduce the orthogonal trans-
formation

U

Wj:Vj+1«~>ijVj, WJ’UE(U

) VieW;, UV (13)
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and note that the linear operator Wj L;j 11 W) can be decomposed into four operators
acting between the subspaces V; and W;, such that (12) becomes

A; B\ (T F
(o; Lj) (UZ) = (Fi) Us, Fr € W;, Ue,F. €V;. (14)

when we apply W; from the left. Block Gaussian elimination now gives an equation
for U, the coarse part of the solution,

LiU.=F;, L;=L;—CjAj'Bj, F;=F.~CjA] F:. (15)

Hence, our new “coarse grid operator” L; is the Schur complement of W; L. Wy,
We also get the homogenized right hand side, Fj.

For higher dimensions, a standard tensor product extension of the multireso-
Jution analysis allows us to use essentially the same derivation as above to obtain
coarse grid operators.

Before we go on, we should note that in general I; will not be sparse even if
Ljy1 is, because of the inverse AJ-_l. For the method to be efficient we must be
able to approximate L; with a sparse matrix. In Sect. 3.3 below we will get back
to this issue and show in subsequent sections that this can indeed be done. The
homogenization procedure can be applied recursively on ij to get f}j—]_ and so on,

The great advantage of this procedure in deriving subgrid models is its gener-
ality. It can be used on any system of differential equations and does not require
separation into the distinct O(e) and O(1) scales or periodic coefficients. It can also
be used to test if it is physically reasonable to represent the effect of fine scales on
a coarse scale grid with a local operator.

This work is based on [2,39] and is a continuation of the work by Dorobantu
and Engquist, [14]. The original ideas are from Beylkin and Brewster, [6]. See also
[21] for analysis in the one-dimensicnal case.

2 Background Theory

In this section we shall present some background material that is helpful in under-
standing the ideas behind the wavelet homogenization. Most of the material is well
known or has at least appeared in the literature. However, the sections on projec-
tion generated homogenization and how it relates to classical homogenization are
new,

2.1 Direct Discretization

Let us first consider the simple approach of using a coarse grid even if not all scales
of the original differential equation are clearly resclved. Ideally the following result
should be valid,

i‘.%(fllff, llwe — ue,all} =0, (16)

where h is a measure of the element size of or step size in the discretization A. A
convergence result of the form (16) is rarely valid. One example of a problem is
the typical error in phase velocity, which most finite element and finite difference
methods produce, ¥ k is not small compared to £, oscillatory parts of a selution
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will propagate with (1) errors. There are, however, a few problems for which a
weaker version of (16} is valid.

For solutions which are highly oscillatory relative to the grid discretization,
numerical techniques without phase velocity errors are needed. In [17,18] particle
schemes or method of characteristics approximations of hyperbolic partial differen-
tial equations are analyzed. For a restricted class of schemes it is possible to prove
convergence, or weak convergence, in I” of the numerical approximation to the
analytic solution as h — 0 essentially independent of €. Convergence esseniiclly
independent of € means that a set of ratios of h/e with an arbitrary small Lebesgue
measure must be excluded to avoid resonance, see [17,18].

One simple but typical example for which a rigorous theory is possible is the
method of characteristics for the Carleman equations,

6_"+a_:+u2—1_}2:0= u(m,ﬁ)ma(m,m/s),

14
33% - & 4f —u? =0, v(z,0) = b(z, x/e), (17)

where a{z,y) and b{z,y) are l-periodic in y and the numerical approximation is
given by

uptl =l + A0 )~ ()], u) = a(zg,wg/e),

A J ) 18
upth = ol + At[(u)® - (84a)7] v} = b(ws,w;/e), )

with
5; = jAz, tn = nAt, At = Az, u{Ej,tn} ~ ;. (19)

The homogenization theory of Tartar, [43], applies to the differential equations (17)
and is also used in the convergence proof. The local truncation errors are large for
h > £ and a cancelation of the errors must be established. The theorem gives strong
convergence in L% essentially independent of £ as h — 0.

The wavelet based type of homogenization was derived in order to handle wider
classes of differential equations.

2.2 Comments on Classical Homogenization

Classical homogenization was briefly described in Sect. 1.1. We shall give a few
more results here.
The homogenized coefficient in {10),

4 _ dx(y)
G= IdG’(y) G(y) dy dy, (20)

consists of two parts. One corresponds to the arithmetic average of the coefficients
G(y): _]}d G(y)dy. The other,

dx(y)
IdG(y)_dy dy, (21)

compeusates for the effect the high frequency interaction has on the lower frequen-
cies in the solution. The high frequency interaction originates from the product
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G(z/e)Vuc. We have the analogous decomposition of the numerically homogenized
operator, see Sect. 2.4,

A rigorous convergence theory can be established for analytic homogenization,
[6], and a typical result for the multidimensional problem in Sect. 1.1 with Dirichlet
boundary conditions would be,

Ue — 1, weakly in Hj(£2), (22)
if G € L=(42) is 1-periodic,
w” Gy)u > 8ul?, § >0, a.e, in Iy, (23)

and £2 ¢ B? is a bounded open domain.

Analytic homogenization extends to coefficients of the form G(x,z/e). In this
case the cell problem with the coefficients G{x,y) has to be solved for each © € 12.
See [15] for a practical application in the field of oil reservoir modeling.

The derivation of the homogenized operator is traditionally done from an asymp-
totical assumption on the solution, [5],

u.{x) = #{x) + cus (z, 2 /e) + ezuz(m,m/s) + (9(63), (24)

where u; and wug are I-periodic in its second set of arguments. The variables for the
different scales z and y = z/e, are treated independently in the derivation,

The techniques discussed here extends to other cases, including multiple scales
where G = G(z,z/e1,z/e2,...). The homogenization is then applied recursively
starting from the smallest scale. However, there has to be a set of distinct scales.

2.3 Projection Generated Homogenization

In this section we describe the following approach to homogenization. Consider an
equation Lu = f where L is a linear operator, f a right hand side and u a solution
that contains fine scales. Let P be a projection operator onto a subspace where
the fine scales in the original solution do not exist. Our objective is to find the
{projection generated) homogenized operator L such that EPu = f for all f such
that Pf = f. (When Pf # f we also need to find the homogenized right hand side
f) Here, we confine ourselves to the case of Hilbert spaces.

Let X be a Hilbert space of functions, typically a Sebolev space. Let Xo C X
be a closed subspace representing the coarse part of the functions, and denote by P
the orthogonal (and symrmetric) projection operator in X onto Xy. Let the spaces
Xo and Xg inherit the innerproduct and norm of X, so that [Juliy = {|ul| x, When
u € Xy, and similar for X5 . In addition, set Q = I — P where [ is the identity
operator in X, and introduce the unitary operator W on X defined by

WX Xox X, Wu= (Q“). (25)

Py
Let £(X,Y) be the set of bounded linear maps from X to V. In the numerical
finite dimensional case L € L{X,Y) with X = Y = R*. On order to simplify
the presentation we shall consider X = Y also in infinite dimensions. This means
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that partial differential operators will be defined by a special weak formulation, see
Remark 1 in Sect. 2.4. For an arbitrary operator L € £{X, X), we have

. L(P + Q){u+
WIW (:j) = WL(P + Q)(u+v) = (gLEPJrggngzg)
_ (QL(Pv+Qu)\ _ (AB
= (PL(P: + QE)) = (G’ D) Cf) (26)
where
A=QLQ¢ L(Xy, Xo),  B=QLP e L(Xo,Xy), @7
C=PLQ € L(Xs, Xo),  D=PLP € £{Xo, Xo).

‘When A is invertible the following definition can be stated:

Definition 1. Suppose L € £(X, X) and f € X. When A in (26, 27) is invertible
(one-to-one and onto), we define the homogenized operator L : Xo — Xp as the
Schur complement with respect to the decomposition in {26},

L=D-CA™'B, (28)
and the homogenized right hand side as
f=Pr—CATQf. (29)

We will write Ly, x, and fx, X, when there is a need to show explicitly between
which spaces the homogenization step is made. From Definition 1 we immediately
have

Lemma 1. Suppose Iu= f, where L € L(X, X),ue€ X and f € X. If A" emists,

LPu= 7. (36)

Proof. Since Lu = f we get

*yAh, — AB\(Qu\ _ (Qf
WIW Wu = Wf = (C D) (Pu) = (Pf . (31}
Moreover, since A is invertible, this system can be reduced with Gaunssian elimina-

tion. It yields (30).

Note that I and f do not exist for all elements of £(X, X) since A™! may not
exist. For some classes of operators A is however indeed invertible.

Proposition 1. Suppose the operator L € L(X, X) is given by the weak form
Iu=f < afu, v] = {f,v), Vv e X, (32)

where af+,'] : X x X v+ R is a bilinear form. If for some positive constants c; and

Ca,
alu, v] < |l (el x Yu, v € X,
E].[Q’[L, QU] Z Cz HQUHg( ) Yu € X:

then L is well-defined and A : Xa" — Xg- is one-to-one and onto,

(33)
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Proof. By the first inequality in (33), the bilinear from e[u, v} is a bounded linear
functional on X for each fixed u. L is then well-defined by the Riesz representation
theorem. To show that A is invertible, we need to prove that for every f € Xg
there is a unique u € Xg- such that

alu, v] = {f, v}, Vo € Xg. (34)
This follows from the Lax-Milgram lemma if (33) holds.

Some properties kept by the homogenized operator are surjectivity, symmetry
and ellipticity, as seen by this proposition.

Proposition 2. Let L € £(X, X) be such that L exists. If L is onto, L is onto. If
L is self-adjoint, L is self-adjoint. If L is self-adjoint and also

allullk < (Lu,w) <colluflk, VueX. (35)
for some positive econstants c1,ca. Then, for the same constants,
allvlix, < (Lv,v) < (Dv,v) < eallvllfy, Vo € Xo. (36)

Proof. Suppose L is onto. For any f € Xy C X there exists a u € X such that
Ly = f. By Lemma 1 then ZPu = f. From {29) we see that f = f, so L is also
onto. Let L be self-adjoint. Then WLW™ is self-adjoint and therefore A = A*,
D = D* and C' = B*, When A is invertible this implies that (4™)* = A, Hence,
L*=D"-B"(AYWC* =D-CA'B=L.

