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Abstract of the Dissertation

Rate Equations in Materials Science and

Simulation of Multiphase Flows

by

Frédéric G. Gibou

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2001

Professor Stanley Osher, Chair

The work of this thesis is divided into two main subjects: The first concerns rate

equations arising in materials science, and the second the design of a numerical

method to account for the thermal conductivity in flame propagation.

To compute the capture numbers σs used in mean-field rate equations that

describe epitaxial growth, we use the Island-Dynamics model based on the level-

set technique. In this approach, islands grow with a velocity that is computed

from solving the diffusion equation for the adatom concentration. The capture

number for each island is then calculated by integrating the growth velocity of an

island around the island boundary. Thus, our method by construction includes

all spatial correlations between islands. We found that the functional form of

the σs is, to first approximation, affinely dependent on the island sizes. We then

derive an analytical formula for the σs at steady state and find scaling laws for

the adatom density and total number density.

The treatment of the second subject is twofold. First, we design a symmetric

implicit method for solving the Stefan problem for the temperature; then we

apply this algorithm to accurately account for the thermal conductivity in the

xiii



context of multiphase flame propagation.
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CHAPTER 1

Rate Equations and Capture Numbers with

Implicit Islands Correlations
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1.1 Introduction

One of the challenges that material scientists currently face is to build the next

generation of semiconductor materials. Applications include device structures in

solid-state physics, electronics and optoelectronics that will be used, for exam-

ple, in satellite communication. The development and refinement of molecular

beam epitaxy (MBE) has been among the most important advances towards an

engineering solution, because this technique obtains surfaces that are extremely

clean. Broadly stated, MBE is simply crystallization by condensation or reac-

tion of a vapor in ultra high vacuum, and under this process materials may be

grown layer by layer (see Fig.(1.1)). Of all the different processes that occur

during growth (see Fig.(1.2)), we only consider here deposition, nucleation and

attachment to islands. That is, we place ourselves in the case of ‘irreversible’

aggregation. The thin-film growth can be monitored using a RHEED (Reflection

High Energy Electron Diffraction) signal, whereas an STM (scanning tunneling

microscope) allows us to look at its surface morphology after the growth (see

Fig.(1.3)).

The ultimate goal is to be able to control the growth of the materials to obtain

the desired surface morphology. We therefore need to understand the physics at

the nanoscale level which is best done using a model-based approach rather than

an empirical one. It is in part for these reasons that advances in modeling crystal

growth under MBE is such an important topic. Modeling early stages of epitaxial

growth is itself of great practical interest for material scientists since the surface

morphology in the submonolayer regime greatly influences the later stages of the

growth process and therefore the properties of a thin-film device. Models to

study epitaxial growth that have successfully reproduced such quantities as the

cluster size distribution (CSD) of islands on the surface are kinetic Monte Carlo

2
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Figure 1.1: Atoms from the effusion cells are deposited on a flat substrate at the

rate of F monolayers per seconds. There, they diffuse freely until they meet to

form a dimer (two atoms) or attach to an existing group of atoms called islands.

(KMC) methods [1, 2, 3] or, more recently, the Island-Dynamics model based

on the level-set method [4]. However, both of these methods include stochastic

processes, so that many simulations need to be done (and averages need to be

taken) in order to produce physical quantities of interest.

On the other hand, mean-field rate equations, introduced almost 30 years

ago [5, 6], offer a completely deterministic description of epitaxial growth. Such

equations for the submonolayer regime (without detachment or evaporation) typ-

ically read as

3
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Figure 1.2: Different processes during Epitaxial growth. (a) deposition, (b) dif-

fusion, (c) nucleation, (d) attachment, (e) detachment, (f) edge diffusion, (g)

diffusion down step, (h) nucleation on top of islands, (i) dimer diffusion.

dn1

dt
= F − 2Dσ1n

2
1 −Dn1

∑
s>1

σsns, (1.1)

dns

dt
= Dn1(σs−1ns−1 − σsns) for all s > 1. (1.2)

where ns is the density of islands of size s, n1 is the density of adatoms, D is

the diffusion constant, F is the deposition flux, and σs are the capture numbers.