Next, assume (35). Take v € Xo and set w = ~A"'Bv € Xg. Since W is
unitary,

allliy < e+ ulfe < i+ o) @+ = (5 1) (2): ()
—{ ((~C‘A"1OB . D)U) , (‘A;lB”)> — (Ew, v). (37)

This proves the left inequality in (36). Since ¢ = B* and A~ is positive by the
positivity of L, we have for the right inequality
{Lv,v) = (D — CA™'B)v, v} = {Dv,v) — (A~ Bv, Bv)
< (Dv,v) = (Lo, v) £ calplik = eallolxo- (38)

‘We conclude this section by showing that the homogenization is “independent of
the path.”

Proposition 3. Let Xy and X1 be two closed subspaces of X, nested such that
Xo C X1 C X. Suppose I € L(X, X) is onto and that Lx x,, Lx x, ond Ex,xjxl’xo
all exist. If Lx x, is one-to-one, then

EX,XQ = I_:’X,X]_Xl‘xu; (39)

fX.Xn - f_X.X1x1,X0° {40}
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Proof. Let P; be the projection onto X;. Take v € Xo and let f = Lx x,u € Xo.
Since L is onto, there is a w € X such that Lw = f. By Lemma 1, we have

LxxoPow = fx,x,, Lx.x,Prw = fx,x,. (41)

Since f € Xo we must have fx x, = fx,x; = f, by (29). Another application of
Lemma 1, then gives

f;X,Xlxl,XDPOPIW = f_X},Xo- (42)

Again, f_x1 o = f and PyPrw = Pyw since Xo C X;. Hence,
Lx x,Pow = EX,Xlxl,xUPG‘” =f=Lyxx,u. (43)

But, Lx, X, is one-to-one so Fpw = w and since » was arbitrary, {39) follows. Finally,
letting f be an arbitrary element of X, there exists a u such that Lu = f since L
is onto and by Lemma 1

Fx,xo = Lx %o Pu = Lx,x, x; x, P = fx. %1 x, %, (44)

This shows (40).

2.4 Relationship Between the Homogenization Approaches

In the elliptic case, there is a striking similarity between the classical homogenized
operator in (10) and the the Schur complement in Definition 1, repeated here for

convenience,
PLP — PLQIQLGY 'QLP, (45)

v ( 5 G(y)dy) Vv ( § G(y)-‘%%ﬂdy) V. (46)

Both are written as the average of the original operator minus a correction term,
which is computed in a similar way for both operators. For the analytical case,
a local elliptic cell problem is solved to get G3,y, while in the projection case, a
positive operator A = QLQ defined on a subspace is inverted to obtain LQA™'B.
The average over the terms is obtained by integration in the analytical case, and
by applying P in the projection case.

The relationship can be made more precise, and we will illustrate it by consid-
ering the one-dimensional case, with the coarse space given by the lowest Fourier
modes. Similar results in one dimension have been shown for wavelet bases, see
[21,41].

Consider (2) with g° = g(z/e) where g € L=(T) is 1-periodic. Let X = H'(T)
and write {-,-} for the H' innerproduct. Define the operator L. € £(X, X) by the
weak form of the equations, such that L.u. = f is equivalent to

alu, v} = {g(z/e)0zue, Bav) 2 = (f,7), Vv € HY(T). {47)
We want to compare this with the classically homogenized operator,
#0:8, 0wy 2 = (f,0),  Yee HY(T), (48}

with § given in (8).
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‘We start by introducing a family of e-dependent spaces Xj containing bandlim-
ited functions,

X5 ={ue LT | o= Z ape”™ g e CY . (49)
i<t/ 2e

Those finite-dimensional spaces are closed subspaces of both L*(T) and H'(T). The
corresponding orthogonal projections are

1
Pou = Z e’ fip = f u(z)e 2Ty, (50)
1k|<1/2e ¢
where iy, is the k™ Fourier coefficient of u(z).

Let us index the remaining operators by £ in the obvious way, setting Q. = I—P:
and
L.=D.—-C.A7'B.. (51)
The strategy is now to explicitly construct {51) corresponding to (47) for fixed ¢
and to show that
limL.Pu=Iu Vue HY(T), (52)

where L is the homogenized operator in the classical case, given by (48). Under
some additional assumptions we can then show that the solution we get from solving
L.%. = f tends to the homogenized solution @ strengly in H*.

Our notation in this section will be as follows. We let y = z/e and a y-dependent
function seen as a function of £ will be indicated by a superscripted epsilon, hence
g(z/e) = g°(z). A bar above the function denotes its mean value,

1
g= fo g(z)dz = go, (53)

where fo is the zeroth Fourier coefficient of g. We begin by showing some properties
of the projections.

Lemma 2. The projections FP: and (): commuies with differentiction,

OcPou = P:ou,  0:Qeu= Q.0u, Vue H'{T). {54)
For g€ L*(T) and ¢ = 1/n withn € Z¥,
P.g°P.u=jP.u, Yue L*(T). (55)
For w € L*(T),
Pu=1 - (56)
Finally,
m
|62 Qeul| 2 > ‘8‘?|Q5”HL2- (57)

Proof. Take u € H'(T) and let {4} be its Fourier coefficients. Then
awpeu — am Z ﬁke2xikm — Z zﬂ'?;k'&kB?wikz
lkj<1/2e k| <1/2¢
= P. Y 2wikie®™** = P.Oyu. (58)
k
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Since Je = I — P., we have shown (54}, Moreover,

PEHEPEU =P Z Z Qeﬁkezni(ka—na)w = o Z ﬂkezwim = §P.u, (59)
L |kj<n/2 |kl<n/2

since |k +nf| > n/2 when £ # 0 and (k| < n/2. This proves (55). Next, for u € L?,

Pu=(Paul)e= Y @™ e =d=1, (60)
|k]<1/2e

showing (56). Finally, from (57),

2 2
. T N s
10aQeulla = > 4x'Kaf > > dk=|Qeulia. (61
[&|23/2¢ [&|21/2e
By (57), we now have
alu, v} < ligllpee llullg elige (62)

a[Qet, Qcu] > ess inf |g(z)| [180:Qcullzs > Cess inf |g(z)| [|Qeullf,  (63)

so Proposition 1 shows that A, is invertible and L. exists for all &. We can then
show

Theorem 1. The projection generated homogenized operator L. corresponding to

(47) satisfies

Lew=(D. —C.A7'Bu=P.Lu, VYué€X§ (64)
ife=1fn andnc Z",
Proof. By (54) and (55) we have for D,,

{Dsu,v) = (¢°0uPou, o Pev} 2 = {¢° PeOzu, PeOyv)2 = (Peg® PeOou, 05 Pev) g2
= §(B: Peu, O Pev) . (65)

when u,v € H’ (T). For the second part of the operator, the equation A.w = Beu
needs to be solved. Then C. A7 B.u is given by Cew. In this case we can directly
write down the expression for w, namely

w(zr) = fom Xy (%) 8 Peu(z')d' (66)

where x is the solution to the cell problem (11}. It is well-known that x € H*(T).
By also using (54, 55, 56) and the fact that P.u € L°°(T), we have

lwllze < lwleo < (xgl 10 Peultra < C g Peullgs (67)
||B"’w”L2 =< IamPEuIDO ”X;”Ig < Clampsuloo ”X”Hl s (68)
T.U(l) = XZB:,;PE’LL = ngf,Peag'u, =0= w({}) (69)

Therefore w € H(T). Moreover, by {54) and (55)
FuQew = Jow — Polow = zw — Pexy Pefpu = Srw. (70)
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Now, from {11) it follows that g°x5 = ¢° + co a.e., where co is a constant. Together
with {70) this shows that w indeed satisfies A.w = B.u,

(Aaw:'”) = (ggaszw=aerU>L2 = (stgampsuzaerv)ﬂ
= (g°Ox Pet, 02 Q) 2 + co{0x Pert, 3 (Qev) 12
= (B.u, v} + co{ PO, Q-0:v) p2 = (Beu,v). (71)

Then, finally,

(CeA7* Beu, vy = (Cew,v) = (g5 0cQew, B Pev) 2 = (g x5 00 Pets, Oy Pev) 2
= {Peg°xy Pebuu, PeOsv) 12 = Gy (O Pett, Ox Pov) 12, (72)

which gives
(De — Ce A7 Bew,v) = (5 — 0303 (0o Pett, O Pev) 2 = (LPeu, Pov).  (73)

Eventhough both I and I. are well-defined, neither L nor L. are one-to-one on
the spaces we have chosen. We need fo restrict the operators to smaller spaces on
which they are invertible. Let X’ == H5(0,1) and identify it as a closed subspace of
H(T) in the theorem below. On this space L is bounded and positive by Poincaré’s
inequality, {Lu,u) > & ||uj|%. Since L. = P.LP. by Theorem 1, this implies (74)
and (75). Hence, there are unique solutions %, and & satisfying (76) for f € X§ by
the Lax—Milgram lemia. Moreover, Parseval’s equality ensures that (77} and (78)
hold, since Pju = P:u — (P-u)(0) here. The theorem then shows that a solution
of Leiic = f converges strongly in HE(0,1) to the classically homogenized solution
when € = 0.

Theorem 2. Suppose X' is ¢ closed subspace of X such that

(Lo, u) 2> & l|ull%, Yue X' nXg, (74)
{Lew,v) < Clullx 1l Yu,v € X§. (75)
If
Li=f = L., ieX, @ e X NnXg§, (76)
|{Le s ~ D)ul||x ~» 0, u€& X', (77
ond with P, the orthogonal projection on X' N X§,
[iPiw — u||x — 0, liPew — ulix = 8, Yue X' (78)
Then
i —Be|jx = 0. (79)

Proof. By (74), for all w € X' N X§,
2 1= 1 =
lulle < 2(Eeu,u) < LiZeullxuilx. (®0)

Se,
1 T &
[|ullx < §||Lau||x, Yu € X' n X5, (81)
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Also, by (75),

el = (Faw, L) < ClllixiiBeallx = [iZeuilx < Cljuilk, (2
for all u € X§. Now, since 4. € X' N X,
& — @llx < 1Pa —allx +|[Pa - 2| |x

< [IPfa —allx + I Pi(a - 5.)llx

< 1B~ alx + H(EePs — Dyilx + \Eo(PL — PYallx

< 1Pl = allx + SNEP. - Eyillx + SN(PL - Pyl

< Ol\Pa—allx + I(EP ~ Dillx + S|IPa—allx,  (83)
where (76) and (82) were also used. By {77} and (78) the remaining terms vanish.