Clearly, deterministic equations that accurately reproduce the relevant physical

quantities would be of great practical value; they usually are easier to understand

and analyze, and can yield theoretical insights that cannot be reached within a

4
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Figure 1.3: STM image of a thin-film obtained by Barvosa-Carter and Whitman

at NRL. The different levels of grey represent different layers. The clear patches

are islands forming on an existing layer.

stochastic framework. For example, nucleation theory predicts scaling of island

densities as a function of temperature and deposition flux [6]. This result has

been confirmed in simulations and experiment, and is, in fact, used to extract

microscopic parameters such as diffusion constants from experimental measure-

ments [7, 8]. Thus far, however, there has been no success in finding deterministic

equations that, when integrated, produce the correct results for quantities that

include spatial information. In particular, no deterministic approach has repro-

duced the CSD as observed in experiment and KMC simulations [9]. The main

problem with using rate equations in the submonolayer regime is that the func-

tional form for σs is not known. Bales and Chrzan [10] proposed an analytical

5



formula in terms of modified Bessel’s functions. Their work is based on the mean-

field assumption which states that at every point outside of an island, the local

densities take on their average values, so that the distribution of surrounding

islands is independent of its size. The integration of rate equations using this

analytical form for the capture numbers gives excellent agreement with KMC

simulations for the adatom density and also for the total number density. How-

ever, it fails to reproduce the correct cluster size distribution, the reason being

that the mean-field assumption excludes correlations between islands. Bartelt

and Evans addressed this issue and numerically computed capture numbers by

monitoring the aggregation of diffusive adatoms to the islands using KMC simu-

lations with a point-island model [11]. In the steady-state regime, the dependence

of the capture numbers on the island size exhibits a plateau for islands smaller

than the average size and an affine part for islands bigger than the average size.

They then derived an asymptotic limit for the cluster size distribution using the

resulting capture numbers and obtained excellent agreement with point-island

KMC simulations results. However, the growth and subsequent correlations of

islands are omitted in this approach, since a point-island model explicitly ex-

cludes this feature. More recent studies [12, 13] that include the spatial extent

of islands still reveal a (less pronounced) plateau for the capture numbers. In

these simulations, the capture numbers were measured for a fixed coverage and

a geometry that was obtained from scanning tunneling microscopy images.

In this thesis we propose a new numerical method for computation of the cap-

ture numbers to remedy these issues. Our approach employs the Island-Dynamics

model based on the level-set method [4, 15, 16, 17], which is a general technique

for simulating the motion of moving boundaries. We find that the dependence of

the capture numbers on the island size is, to first approximation, affine. In par-

ticular, there is no plateau as found in previous works [11, 12, 13]. We have con-

6



firmed this result by computing the capture numbers self-consistently and have

explained the difference with the results obtained using a point-island model by

linking the functional form of the capture numbers to the amount of nucleation.

Further, we have derived scaling laws using the new form of the capture numbers.
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1.2 Capture numbers and capture zones

In the Island-Dynamics model, the boundary of an island is represented as the

zero level-set of a smooth function φ. The evolution of the boundary is then

dictated by the evolution of φ which obeys the advection equation φt +vn |∇φ| =
0, where vn is the local normal velocity of the island boundary. In the case of

irreversible aggregation vn = a2[D∇ρ], where [.] refers to the jump across the

boundary of the island, ρ is the adatom density and a is the lattice constant.

The adatom density is considered continuous and satisfies the following diffusion

equation:

∂ρ

∂t
= F − 2Dσ1ρ

2 +∇ · (D∇ρ)

In the case of irreversible aggregation, the boundary condition imposed is ρ|Γ = 0

where Γ represents the boundary of islands. We note here that the seeding of new

islands is performed in a probabilistic fashion in the Island-Dynamics model to

ensure the correctness of the CSD as described in [4]. Therefore this description

properly models the inherent stochastic nature of nucleation.

On the other hand mean-field rate equations offer a completely deterministic

description of epitaxial growth. Such equations for the submonolayer regime

(without detachment or evaporation) typically read as

dn1

dt
= F − 2Ragg(1)−

∑
s>1

Ragg(s), (1.3)

dns

dt
= Ragg(s− 1)−Ragg(s) for all s > 1. (1.4)

where Ragg(s) is the rate at which islands of size s capture a diffusive adatom

and become islands of size s + 1.

What rate equations model is how islands form and grow under a deposition

flux F of adatoms. More precisely, Eq.(1.4) says that the density ns of islands

8



of size s is increased when islands of size s − 1 capture a diffusive adatom, and

decreases when islands of size s capture a diffusive adatom to become of size

s + 1. Eq.(1.3) says that the adatom density n1 is increased by the deposition

flux F , and decreased every time two adatoms come together to form a dimer

(the factor of 2 in 2Ragg(1) accounts for the fact that when a dimer is formed,

2 adatoms are lost on the surface) or when an adatom attaches to an existing

island (
∑

s>1 Ragg(s)).

The rate of aggregation Ragg(s) depends on the diffusive constant D and on the

probability that an adatom meets an island of size s. The probability of finding

an adatom is given by the adatom density n1 and that of finding an island of size

s is given by the density ns. If these probabilities were independent, the rate of

aggregation would be Ragg(s) = Dn1ns, but to account for some independence

we write Ragg(s) = Dσsn1ns. The capture number σs measure how effectively

islands of size s compete for the available adatoms. Therefore the rate equations

are written as

dn1

dt
= F − 2Dσ1n

2
1 −Dn1

∑
s>1

σsns, (1.5)

dns

dt
= Dn1(σs−1ns−1 − σsns) for all s > 1. (1.6)

We propose to find the functional form of the capture numbers using the

Island-Dynamics model. The capture number of each island is computed by

monitoring the rate of aggregation of adatoms to that island. Consider an island

of size s̃ with boundary Γs̃. Growth of this island as described by velocity vn

is due to migration of adatoms toward this island (and subsequent capture), so

the rate of aggregation of adatoms is equal to the rate of change in area (see

Fig.(1.4)). This is expressed easily in terms of the level-set function as
∫

Γs̃
vndΓs̃,

9



so that the capture number of this island is given by

σs̃ =

∫
Γs̃

vndΓs̃

Dn1

. (1.7)

We emphasize that the main originality in this approach is that we allow each
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 1.4: The rate of aggregation Ragg(s) of an island of size s represents the

gain of adatoms by that island per unit time. It is therefore given by the rate of

change in area and can be expressed as the integral of the local normal velocity

vn around the island boundary.

island to grow in its own environment and do not use a simple model like the

point-island model. So far, the size of any island can change continuously. In

order to make comparisons with a discrete model, define a bin width w = 1 so

that islands of size s are those islands with sizes s̃ ∈ [s s + w). Then σs is

the average of the σs̃. For the results shown below, we chose w > 1 to reduce

10



the noise in the data. All of our results represent averages over (at least) 50

simulations on a lattice with a lateral size of L = 200.

The results for the capture numbers are shown in Figures 1.5, 1.6 and 1.7, and

suggest that the capture numbers have the functional form σs = as + b, that is,

that they are affinely dependent on the island size. The slope a(D/F, θ) tends to

a steady-state value a(D/F ) and attains this limit for a coverage θ ≥ θ0(D/F ),

as shown in Fig. 1.9. The value of θ0(D/F ) is smaller for higher values of D/F ,

consistent with the scaling of the end of the nucleation phase and the beginning of

the aggregation phase [18]. The value of the steady-state value a(D/F ) is smaller

for higher D/F and behaves asymptotically like a(D/F ) = O
[
(D/F )−1/3

]
. The

intercept b is, to first approximation, affinely dependent on the coverage as shown

in Fig. 1.9, and is weakly dependent on D/F . We also observe scaling in coverage

θ and in D/F for the capture numbers as a function of island size, scaled by

their respective averages (see Fig. 1.8). If we write this scaling function as

σs/σav = C(s/sav), then we must have C(1) = 1. Indeed, we have

C(s/sav) = σs/σav

⇔ C(1) = σ(s = sav)/σav

⇔ C(1) =

(
a

∑
sns∑
ns

+ b

)
/

(∑
(as + b)ns∑

ns

)

⇔ C(1) =

(
a

∑
sns∑
ns

+ b

)
/

(
a

∑
sns∑
ns

+ b

)

⇔ C(1) = 1

which is consistent with our data (see Fig. 1.8).