Remark 1. The right hand side f in (47) does not agree with the right hand side
f of the standard weak formulation of the problem,

(9(2/€)Bus,Buv) o = {f,0) 12, Vo€ H'(T). (84)

because of the differences in innerproducts. In fact, in the general standard formu-
lation f € X* = H~'(T) but in order to stay in the framework of Sect. 2.3 we want
the range of L. to be X. The right hand sides are related by the isomorphic Riesz
mapping A : X* + X such that f = Af.

3 Wavelet Based Homogenization

In this section we show how the projection generated homogenization works when
we choose wavelet spaces as our coarse and fine space decomposition. We start
by reviewing the theory of muitiresclution analysis. We then let Lu = f be a
finite-dimensional approximation of a partial differential equation and apply the
machinery in Sect. 2.3 for this case. In particular, we demonstrate how the resulting
L can be approximated by a sparse matrix and used for computing an approximate
solution to the differential equation on a coarse grid.

3.1 Multiresolution Analysis

In this section we give a brief outline of the homogenization spaces that we will
use, In peneral we want to homogenize to a subspace that represents the coarse
scales of a function space. Therefore, it is close at hand to consider multiresolution
analysis (MRA) and its related wavelet spaces. A wavelet representation lends itself
naturally to analyzing the fine and coarse scales as well as the localization properties
of a function. Here we restrict our attention to orthogonal MRA, to align with the
theory in Sect. 2.3. The theory could easily be modified to allow alse biorthogonal
MRA. For a detailed description of MRA we refer the reader to e.g. the book by
Daubechies, [13].
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An MRA is made up of a ladder of closed function spaces,

OV C Vi L, (85}
satisfying
Uv=r'm, [\vi={o (86)
JEZ F€E

Moreover, the spaces V; represent different scales in the sense that
flzye Vi e F(2772) € Vo (87)
The zero space should also be invariant under integer translations,
Flx) e Vo = flz — k) € Vq, Vk € Z, (88)
and there should exist a shape function, ¢ € Vg, such that
{p(z —k); ke Z}, (89)

is an orthonormal basis for Vp.

From the MRA definition above follows a number of important properties. Di-
lates and translates of the shape function form orthonormal bases for for the V;
spaces,

{pinlz) = 2%p(27x — k); k € Z}is an orthonormal basis for ;.  (90)
Denote the orthogonal complement of V; in V41 by W,
Vim=VieW;, V;L1W, (91)

Then, LR} = B ez Wi and there exists a mother wavelet, ¢ € W, with properties
corresponding to that of ¢,

s 0(z) = 2/29(2x — k); k € Z} is an orthonormal basis for W;. (92}

This mother wavelet can be constructed explicitly from a given MRA. Note also
that {10;4; j, k € Z} is an orthonormal basis for L*(R).

An important property of the wavelet v is its number of vanishing moments,
i.e. the highest number M such that

f:u‘“«p(w)dwzo, k=0,...,M—1. (93)
R

This number is related to the wavelet system’s approximation qualities. If W; is
orthogonal to higher degree polynomials, V; better approximates smooth functions.

The simplest MRA is the one built on the Haar basis. It has M == 1 and the
shape function and the mother wavelet are given by

1, f0<z<1i/2,
1, fo<a<t -
(p(m)z{ BIST=5 0 yay={-1, #1/2<e<1, (94)

0, otherwise, 0 otherwise
, .
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In more than one dimension, the MRA is extended by considering tensor product
spaces. Bach dimension can be treated separately, using the one-dimensional anal-
ysis. The resulting multi-dimensional MRA. is a tensor product of one-dimensional
MRAs. In two dimensions, we define the tensor product spaces

Vi=VieV, LLCV;CVincC..., Ji€Z, {95)

with V; being the one-dimensional spaces introduced above. The spaces V; will
satisfy the same conditions, (85)-(89), as the V} spaces, with B, Z replaced by R?, Z%
The shape function of this two-dimensional MRA can be written in terms of the
one-dimensional shape function,

plx} = plz1) @ p(z2) = plz1)p(z). (96)

It follows, as in the one-dimensional case, that

{;01(®) = win{z1) @ pia(z2)},  kICZ, (97)

is an orthonormal basis for V';. Furthermore, denoting the orthogonal complement
of V; in V1 by Wy, we have that

Vin=V,eW,;, V;LW,; LR)=(pw, (98)
jez

The wavelet space W; is composed of three parts,
W,=W;eW)o(V;eW;)o(W; V). (99)

Here, the W; spaces are those of the one-dimensional case, given by (91). Similar
tensor product extensions can be made also for higher dimensions.

3.2 Wavelet Projections of Difference Operators

We will now discuss homogenization in a more concrete setting, The spaces we
use are the finite dimensional wavelet spaces discussed in Sect. 3.1. The typical
operators that we homogenize are discrete approximations of differential operators.
As seen above in Sect. 2.3, given such an operator, defined on a fine grid, the idea
of projection generated homogenization is to find an operater defined on a smaller
space that extracts only the coarse scales of the solution. For a function in the
wavelet space Vjy1, the coarse scale is represented by V;, and we are in the first
step thus interested in the homogenized operator given by f,vj £1,v;- We will mostly
use the standard Haar basis,
Let us now consider the equation

L U=F, U F €V, Lt € L{Vj41, Vi) (100)

This equation may originate from a finite difference, finite element or finite volume
discretization of a given differential equation. In the Haar case U/ can be identified as
a piecewise constant approximation of u(x), the solution to the continuous problem.
Let W; : Vit = V; x W; be the unitary operator corresponding to (25). {By (91)
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le = W;.) As in the infinite dimensional case (31), we apply the transformation

W; on Ljyi from the left and get
Wi L a W) (W) = Wi F (101)

or if we decompose W; L1 WY according to (26),

A; B\ (U _ (Fe _ _
(Gj Lj) (U) = (F) U, FreW;, U,F.eV;. (102)

Here the subindex “f” means projection onto the fine scale subspace, W; in this
case, and subindex “c” stands for projection onto the coarse scale subspace, V; here.
This is a convention we will use frequently. Also note that we changed the notation
of the block previously called D; to Lj, to indicate that LIy = PL; P actually
corresponds to one type of direct discretization on the coarse scale.
The homogenized “coarse grid operator” is now given by block Gaussian eliri-
nation of (102),
(Lj — Ci A7 Bj)Ue = Fo — C; A] ' . (103)

For simplicity we will use the notation Lj+1vj v = L; and Fy,, vy = F;. Hence,

L; =L; - CiA7'B;,  F;=F.—C;47 ' F;. (104)
Since L; corresponds to a direct coarse discretization, we can interpret CjA;-“lBj
as a correction term, which includes subgrid phenomena in L;.

In the finite dimensional case, we will represent the operators using their matrix
representations with respect to the bases given by (90} and (92). For instance in
the Haar basis, we get the following matrix representation of W;,

Qj) 1 oo . r_l;_ ;-—1

W= (%)= . 105

(P iy e, (105)
IJD D- 1. 1

Note, in this representation lsj* and Q;‘ are bases in V41 for V; and W;, respectively.
The corresponding projections in V;41 are Pj*pj and Q;QJ The matrix represen-
tation of (102) is a block matrix decomposition of the same form as the operator
decomposition.

Before we go on we should also note that in general L; will not be represented
by a sparse matrix even if L;j;1 is, because Aj_1 would typically be dense. For
the homogenization method to be efficient we must be able to approximate Lj;
with a sparse matrix. If this sparse matrix is on banded form, it can be seen as a
discretization of a local differential operator acting on the coarse space. In Sect. 3.3
we will get back to this issue and in subsequent sections we will show that this can
indeed be done for many applications.

The procedure to obtain L; described above can be applied recursively on L;
itself to get £;_1 and so on. This can easily be verified when ;.. is symmetric
positive definite. Then Aj; is always invertible by Proposition 1 (with afu,v] =
{Lau,v)) and Proposition 2 shows that also L; is symmetric positive definite. By
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induction Ey, exists for k < j. Also note that Proposition 3 gives L = Lj+1vj
and Fi = Fv,,, v, for k <.

Moreover, an improvement in the condition number can often be estimated.
Typically for standard discretizations

11V

joax (Lyv,v) < ”m!ilixl(LHm; u), (106)

when k < j. Then, from Proposition 2,

maxHuH:l(f}ku,v) max;|,,||=1(Lkv,'u)

w{E) = ~ -
( k) min”vnzl(Lkv,v) - mln|§1,||m1(Lj+1'u,'U)

Max|jy||=1{Li+1v, v)

- = k{Lj51). 107
IH1n|]u||:1(Lj+1'U,‘U) { J+1) { )

The two-dimensional wavelet transform
W, Vigg» W; xV; (108)

can be written as a tensor product of one-dimensional transforms,
W; =W, @ W;. (109)

A linear operator L;.i, that acts on the space V;..1 can be decomposed in a way
similar to the one-dimensional case. The equation

LinwU=F, UFeVin, Ly €L(Vi4,Vin) (110)

can then be transformed to

Ay BN (U _ [ F ) _
(Oj Lj) (Uc) B (Fc) UnfreWw; U ,FeV; (1)

and the coarse grid operator is again the Schur complement,

Ly,

i1,V = .EJ' = Lj - GjA..;lBj. (112)

To get the matrix representation of {111), we take the one-dimensional matrix
representations of W; and, following (109), compute its Kronecker tensor product
with itself. We must thereafter also apply a suitable permutation matrix to the
product in order to get the same block structure of the matrix as in (111).

Note that the fine scale part of IJ can be decomposed as

Us
Up= [Us |, Ug e W; @ W;, Uer € V; @ W3, U, e W; @ V;. (113)
Ufc

In some cases, the homogenized operator keeps important properties of the
original operator. Let the forward and backward undivided differences be defined
as

Ay = Wip1 — Ui, A_ug = ;s — 1. (114}

In [14] it was shown that the one-dimensional elliptic model equation ~{gn')’ = f
discretized with

— Ay diag(9)A-U = h*F (115)
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will preserve its divergence form during homogenization. That is, we will get

1
= i
L; = ﬁA.;.HjA_, (116)
where Hj; is a strongly diagonal dominant matrix which can be interpreted as the
effective material coeflicient related to g. Analogously, for the first order differential
operator g{r) é—l— the discretized form diag(g}A- /h is preserved during homogeniza-
tion,

L= %HjA_. (117)

In two dimensious, the elliptic model equation —V(g{z,y)Vu) = f can be dis-
cretized as

1 1

Then L; is no longer on exactly the same form as L;1;. The cross-derivatives must
also be included. We get

L= —maim=as - Lavgvear - Lasgmar - Lavpwar (119)

3 hE + - R2 T+ - h2 + = Rz Tt -
Remark 2. Spaces other than wavelet spaces could also be used. For instance, in
the settings described in [29], [34] and [24] the coarse subspace is simply the grid
function space given by removing every other grid point. In the classical homog-
enization setting the solution has the asymptotic expansion {24), as discussed in
Sect. 2.2. The techniques mentioned above give homogenized operators with coarse
grid solutions which directly samples {24). The oscillatory term eui (z,z/e) is con-
tained in the solution. In the wavelet homogenization the solution is a projection
of . onto a coarse scale V; space. The influence of the u; term, which oscillates
with mean zero, 5], is then significantly reduced.

3.3 Compact Representation of Projected Operators

‘When the operator L;.1 is derived from a finite difference, finite element or finite
volume discretization, it is sparse and of a certain structure. In one dimension it
might, for instance, be tridiagonal. However, as remarked in Sect. 3.2, the matrix
L; is in general not sparse since Aj_1 is usually dense. Computing all components
of L; would be inefficient. Fortunately, L; will be diagonal dominant in many
important cases and we should then be able to find a sparse matrix that is a close
approximation of I;.

In some simple cases the matrix A; is in fact diagonal. Examples include oper-
ators I. of the form

Lu= f " a(yut)dt + bz)u(z). (120)
[¢]

Let P; be the orthogonal projection on V;. Suppose L is discretized in V4, as
Ljt1 = Pjy1 LPjy) with 2 in (120) replaced by Pjy1ePj41, and similar for . When
the Haar system is used, A; is diagonal and L; is of the same form as Ljy1, cf.
Chap. 7. Let Ay be related to Lysq via (101, 102) in the same way as A; relates
to Lj4+1. By induction, Ay is also diagonal for k < j. The operators in (120) turn
up for instance in problems with systems of ordinary differential equations and
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one-dimensional elliptic equations, see [6,21]. In these cases, an explicit recurrence
relation between scale levels can be established, which permits the computation of
Ly on any fixed level k as the starting level, j -+ 1, tends to infinity.

For more general problems one must instead rely on the rapid decay of elements
in A; and L; off the diagonal, which is a consequence of the wavelet spaces’ good
approximation properties. The decay rate of A; for Calderon—Zygmund and pseudo-
differential operators were given by Beylkin, Coifman and Rokhlin in [8]. Letting
Liv1 = Py P, A; = {al,}, B; = {bl,} and C; = {d,}, they show that

2—M Car

T e k—£ = v, (121}

lakel + 1ol -+ lfel <
when the wavelet system has M vanishing moments. For Calderon-Zygmund oper-
ators A = 0 and v = 2M. For a pseudo-differential operator v = 0 and if its symbol
is a(z,£), the value of A should be taken such that the estimates

108020 (2,8)| < Caa(l + )2, (122)
988" (2,€)| < Cap(l+[EN*F2, (123)

are satisfied for some constants C,. 3. For instance, in the second order elliptic case
A = 2. Moreover, Beylkin and Coult, [9], showed that if (121) holds with A = 0 for
Aj, B; and C; given by L;41 in {101, 102), then the same estimate also holds for A,
By and Cji, here given by Py Ly Py for j’ < k < j with j+ 1 being the starting
homogenization level. Hence, the decay rate is preserved after homogenization.

The decay estimate in [9] for A;: is uniform in & and may not be sharp for a
fixed k. There is, for example, a general result by Concus, Golub and Meurant,
[12], for diagonal dominant, symmetric and tridiagonal matrices. For those cases,
which include A; corresponding to the discretization in (115) of the one-dimensional
elliptic operator, the inverse has exponential decay,

(471, s Ce*,  e<e<l (124)

This holds also when the elliptic operator has a lower order term of type b(2)0;
discretized with upwinding, [30].

One simple way to approximate L; is to set all components outside a prescribed
bandwidth v equal to zero. Let us define

My, #2li—ji<v—1

125
0, otherwise. (125)

trunc(M, »)i; = {

For v = 1 the matrix is diagonal. For v = 3 it is a tridiagonal and so on. We
this procedure here in order to control the structure of L; and we refer to it as
truncation. For lower triangular matrices we define truncation to lower triangular
form as

My, #0<i—j<v—1
truncr, (M, v)i; = h BESETTISV (126)
0, otherwise.
Another possible strategy is the basic truncation method used in [8],
Mz, if |Miy| >
trancger(M, ey = i 1 |B; l & {127}
0, otherwise
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but it is not practical here since the location of the non-zero elements cannot
be controlled. The matrix L; can also be projected onto banded form in a more
effective manner. The aim is that the projected matrix should give the same result as
the original matrix on a given subspace, e.g. when applied to vectors representing
smooth functions. Let {v;}¥=; be a set of linearly independent vectors in RY.
Denote the subspace of RV *¥ with matrices essentially® of bandwidth v by T,.
Moreover, let

Lo ={M e RY*" . span{vi,vs,...,v.} C N(M)}, (128)
where N(M) represents the null space of M. Then
RVN =T, @ L, (129)

and we define the band projection of a matrix M € RY*Y ag the projection of M
onto T, along £,, with the notation

band{M, v} = Projy M. {130)
As a consequence,
Mz = band{M, v}, Ya € span{vi,va,... , U} (131)

In our setting M will usually operate on vectors representing smooth funetions, for
instance solutions to elliptic equations, and a natural choice for v; vectors are thus
the first » polynomials,

vy = {172 NI =1, (132)

Smooth solutions to the homogenized problem should be well approximated by
these vectors. For the case v = 1 we get the standard “masslumping” of a matrix,
often used in the context of finite element methods.

This technique is similar to the probing technique used by Chan et al., [11].
In that case the vectors w; are sums of unit vectors. Other probing techuiques
have been suggested by Axelsson, Pohlman and Wittum, see Chapter 8 in [3].
The choice of v; vectors could be optimized if there is some a priori knowledge of
the homogenized solution. In some cases the band projection technique only gives
improvements for small values of 1, see Fig. 2. The probing technique of [11] could
be used for larger » in our examples. Numerical evidence indicate that for small
values of v, the band projection technique is more efficient.

The focus here is on the principle and the truncation trunc(L;, ) is done after
computing the full inverse of 4;, which is expensive. By capitalizing on the nearly
sparse structure of the matrices involved, it was however shown in [9] that the
cost can be reduced to O(N) operations for N unknowns and fixed accuracy. This
method uses a multiresolution based LU decomposition procedure described in [10].
Moreover, the same homogenized operator will typically be reused multiple times,
for instance with different right hand sides, or in different places of the geometry as
a subgrid model. This aspect will be exemplifed below in Sect. 5.3 and Sect. 5.4. The

1 We must require that each row of the matrices in 7, has the same number of
elements. Therefore, the first and last » — 1 rows will have additional elements
located immediately to the right and left of the band, respectively.
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computation of band(F;,»)} can be based on trunc(L;, p), ¢ > v. The additional
computational cost is proportional to (»* 4+ w/)N. The v*N term corresponds to
solving N v x v systems and pvN to computing the right hand sides, see also [3].

The truncation methods described above are even more efficient when applied
to H; instead of directly to the homogenized operator. The following proposition
shows that when the solution to the homogenized problem belongs to the Sobolev
space H', the accuracy is one order higher.

Proposition 4. Suppose L = Ay HA_ and LU = h*f. Let s = ||L7Y| - ||H|| and
- 8Ll [18 ]

- = (133)
el Al
where || - || denotes the la-norm. Furthermore, let w be any H'-function such that
U; = u(jh). Then, if
(L4 8LYU + 8UL) = h*f, (134}
A{H+§H)A_(U + 8Ur) = B*f (135)
the following bounds on the perturbed solutions hold V¥ f
dre
<
ULl < T2, (156)
1 dri b 4rn
< = - < =
10Ul < 3 T2l A-Uf < 2 2. (137)

The bound (136) is sharp.
Proof. Using ||A4}] = ||A=]|| = 2 and (133) we have
LM [16H]| - 1A HA- ||

fLter)| < il <4r||L7H[- || =4re <1 (138)
Therefore,
gyl L~15L)| 4m
—_ 1 1 1 < ;‘
ULl = (T + L7 8L)" L 6LUN < T =7=i3 11 ;;L—15L||§|U§’ < 7= liull, (139)
proving the first bound. In the second case,
LT AWSHA-|| < 4|IL7Y| - ||3H]| < 4re < 1, (140)
giving
16U=|| = (I + L‘M@HAJ-IL*AJ#&HAMUH
|L~t A 8H||
< A_ = ||A_U 141

which proves the second bound. The choice I = —A A, 6L = —rI||L|} and f
the eigenvector of L corresponding $o its smallest eigenvalue shows the sharpness of
{136). The final step, ||A..U|| < h||u)|z:, follows from Cauchy-Schwarz’s inequality.
Note that (136} cannot be improved to O(h) by replacing ||U]| with |Ju||q:.
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In two dimensions truncation to simmple banded form is in general not adequate,
since the full operator will typically be block banded. However, both the crude
truncation and the band projection generalizes easily to treat block banded form
instead of just banded. Let M be the tensor product of two N x N matrices. Then
we define truncation as

Mij, if2(i—j~7N|Sv~1-]|2r|

2r|+1 < v (142
0, otherwise, 271 sw (142)

trunce (M, v);; = {

This mimics the typical block structure of a discretized differential operator. For the
band projection, the space 7. of banded matrices in the one-dimensional definition,
is simply replaced by the space of matrices with the block banded sparsity pattern
defined in (142).

In two dimensions, untangling the various H components of (119) from L is more
complicated than finding the H in (116} and (117) for one-dimensional problems.
There is however no unsurmountable difficulty, and truncating H instead of L can
be done also for two-dimensional problems.

4 Numerical Examples

In this section we present numerical results for the algorithms described above.
Elliptic and hyperbolic model problems are studied. In one of the examples the
wavelet based homogenization is applied to the Helmholtz equation for the gener-
ation of a course grid approximation. This could potentially be useful for sub grid
scale modeling in computational electromagnetics.