The functional form σs = as+b can be interpreted by considering the capture

zones, whose boundaries are defined as the vertices of the diffusion field (See Fig.

1.10). On average, adatoms within a capture zone associated with an island will

diffuse toward that island. Using this concept it was shown in [11] that at steady

11
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Figure 1.5: Capture numbers σs versus the islands sizes s for D/F = 105. Results

shown, for four different values of the coverage θ.
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Figure 1.6: Capture numbers σs versus the islands sizes s for D/F = 106. Results

shown, for four different values of the coverage θ.
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Figure 1.7: Capture numbers σs versus the islands sizes s for D/F = 107. Results

shown, for four different values of the coverage θ.
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Figure 1.8: Capture numbers σs as computed by Eq. (1.7) (open symbols) and

by Eq. (1.8) (solid symbols) versus the islands size, scaled by their respective

average. Results shown are at 5% coverage (top) and 20% coverage (bottom), for

three different values of D/F .
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Figure 1.9: Coefficients a (top) and b (bottom) in σS = as + b, as a function of

coverage θ, for different values of D/F .
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Figure 1.10: The blue arrows represent the gradient flow of the adatom density

flowing towards the islands (in blue) associated with their capture zone (in red).

state

σs ≈ F

Dn1

As, (1.8)

where As is the average area of the capture zones of islands of size s. This implies

that the capture number of an island is proportional to the area of its capture

zone. Now, since the size of an island is itself proportional to the area of its

capture zone, we would expect to have σs = as + b (the intercept b corresponds

to a point-island model). To check this, we also computed the areas of the capture

zones and found excellent agreement between the capture numbers obtained using

Eq. (1.7) and those obtained using Eq. (1.8), as shown in Fig. 1.8. We note

that the relation between the Voronoi polygonal and the island size has also been

studied by Mulheran and Blackman [19]. As an additional check to confirm our

results, we also carried out a completely self consistent approach to calculating

the capture numbers. Since the number of islands Ns = L2ns is increased every

17



time an island grows to the size s, and decreased every time an island of size s

grows to a bigger size, we first rewrite the rate of change of ns in the following

conservative form:
dns

dt
= J

IN
(s)− J

OUT
(s), (1.9)

where J
IN

(s) is the average flux of islands entering the size interval [s s + 1)

and J
OUT

(s) the flux of islands leaving that interval. By introducing a counter

4tL2J(s) that is incremented by one every time an island grows to the size s or

past that size, one can rewrite the rate equations as

dn1

dt
= F − 2J(2)−

∑
s>2

J(s), (1.10)

dns

dt
= J(s)− J(s + 1) for all s > 1. (1.11)

Comparison of Eqs. (1.5), (1.6) and (1.10), (1.11) gives the following expression

for the effective capture numbers:

σeff
s

def
=

J(s + 1)

Dn1ns

. (1.12)

We have also used our Island-Dynamics model with probabilistic seeding style

to compute the J(s). One has to be careful with how averaging is done. Indeed,

the fluxes J (i)(s) can be computed from each simulation i and the densities n
(i)
s

can be calculated by solving

dn
(i)
1

dt
= F − 2J (i)(2)−

∑
s>2

J (i)(s), (1.13)

dn
(i)
s

dt
= J (i)(s)− J (i)(s + 1) for all s > 1. (1.14)

However, it would be wrong to find σ
(i)
s with a formula similar to (1.12) and

define σeff
s as the average of the σ

(i)
s . Indeed, in this case, Eqs. (1.10) and (1.11)

18



wouldn’t be consistent with Eqs. (1.5) and (1.6) as shown here:

dn1

dt
= F − 2Dσeff

1 n1ns −
∑
s>2

Dσeff
s n1ns,

dns

dt
= Dσeff

s−1n1ns −Dσeff
s n1ns for all s > 1.

would be written

dn1

dt
= F − 2D

[∑
i J

(i)(2)/Dn
(i)
1 n

(i)
s∑

i 1

]
n1ns −

∑
s>2

D

[∑
i J

(i)(s + 1)/Dn
(i)
1 n

(i)
s∑

i 1

]
n1ns,

dns

dt
= D

[∑
i J

(i)(s)/Dn
(i)
1 n

(i)
s∑

i 1

]
n1ns −D

[∑
i J

(i)(s + 1)/Dn
(i)
1 n

(i)
s∑

i 1

]
n1ns for all s > 1.

which are not equivalent to (1.10) and (1.11).