4.1 Elliptic Problems

Consider first the one-dimensional elliptic model equation,

d dul gy
-5 (@ 5) = 1@, w0 = =0, (143)
with g{z) > 0 and then the Helmhol$z equation,
d
15} o ) .
- ; 6—%9(“3)6—% —wiu(z) =0, (144)

in one and two dimensions {(d = 1,2). The Helmholtz equation can be derived from
the wave equation vy = V - g{z)}Vv under the assumption that v{z, t} = u(z)e*:.
Hence u(z) represents the amplitude and w is the frequency.

Uniform finite volume discretization will be used in the numerical experiments.
The computational domain is the unit interval {square in 2D). The grid size is
denoted n, and the cell size h == 1/n. For a function u{z) the corresponding grid
function is written #; (or u;;). The grid function approximates cell averages,

ih .
i~ lf w@)ds, i=1,...,n, (145)
G-k
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trunc(L,v) trunic(H, v}

-0.8} "V
. — = Tl

0 0.5 1 0 0.5 1

band(L, v band(H, v}

0 0.5 1

Fig. 2. Result for the elliptic model problem, g{z) random, when the homogenized
operator is approximated in different ways. The “exact” solution refers to the so-
lution with the full 32 x 32 homogenized operator

in one dimension and

1 ih g h
Ui ~ ﬁf f w(z1, za}dr1drs, ii=1,...,n, (146)
-1k J(G-1)n
in two dimensions. The whole vector (u1,... ,%,)T will be denoted by U. In two
dimensions, U = (w11,... ,%in, ¥21, -+ ;U2 -+ ,Hnn)> -

The 1D Elliptic Model Equation

We approximate (143) with the discretization

1

P
First, set f = —1 and let the coefficients of g(z) have a uniform random distribution
in the interval [0.5,1]. Take n = 256 and make three homogenization steps. The
coarsest level contains 32 grid points.

In Fig. 2 different truncation strategies are compared. The exact reference solu-
tion is given by the numerically homogenized operator at the coarsest level without
any truncation. This is equivalent to the projection onto the coarse scale of the
solution on the finest scale. In the top two subplots we use crude truncation, (125).

ApgiA_w = fi, i=1,...,n, up = —u1, Unp1 = Up.  {147)
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trunc{L, v) trunc(H, v}
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0 0.5 1

band(H, v}

Y] Exact ) .
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-1 -1
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Fig. 3. Result for the elliptic model problem, g(z} a slit, when the homogenized op-
erator is approximated in different ways. The “exact” solution refers to the solution
with the full 32 x 32 homogenized operator

In the bottom two subplots we use the band projection described in Sect. 3.3. The
approximation is performed on H, see (116), and on L after all three homogeniza-
tions. We see that band projection gives a better approximation. We also see that
it is more efficient to truncate H than to truncate L.

Next, the coefficient in the differential equation is changed to

(148)

1/6, 0.45 <z < 8.55,
g(z) = .
1, otherwise.

Al other characteristics are kept. The result is given in Fig. 3 and it shows that the
relative merits of the different methods are more or less the same. The structures
of the untruncated L and H matrices are shown in Fig. 4. It should be noted that
the local inhomogeneity of the full operator has spread out over a larger area, but
it is still essentially local.
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Fig. 4. Structure of the untruncated homogenized operators L (left) and H {right)
for the elliptic model problem, g(z) a slit. Gray level indicates absolute value of
elements

The 1D Helmholtz Equation

The equation (144) is discretized in one dimension, with the boundary conditions
w(0) =1 and ¥'{1} =0,

1 .
m—ﬁEA+g,-A_ui —wiu; =0, i=1,...,n,

ug == 2u(0) — w1, (149)

tYUn4+1 = Un.

We use w = 27 and the same g(z) as in (148) and again we take n = 256 and use
three homogenizations. We get

Iu=(L-w'hHu=0. (150)

Truncation is performed on L (or H) and not on I. The result is in Fig. 5. We
see that Helmholtz equation gives results similar to those of the model equation.
Again band projection is more efficient than truncation and approximating H; is
more efficient than approximating L.

The 2D Helmholtz Equation

‘We consider the two-dimensional version of (144}, with periodic boundary condi-
tions in the y-direction, and at the left and right boundaries, u(0,y) = 1, ue(1,y) =
0 respectively. This is a simple model of a plane time-harmonic wave of amplitude
one entering the computational domain from the left and fowing out at the right.
‘The discretization that we use is

1 1 ,
—--};Edﬁ_g,-gAfuu o ﬁAig,-gAEuig —wuy =0, Li=1,...,n,

Ui0 = Win, Uindtl = U1, Uptld ™= Upg UBog = 2 — U1,

(151)

This leads to the matrix equation
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frunc(L, v) trunc(H, v}

- =7

0 0.5 1

band{L, v} band{H, v}

Fig. 5. Result for the Helmholtz equation, g{z) a sli, when the homogenized oper-
ator is approximated in different ways. The “exact” solation refers to the solution
with the full 32 x 32 homogenized operator

1074, 0.4 <z <05 and
glz,y) = ly — 0.5 > 0.05,
1, otherwise.

Fig. 6. The variable coefficient g(z,y) used in the 2D Helmholtz example

LinU=F,  UFeV;n, n=m2", (152)

where m is a positive integer. L;y1 is homogenized following the theory for two-
dimensional problems in Sect. 3.2.

As an example we choose the g(z,y) shown in Fig. 6, which models a wall with
a small slit where the incoming wave can pass through. With w = 37 and n = 48,
we obtained the results presented in Fig. 7.

The operator after one homogenization step is truncated according to (142).
‘We show the results of truncation in Fig. 8, for various values of . The case v = 9
corresponds to a compression to approximately 7% of the original size. The structure
of this operator is shown in Fig. 9.
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Fig. 7. Result {for the 2D Helmholtz example. Solution shown for 0,... ,3 homog-
enization steps

4.2 Hyperbolic Problems

In this section we consider the time-dependent hyperbolic model equation in one
space dimension,
@) St = fwn),  w0H=0, w0 =b@). (15
T
The variable coeflicient g{z) is positive and bounded.

We will use three different methods to homogenize (153). First, we consider a
semi-discrete form of the problem, and only homogenize the spatial part of the oper-
ator. Second, we make a correction for the extra errors introduced when neglecting
the time-derivative. Third, we homogenize the full two-dimensional operator.

The most straightforward way to homogenize (153) is by a semi-discrete ap-
proximation,

s
ot

with gi = g((3 — 1/2)h). In matrix form we will have

+ %gid_ui = fi{t), i=1,...,n, ug = —uy, w;(0) = by, (154)

Ui+ LU =F, 2t = 7, (155)

which can be expressed in a wavelet basis as

%G’f) + (‘éj g;) (gf) - (gf) U Fs 6 W;, U F.€Vi. (156)
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Fig. 8. Results for the 2D Helmholtz example, using the one step homogenized
operator, truncated with different v
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Tig. 9. Structure of the homogenized operator L, after one homogenization step,
for the 2D Helmholtz example. Elements larger than 0.1% of max value shown

In principle, L;j+1 could be homogenized in the same way as in the elliptic case,
using the Schur complement. The motivation for this is (9), which shows that when
the scales of g{x/e) become very small, ¢ — 0, the effect of the time-derivative
vanishes, %Uf — 0. As a limiting process in classical homogenization, this is fully
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justified, compare [5]. This argument implies that in the first set of equations of
(156),

U, -
a_tf-'_AJU{-}-B‘?UC =Ff = Ut':Ajl(-—Bch“}‘F{_ %’f‘), (157)

the last term, — A7 1 -2 U is eliminated. Substitution into the second set of equations

§ ot
of (156) yields
al. - =
5 tLilUe=F {158)
with L; and F; defined by (104).

We found experimentally that using an approximation of the term "*'A;l“g"gUf
improved the homogenized operator. The correction is derived by taking the time-

derivative of {157),

(159)

— = A7 (—Bj

oU.  OF asz)
a

o T T ae

After a transient mode we have for the model problem (153) with g = g(z/s) and
gly) 1-periodic,
u(z,t) = 4(z,t) + sur(z, 2 /e, t} + O?), (160)

2
compare {5]. Hence, "gngf is of the same order as “g"f[ff since the oscillations on the

e-scale are not functions of time and it is reasonable to neglect —Aj_lé?';gUf in (159)

instead of —AT7Y 2U; in (157). Substituting (159) after elimination, into (156) gives

T
K; agf +(D;j ~ C; A7 'B;)Ue = F. — C; AT Fr + CjAf%?, (161)
with the correction matrix
K;=I+C;A;*B;. (162)
Hence, the corrected homogenized operator f;j and right hand side Fﬁf., are
7o 17 P —1 F&F —1 —28Ff
Lj = K; Ly, F; = K; F; + K; Ci4; v (163)

and we will solve (158), with L;, F; substituted for L;, F} respectively.

In principle, better approximations could be obtained by reiterating the steps
above. After repeated differentiations of (1569) we could choose to eliminate terms
involving successively higher order time derivatives of Uy. However, the condition
numbers of the correction matrices produced in this manner rapidly deteriorate.

Let n =128, f = 0 and

(164)

b() sin®(4rz), 0< T <0.25
) =
0, 025 <z <1,

The result at time ¢ =1, is given in Fig. 10 for the case of g(z) uniformly random
distributed in [0.1, 2] and g{z) as in (148). The effect of the correction is shown to
the right. In these calculations, the time-integration was replaced by a fourth-order
Runge-Kutta method.

Because of causality the full operator must be lower triangular in the hyperbolic
case. The homogenized operator will keep this property in the Haar case. After two
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Fig. 10. The solution u{x) at t = I for the hyperbolic case, using different g(z), with
and without first order correction. Solutions shown are the exact solution, computed
with the full operator, and solutions computed with the operator homogenized one

and two steps

5 19

15 20 25

Fig. 11. Structure of the untruncated homogenized operators L (left) and H (right)
for the hyperbolic problem, g(z) a slit. Gray level indicates absolute value of ele-

ments
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truncL(L, v} truncl{H, v}
0.8 0.6
k=]
§0.4 0.4
% - Exact — Exact
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0.6 0.6
©0.4 - 0.4
% — Exact —— — Exact
- y=]2 = v=f
o2t . 02f _
" - ved
0 0
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Fig. 12. Solution u(z) for the hyperbolic case, nsing different g(z) and different
approximations of the homogenized operator. The “exact” solution refers to the
solution with the full 32 x 32 homogenized operator

homogenization steps the operator, with g{z) a slit, has the structure shown in
Fig. 11. In view of this we approximate I and H, see (117), by truncation to lower
triangular form. In Fig. 12 results using this truncation is displayed. The same two
types of g, as in Fig. 10 were used. Like in the elliptic case, truncating the H matrix
is more efficient than truncating L. When the correction method is used it is harder
to approximate the resulting homogenized operator, L, with a sparse matrix. It will
not be as diagonal dominant as in the non-corrected case.

In our third approach we leave the semi-discrete form and instead make a full
two-dimensional discretization of (1583) in (z,t) space, using the implicit Euler ap-
proximation in time,

-:;At_uﬂ-{—%giﬂz_uu“—'fi, LE€=1...,n,

Ug,e = —U1,2, (165)

w0 = 2b; — w1,

Like in the two-dimensional Helmholtz case, Sect. 4.1, we arrive at a linear system
of equations,

L U=F, UFeVipn, n= 2j+1, {166)

which is homogenized in the standard way, with the Schur complement.
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Fig. 13. Result for the 2D hyperbolic case, with g(z) a slit

Using the same data as in the semi-discrete case, but with n = 48, we get for the
case of g as in {148) the results in Fig. 13. We used the untruncated homogenized
operator, but ifs structure indicates that, like in the 2D Helmholtz case, good sparse
approximations can be found.

5 Waveguide

In this chapter we study a waveguide filter containing a fine scale structure, to
illustrate some ways of using the numerically homogenized operator L in an appli-
cation. The filter is shown in Fig. 14. 1§ is composed of a straight waveguide with
small gratings engraved on one of its sides at regular intervals. At one point the
distance between two of the grating teeth is increased by 50%. This quarter-wave
step gives a narrow-band filter effect and causes waves of one resonant frequency
to pass through, while reflecting adjacent frequencies. The most important feature
of the waveguide filter is the interplay between a small scale periodic structure
{the gratings) and a localized inhomogeneity (the quarter-wave step). For this case,
analytical homogenization techniques do not apply. The ability to separate frequen-
cies makes the filter a useful component in many communication applications. For
instance, it allows an optical communication link to be partitioned into many chan-
nels where signals can be selectively transmitted and detected. Applications can be
found in {31] and [23]. The parameters used in the design of the filter determine
many of its relevant properties, and it is of interest to simulate the filter numerically
in order to anticipate the influence of these parameters.
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S — e

Fig. 14. Schematic picture of the waveguide with parameter specifications

We model the waveguide with the two-dimensional Helmholtz equation,
V- (e(r, 1)’ V) +wiu =0, (167)

where ¢z, y) represents the material dependent speed of propagation. In our case, c
is piecewise constant and (167) should be interpreted in the distributional sense. See
[36] for more details. In Fig. 14 we specify the parameters that define the waveguide
{w,a,d, A,§ and 7). Related to these is S, denoting the number of gratings, which
for a real filter would be a very large number. Farther parameters are c¢o and ¢,
the propagation speeds inside and outside the waveguide, which we fix to becg =1
(vacuum) and c; = 1/3.3 {GaAs).

5.1 Numerical Approximation

We approximate (167) in the rectangle [0, w]x {—b,b] on a uniform N x M size grid,
With the same notation as in Chap. 4, we use a second order scheme given by

1. 1
ﬁA-{—Ci—l/LEAiukf B %E'Aici’g_llz.d?_%kz +w2uk3 =0 (168)

fork=1,...,N and £ = 1,..., M. This discretization correspends to the same
divergence form as the continuous problem (167), which ensures that the numerical
solution satisfies the same interface conditions as the weak solution of (167} when
¢ is discontinuous.

To complete the continuous and the discrete problems, (167, 168), extra con-
ditions must be given at the boundary of the domain [0, w] x [-b,b]. At y = £b
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we use a Neumann boundary condition u, = 0, discretized with the second order
approximation

1 1

h h
This is motivated by the fact that the solution should be almost constant zero far
away from the waveguide. For the boundaries at = § and £ = w we need absorbing
boundary conditions, since we are looking for a wave sclution propagating along
the z-axis. We use

Af g0 =0, AY g =0, k=1,...,N. (169)

1 1
Eﬂ-i-uo,e + a1to,e = aztin{ys), EA+'UN,C + azun,e =10, (170)

for £ =1,... , M with a4, j = 1,2,3 chosen such that the a discrete solution of
the waveguide problem without gratings satisfy both {168) and (170) exactly. Here
uin{y) is the wave we send into the waveguide at © = 0.

The resulting linear system of equations is then of the form

LU=F, UFEVa®Vm, L{(Va®Va,Va®Vy), (171)
where M = 2™ and N = 2".

5.2 Direct Simulation

As an example of how the filter works, we simulate a test problem with the speci-
fications
w=1, a=1/4, S§=32  d=17/1024, b=4/128,

A=32/1024, T =4/1024, § = 4/1024, M = 64, N = 1024, (172)

The left part of Fig. 15 shows examples of solutions in the case of total reflection,
w/2m = 44.5, and total transmission, w/2m = 45.155. In the right part of Fig. 15 the
frequency response of the same filter is shown. This function measures how much
power is transmitted through the filter at each frequency. For a fixed frequency the
response is defined and computed as

) Eff; I'w(w,:tf)|2d:€fz Soems Jun.e)? ‘
oo lun@)Pdy 0 i (ye)]?

We note that within its operational range, the filter indeed just lets through waves in
a narrow frequency band. The right figure also shows the stability of the response
under perturbation of the parameters a and b. The case (i) is the original test
problem (172). In (ii) we modified o to 1/8 {and N = 768, w = 3/4). In (iii) we
changed b to 24/1024 (and M = 48). As can be seen, these perturbations only have
a small effect on the response.

T, (173)

5.3 One-Dimensional Models

To reduce the complexity of solving the full Helmholtz equation {167), and to gain
better understanding of the physical processes, one often wants to derive lower-
dimensional models that capture the significant features of the full model. A typical

model would be of the form
due

d 2 2.
d$ceff(a:,w) Ty Twue =0, (174)




36 Bjirn Engquist and Olof Runborg

— Q)
()
(iii}

43 44 45 48 47 48
X 2R

Fig. 15. Plots of solutions to test problem (172). Left figures show || for frequencies
in the stopband (top left) and at resonance (bottom left). Right figure shows the
frequency response Thaw(w) for the same test problem (i) and for problems with
perturbed o (i) and & (iii)

where u, is related to u, the solution of {167), in a simple way, see e.g. [4,37]. We
will here show how the homogenization technique described in Chap. 3 can be used
to derive a family of one-dimensional models with different properties. In these
one-dimensional models %, is an approxiraation of the solution, projected in the
y-direction on a space of low dimension.

The full two-dimensional operator is first homogenized multiple levels, but only
in the y-direction. We hence use Xo = V,, ® V,» with m’ < m as the small space.
The operator is subsequently truncated and identified with a discretization of a
one-dimensional differential operator acting on V, x -+ x V,, (2""' factors). The
resulting operator and right hand side approximate a system of one-dimensional
partial differential equations of size M’ = 2’“’, the number of grid points left in the
y-direction. The order of the differential operator corresponds to the bandwidth of
the truncated operator. In conclusion, three different parameters can be varied:

1. The size M’ of the system of equations,
2. The order r of the differential operator,
3. The wavelet system used in the homogenization.
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In general there is a trade-off between M’ and r, such that a smaller M’ requires
a larger r. The reason is that the bandwidth after truncation usually needs to
increase with the number of levels that an operator is homogenized in order to
maintain good accuracy.

To exemplify the process described above, we derive a one-dimensional model
for the test problem given by

w=1, a=3/16,5=10, d=75/64,b=1/8, (175)
A=1/8 7=1/64, § =1/64, M =16, N = 64.

We use a medinm size model, with M’ = 4, r = 2, and X, given by the Daubechies
wavelet system with four vanishing moments. Numerical experiments with different
wavelet systems suggest that in general the higher order of the wavelets, the better
the result.

Let us introduce the continuous 4 x 4 system model with the unknowns u =
(‘11.1,%2,%3,?1,4)* [S C4,

B{B(2)8u) + C(x)u+w’u =0,  B(z),Clz) : R~ R"™, (176)

This ansatz differs from (174) in that it also has a variable coefficient in the lower
order term. On the other hand, none of the coefficients are assumed to be frequency
dependent. This is preferable here, since it will reduce the cost of computing the
frequency response of the filter.

‘We now proceed as follows. The discrete two-dimensional problem is homog-
enized two levels in the y-direction and afterwards the unknowns in the equation
LA = f are reordered to the blocked form

@11 @12 -?13 @14 i fl

Lyy Lay Loz Lag g F2 I F#

T T T T = 3 iy Ji ij n,; ¥n)- 1
Lot Lay Las Los . i) i, fi € Vo, Lij € L(V,,VR). (177)
L4y Layg Ly Lag ) \ia Ja

Each of the suboperators L;; is truncated to tridiagonal form, which essentially
corresponds to truncating the full operator L to 15-diagonal form (before reorder-
ing). We identify the unknowns @; and fi with ene-dimensional grid functions,
4 = {8} = {wi(zx)} and f; = {fix} = {fi(zx)} for some w; and f;. Further-
more, the truncated operators L;; are identified with the discretization

1 1 _ 1 -
arlis = 75 Aabig(Tr-1/2) A + & () + 5yi{Ee) (€ + € D+ (178)

where £ is the displacement operator defined by £z = 41, The ; terms are
needed since L;; is in general not symmetric. Each L;; can be seen as a discretiza-
tion of a second order differential operator acting on the grid function @;. After
assembling the suboperators by setting B = {b;;}, € = {&;} and I' = {v;;} we get

1 5 1
758+ B(zh1/2)A-Us + C(@)Us + 5T (22)(Uss + Unr) + Ui = Fi, (179)
where we also assembled the grid fanctions U = {&} and F' = {f;}. If C(zz) =

Clxy) + I(xy) and Blzy) were real and independent of w and if F' = 0 this could
be identified with a second order discretization of (176}, Thus, the matrices B(z)
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Fig. 16. Frequency dependency of coefficients. Relative L2-difference between coef-
ficients computed at w and at w /27 = 10.3 (above). Relative L-difference between
imaginary and real part of coefficients (below)

and C'(z) represent the effective material of the waveguide, similar to ceg(z,w) in
(174).

In fact, the computed coefficients satisfy these conditions to a fairly good level
of approximation, which is illustrated in Fig. 16. The coefficients are computed for
a range of w and the relative L-difference, compared to the coefficients computed
at resonance, w/2x = 10.3, is plotted in the top picture. The B{z) coefficients vary
on the order of only 1% in the interval. In the bottom picture the L2-norm of the
imaginary part of the coefficients relative to the real part is plotted, showing that
it is at worst a little more than 1%. This indicates that the model {176) is justified.

In Fig. 17 we show the frequency response computed in two different ways, and
compare them with the response for the two-dimensional model. The first technique
is to recompute the coefficients for each new frequency. This gives a very good
agreement with the response of the full model. The second technique is to compute
all coefficients, once and for all, at the resonance frequency, w/27 = 10.3. Even
now the model captures the true response fairly well. We could hence calculate
all parameters of the model for one single frequency and the model will remain
approximately valid for the whole frequency band that we are interested in.

The computational gains can be large for the methed desecribed above. Since the
bandwidth of the one-dimensional model is M'r, the cost of computing the solution
for k frequencies is CkM'*r?* N flops, plus the k-independent cost of constructing
the homogenized operator. At least for large k, the work of computing the solutions
dominates. Comparing this with a direct method, which requires CENM? flops, we
get a cost ratio of

M12T2
M3’
which is often small. For the test problem (175) it equals 1/64.

(180)
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9.8 1w i 105 11 15
Fig. 17. Frequency response of test problem (175) computed using the one-
dimensional model given in the text. Results shown when response was com-
puted with the full two-dimensional model (solid line), with the one-dimensional
model and coefficients recomputed for each new frequency {crosses), with the one-
dimensional model and coefficients computed only once, for w/2r = 10.3, (circles)

5.4 The Homogenized Operator as a Subgrid Model

In this section we will use numerical homogenization to obtain linear subgrid models
of the details of the waveguide and use them to solve a large problem on a coarse
grid. Qur target problem is given by the parameters

a=3/16, d=9/128, b=1/8, w/2r=11
A=1/8, r=3/128, §=3/128, M =32, N =128,

with varying lenpth w and number of gratings S. In order to solve this problem on
a coarse grid, we would need the homogenized operator L and right hand side F.
The key observation here is that a good approximation of these can be obtained
directly from a much smaller problem, the analogue of the cell problem in classical
homogenization.

‘We identify four distinct parts of the waveguide: the initial part, a grating tooth,
the quarter-wave step in the middle and the end part. Let 4!, &, and #@° denote
the solution at grid points in the initial segment, middle segment and end segment.
Moreover, let i, be the solution at grating tooth k. Then we can decompose L@ = F
as

(181)

ﬁi Eﬁ \
as it
. Tsya Fgy
(L+4L) EThi = _F’“ (182)
ﬁt512+1 F §/2+1
ok F

\ @ /) \ F )
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where F follows the same partitioning as & and

{183}

]|
If

with elements being zero outside the delineated areas. The matrix §L is the residual
between L and L, with all elements zero within the delineated areas.

With this notation we now observe that since I is diagonal dominant, L will
be small. More importantly,

i B, FleFf, V& (184)

We will interpret L', I*, L™, and L® together with F', F* F™, and Fe as the
subgrid models for the corresponding parts of the geometry. {Since L} and F} are
approximately the same for all & we will henceforth drop the subindices.)

The strategy for constructing an approximation of the homogenized operator of
the full problem is then clear. First, we compute an approximation of I, LY, B,
and L® by homogenizing » much smaller problem. At the same time approximations
of ', F*, F™ and F* are also obtained. Second, we assemble the subgrid models
according to the block structures of (182) and (183) to obtain an approximation of
L and F. Finally, 81, is neglected.

In our example we use (181} with w = 1 and 5 = 10 as our small problem. This
is a well resolved problem with eight gridpoints between the gratings and approx-
imately 15 gridpoints per effective wavelength in the z-direction. The operator is
homogenized three levels in the y-direction and one level in the z-direction, corre-
sponding to0 a grid size of M = 4 and N = 64. This gives a very coarse resolution
in the y-direction, in particular no resolution of the gratings, and a reasonable res-
olution in the z-direction. This grid size should be enough to represent the solution
in a quantitatively correct way.
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Fig. 18. Result of the subgrid technique. Relative L?-error of solution as a function
of the bandwidth

For the large problems denote the Correspgl.liding_ parameters vw_thr a prime sign.
We will have w' > 1 and §' > 10 and weset L' = L', L™ = L™, L* = L*®, and

L 1<k<2,
L 3<k<S§/2-2,

Li = qLiyqs—snge S/2-1Sk<S/2+2 (185)
Lssays §/2+3<k<8 -2,

Liis.er S -15k<S.

So far we have deliberately been vague about the exact size of the areas in (183),
and hence the size of the subgrid models. We now introduce a parameter v, the
band width of L, with which we all sizes can be defined at the same time. The value
of v will determine the accuracy of the solution.

The results of this computation is shown in Fig. 18, where the relative L -error
between the sohition computed using the subgrid technique and the exact solution,
projected onto the coarse subspace, is plotted as a function of v, for five different
problem sizes. Qur small problem, w = 1,5 = 10 is also included, for comparison,
in which case v just indicates the bandwidth of the truncated operator. Even for
a problem 16 times as large as the small problem, the relative L?-error can be
reduced to 10%, by choosing v big enough. Note that even when the relative L*-
error is rather large, a good quantitative picture of the solution is obtained in the
interior of the waveguide. This is exemplified for the case of w = 16 and v = 22
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Fig. 19. Result of the large w = 16 problem approximated with v = 22. Plot of
exact sohution (solid) and approximate solution (dashed) as a funetion of z for four
y-values corresponding to the four grid points in the y-direction of the coarse mesh.
Real part of 4 shown in the z-interval [0, 2], the region with the largest errors

in Fig. 19, where the part of the solution with the largest errors is plotted. The
relative L-error in this case is of the order of 50%.

To estimate the gain in using the subgrid technique, let M and N denote the
grid size of the large problem. The exact operator has a bandwidth of M. The
cost to solve this problem is therefore CNM? Hops with a direct solver. Suppose
our coarse grid is of the size N/2" and M /2™, corresponding to homogenization n
times in the z-direction and m times in the y-direction. The direct solution using
the subgrid model then costs CINMp?/2"T™ giving a ratio between the costs of

g=n-m (1)2, (186)

In our largest case, w = 16, with » = 45, we get an approximate ratio of 1/8.
We must also compute the subgrid model, although this only needs to be done
once for all five computations above, and for a fixed grid size M', N’ that can be
considerably smaller than M, N. This cost is dominated by the other factors.
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6 Multigrid

Many properties of the homogenized operator closely approximates those of the
original operator. The lower eigenvalues and the corresponding eigenfunctions are,
for example, well approximated in elliptic problems, see Santosa and Vogelius {40]
for the classical case, and for the numerical case, Beylkin and Coult [9]. It is thus
natural to try using an approximation of the homogenized operator as the coarse
grid operator in a multigrid scheme. The largest potential advantage would be for
problems where traditional multigrid is less efficient. Elliptic problems with highly
oscillatory or strongly discontinuous coeflicients are typical examples. Another class
of such examples are advection dominated advection diffusion problems. For these
equations the lower eigenmodes have large high derivatives and standard coarsening
methods does not give satisfactory convergence. The coarser grids can not resolve
the oscillations and it is therefore better to use an operator where these oscillations
are not explicitly present but where there effect is taken into account.

In [19,20] this idea was explored and it was shown that using the numerical
approximations of the analytically homogenized operator could be advantageous as
a coarse grid operator for certain problems.

There are some factors, which make it more attractive to use the numerically
homogenized operator, as developed in this paper, rather than the analytic form.
A wider class of problems can be reached. Strict periodicity is not essential. Fur-
thermore there are natural wavelet based prolongations and restrictions matching
the definition of the coarse grid operator.

6.1 Algorithms
Let the system of linear equations,
LpUp = Fp, {187)

come from the discretization of a differential equation, (1}, on some grid {25, where
h represents the step size.

For notational purposes, we briefly describe the V-cycle method used in this
context. Given an interpolation operator, I, where the superscript refers to the
fine grid and the subscript refers to the coarse grid, and a restriction operator,
I we can define a multigrid method recursively. The description of the two-levet
method is as follows. First, relax one or a few steps on the fine grid {2, to get an
initial approximation Uy, Then, compute the residual Ry = Fj — Ly Uy, Testrict the
residual to the coarse grid {225 @ Hop = I?* Ry, and solve the residual equation,

LonEap = Raa, (188)

on the coarse grid. Set U, = U + I;‘hEzh and relax again one or a few steps on the
fine grid. This describes the two-level method. Based on this, we define the V-cycle
multigrid scheme recursively.

The first step in the wavelet homogenization of (187) can be written

" _{AB Uy [ Fry
i~ (A2) (5) < (H) owe
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Calculating the inverse of the factorization, and solving for U, it is natural that the
interpolation and restriction operators should be defined by,

Ho=P-gas ey, ow=(3) oo
where, as before, P* and (J* are bases for the scaling and wavelet spaces respectively.
The coarse grid operator should be

Ly, =D —-CA™'B, (191)

which is the Schur complement. Although the matrices A, B, C and D are as sparse
as the original operator Ly, A~ is not. We observe that the fill-in that results from
inversion decays exponentially as we move away from the original structure. This
was discussed in Chap. 3.

The above procedure may be repeatedly applied until the desired coarseness is
reached. Although the level of fill-in in the operator A™' increases, the magnitude
of the values decreases as we go away from the diagonal. This property of decay
makes compression possible. Properties of wavelets play here an important role.
In practice a compressed version Lap of Lo, should be used. One thing to keep in
mind is that the number of gridpoints in each coeordinate direction must be an even
namber.

One step towards improving efficiency is to avoid computing the inverse exactly.
To this end, we use ILU(0) to compute the incomplete LU factorization, and then
use a sequence of forward and backward substitutions to compute the inverse. For
the compression, we use a thresholding procedure. Any values that appear in the
inverse in locations that hold zero values in I2 are set to zero, thus eliminating any
fill-in over the original matrix, D. We will call this method the truncated wavelet
multigrid method, and we will refer to the original method as the dense or full
wavelet multigrid method.

6.2 Numerical Examples

‘We shall give a few examples in which the wavelet based multigrid method has been
applied to two dimensional model problems. The examples are from De Leon, [30].
In the first set of examples the elliptic operator is,

for a Dirichlet problem on the unit square. ‘The standard 5-point numerical approx-
imation is applied to 16 x 16 and 32 x 32 grids, resulting in system matrics of size
256 x 256 and 1024 x 1024 respectively.

The coefficient g{x,y) is oscillatory and two examples are studied,

glz,y) =1+ 0.85in(10v/27z), {193)
gz, y) = 1+ 0.8sin(10v/27(z — ). {194)
The analytically homogenized operators are,
- a &
= p+a & a° p+ a8t
= — el (R - — 1
L 2 Jz? +@-u Bxdy 2 8y’ (196)
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respectively, with

1

= i in{2mrz)) " 7
p= ( fo (1 + 0.8 sin(2ma)) d:ar) , (197)
@ = fl 1+ 0.8sin{2rx)dz. (198)
o

Convergence results are given in Fig. 20 for the Haar case. Comparison is made with
the standard finite difference multigrid, [22], and with standard finite difference
multigrid with the coarse grid operator replaced by a difference approximation of
L above. The effect of compression can be seen in Fig. 21 for booth Haar and
Daubechies wavelets with four vanishing moments.

Consider also a problem with piecewise constant g(z,y) in the form of a checker-
board pattern with 16 squares and the g-values 1 and 10°. The standard multigrid
method does not converge and we compare with an algebraic multigrid method,
[38}. The wavelet technique works quite well but the convergence rate is reduced if
the compression is too extreme, see Fig. 22.

Finally we approximate the advection diffusion problem,

—sAu-+b-u=90, x&il, (199)
u= flz,y), o€, (200)

where (2 is a unit square and ||b]} 3> £ > 0. The five point formula is used for the
Laplacian and upwind differencing for the advection term,

b(z,y) = ((2y — 1)(1 — z*), 2zy(y — 1)) (201)

Figure 23 shows that the convergence rate is quite good and essentially independent
of the stepsize. In this case the convergence does not deteriorate with ILU(0) and
compression.

— Haar - dense

Norm of residuai

" —— Haar - dense
---- Homogenized ---- Homogenized P
-~ Standard --- Standard

n 15 7
Mumber of V-cycles

10
Number

15 20 26
of V-cycles

Fig. 20. Convergence result for g(x,y) defined by (193). Three level V-cycle with
one Gauss-Seidel smoothing iteration is used. Left frame 16 x 16 grid, right frame
32 x 32 grid
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Fig. 21. Convergence result for g(z,y) defined by (193) in left frames and by (194)

in right frames. Three level V-cycle with one Gauss-Seidel smoothing iteration is
used. Fine grid is 16 x 16. Percentage of zeros is for coarse grid operator, second

level
0% 10* . ' : .
— Haar ~ ILU{0} + frunc ~— Haar - 1LU{0} + trunc
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Fig. 22. Convergence result for 2-level iteration, g(z, y) from checkerboard problem
on 16 x 16 grid. Left frame 1 Gauss-Seidel smoothing iteration, right frame 5 Gauss-
Seidel smoocthing tterations
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Fig. 23. Convergence result for advection diffusion problem. Left frame 16 x 16
grid, right frame 32 x 32 grid. T'wo level V-cycle with one Gauss-Seidel smoothing
iteration is used

7 Nonlinear Equations

Homogenization of nonlinear equations are usually much more complicated than
the linear equations we have considered so far. For some equations, however, the
linear numerical homogenization methods described above generalize. The basic
assumption needed is that the fine scale part of the solution is small so that we
can linearize around the coarse scale. The ideas in this chapter were developed by
Beylkin, Brewster and Gilbert in [7]. See also {27].

Suppose Lijy1 @ Vi41 = Vi1 is a nonlinear operator. Using the same notation
as in Sect. 3.2, the nonlinear decomposition of L;4: (U} = F can be written

W Lj (Wi W5 U)
Qi (L1 (Q3Ue + P U ) = Lja (P7U) ) + QL (f’fUc)
B (Ljs1 (QUs + B}UG) — Lia (PyU) ) + PiLja (pj*Uﬂ)

= (G ) == (2) )

It

Like in the linear case, Ur can be eliminated from the equations and the homogenized
operator is

L;(U:) = Dj(Ue) + Ci(A7  (Fr — B (Ue), U)), (203)

where A7 '(u,v) is the solution w to A;{w,v) = .
Counsider nonlinear operators of the type

L(u) = f G(t, u(t))dt + H(z, u(z)), (204)
0]
The equation L{u} = f could result for instance from a nonlinear ODE such as

LH(w) = Clayw),  HOuO) = (205)
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For simplicity we here let 4 be a scalar function, G, H € C* and f = const. Similar
derivations can be made also for systems of equations, non-smooth coefficients and
variable f. One application that was studied in [27], is the steady state equations
for

Ut = Upa —qy® +u -,
v = Oz -+ £{n + a1 (z)v + ao(z)), (206)

which can be formulated as a system of nonlinear QDEs. These are the Fitzhugh
Nagumo equations with diffusing inhibitor, widely used as a model for pattern
formation in excitable reaction-diffusion systems.

For the discretization of {(204) we use the Haar basis, but since ¢ and H are non-
linear, it is more convenient to rescale and approximate cell averages of u instead of
its Haar basis coefficients. Hence, we introduce P; = P;/v2 and Q; = +/20;.
Define the grid jr1 = {@j014} = {(k + 1/2)270+*D} and the grid function
iy = {ujpe} = Z(j'i'l)/?Pleu(m), where k = 0,...,2" — 1 and Py, is
the orthogonal projection in L*([0,1]) to the Haar scaling space V;i. Further-
more, recursively define the succesively coarser grids @; = F;x;41, cell averages
U; = Uiy = Pju;p and the fine scale parts ug.,_l = (J;u;41. We have the follow-
ing discretization of L(u) = f,

Lija(ujpr) = Kjpa G(®41, 2511) + H{mjp1,w541) = f, (207)
where
lg..o
Kit1 = &jn 1 CO e rFTIRET g =) (208)
P |
1...1 %

and G, H being applied elementwise to its vector arguments, e.g. G(x;,u;) =
{G (2, u5)} The following easily verifiable formulae hold

8; d;
QiKijrs = =5 Fj FiKjp = K; P+ 2Q;. (209}
After also rescaling B; and A; we get
5.
Bi(u;) = =5 PiG(w; 42, 2P uy) + Qj H (w41, 2P wj), (210)
6' - *# *#
Aj(ujyr,u5) = =2 Py (G(ﬂ’jﬂ: Qjui+1/2 + 2 u;) — G(wj41, 2F; uj))
+ Qs (Hs, QFuer /2 + 2P wg) — Hiwmjan, 2P wy) ). (211)
When G and H are linear functions of u, (204) reduces to {120), and G(zj41,%j41) =
diag(a(®;r1))ujr1, H(®j41, wig1) = diag(b{me;+1))u;41. Consequently, A; is diag-
onal and the homogenization step is very easy, as was mentioned in Sect. 3.3. In

the nonlinear case, 4; {u§+1, ;) is still local, and its jacobian with respect to u§+1
for fixed u; is diagonal.
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In order to treat the nonlinear case, we make the simplifying assumption that
§; ~ u§-+1 is small. We then have the Taylor expansions,

52
PiG(wjq1, w541) = G (5,05} + - Gw (x;,145) + 4+1 Gaou (5,5}

+ %Gm (s, u5) + O (57) (212)
QiG (@1, wip1) = ;G (w1, 15) + wiy Gu (7, 45) + O(SF), (213)

where, again, all functions are applied elementwise. This gives the simplified ex-
pressions

8
Bj(u;) = —5-Glwj, ug) + 8 He (5, u5) + O(35) (214)
Aj (Ul u5) = ui H, (25, u5) + O(5). (215)
Hence, the solution to the cellproblem 4; (u§+1,uj) = — B, (u;)} satisfies
£ G(zj, u;) — 2Hs (x5, u;) 3
i (T, uy) = §; + O{67). 216
i (zsoy) = 0 L 2R @) (216)

We also compaite approximations of C; and Dj,

Dj(u;) = PiK;1G{@j1, 2P u;) + P H (441, 2Ff uy)

82
= K; (G (21, w5) + & Goo (w5, 7)) + H (7, w5)
8 5 4
+ g Hoo (5, u5) + -G (w5, 45) + O (5}, (217)

C(ujs, u) = K Py (G(wj+1,ua'+1) — G@j+1, 2Pfuj))
5‘ £
+ —SJ—QJ" (G($j+1:“j+l) ~ G{®j41,2F; u,-))
+F; (H(ma‘+1 s i) — H{mj, ZPfu:‘))
)2

of ;
- K, (fﬁlﬂam (@5,u) + 1, (o), u)

J diu
+ J"’”“Gu( i) + ’;“Hm(mj,ua)

+ (‘%‘H)z

o Huu (@5,5) + O (61). (218)

Substituting (216) into the expressions for C; and D gives a fourth order approx-
imation of L;,

Lilu;) = K;G(ws, u;) + H(ws, ui) + O (87) (219)
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where
— 6‘;': 6ju§+l
G ;) = G (5, %) + - Gz (@5, 85) + 7~ G (25, %) (220)
£ 2
u.
+ %Guu (05, 15),
. 632 5j'ﬂa§'+1
H(wj,wi) = H (@5, %) + 4 Haa (25, 05) + 5= Go (@5, ;) (221}
FIETY (uf ))? 2
+ "ﬁ"“é"—"t""l"Hmu (@i, ui) + ’"""J:Si‘LHuu (@5, ;) + EJGE (@, u;),

and 'u.j-_,_l given by the first term in {216). We hence get explicit formulae for & and
H given 7 and H. As for linear equations, the homogenization can the be repeated.
In certain cases, the form of G and H will be preserved by & and H, such as when

G(ﬂ:)'"') = go(ﬂ:,’u) + 5,?91(3::“))
H(z,u) = ho(z,u) + 67h1 (2, u), (222)

where g; and h; are O(1).

Another approach is based on solving the nonlinear cellproblem (216) numeri-
cally, instead of using Taylor expansion, see {7]. When there is an apriori bound on
u; one can discretize also in this variable. The functions G and H are then repre-
sented and computed on a finite grid in both arguments. This is a more expensive
method, but also more accurate when uf,-_'_l is not small.
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