Instead, one should first compute the average flux J =
∑

i J
(i)/

∑
i 1 and then

use Eq. (1.12) to define the (average) effective capture numbers used in mean-

field rate equations. In this case Eqs. (1.10) and (1.11) are consistent with Eqs.

(1.5) and (1.6) as shown here:

dn1

dt
= F − 2J(2)−

∑
s>2

J(s),

dns

dt
= J(s)− J(s + 1) for all s > 1.

can be written as

dn1

dt
= F − 2Dn1nsJ(2)/Dn1ns −

∑
s>2

Dn1nsJ(s + 1)/Dn1ns,

dns

dt
= Dn1nsJ(s)/Dn1ns −Dn1nsJ(s + 1)/Dn1ns for all s > 1.

which, using Eq. (1.12), give

dn1

dt
= F − 2Dσeff

1 n1ns −
∑
s>2

Dσeff
s n1ns,

dns

dt
= Dσeff

s−1n1ns −Dσeff
s n1ns for all s > 1.
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In the simulations, we took a time step small enough to ensure that no island

grows by more than one integer size. Using the measured values for J(s) we have

integrated the set of rate equations described in Eqs. (1.10) and (1.11), which

by construction is equivalent to Eqs. (1.5), (1.6) and (1.12), using a third-order

explicit Runge-Kutta scheme with initial condition ns = 0 for all s. The results

for the total number density and the CSD are shown in Fig. 1.8 in comparison

with level-set and KMC simulations. The agreement is excellent. Thus, we

conclude that there exists a set of capture numbers that allows us to integrate

mean-field rate equations to properly reproduce quantities such as the CSD that

include spatial information.

Comparison of the extracted effective capture numbers σeff
s and the capture

numbers σs previously described is shown in Fig. 1.14. The σeff
s are more noisy

than the σs due to numerical difficulties [as defined the Ns are discrete and lead

to jumps in the computed fluxes J(s), resulting in larger noise]. However, and

more so for higher coverage (θ = 10%, θ = 15%, θ = 20%), the σeff
s exhibit the

same functional form as the σs, that is, absence of a plateau for small islands.

We have not yet been able to find an analytic form for the capture numbers as a

function of coverage [σs = σs(θ)] that could be used in the integration Eqs. (1.5)-

(1.6). We speculate that the reason for this is that (i) small corrections to the

affine dependence on s cannot be neglected; and (ii) the functional form for the

capture numbers shown in Fig.1.8 might not be valid at a very early time since

the nucleation process rearranges the capture zones (and therefore the capture

numbers) at each seeding of an island. Moreover, it is meaningless to refer to

a functional form when only two or three distinct sizes are present (see Fig.

1.11 where only islands of size between 2 and 3 are on the surface). (Binned, this

would amount for islands of size 2 and a constant value for the associated capture

number). Our results suggest that the time at which the affine dependence is a
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fair approximation behaves asymptotically like O
[
(D/F )−1/2

]
as shown in Fig.

1.12 and we shall use this when deriving scaling laws for the adatom density and

total number density.

The capture numbers presented here should be contrasted with the ones ob-

tained in [11, 12, 13]. The main difference is the absence of the plateau for small

islands in our results. We believe that this difference comes from the fact that we

allow islands to grow in their environment when computing the capture numbers

and therefore take into account all spatial correlations between islands. It is easy

to see that a point-island model artificially increases the capture numbers for

small islands, because it shifts the vertices of the capture zones in favor of small

islands. Moreover, we show in the next section that the amount of nucleation

in a point-island model is artificially big and accounts for a plateau. We cannot

clearly identify the reason for the existence of a plateau for simulations with spa-

tially extended islands. [12, 13] However, we speculate that the reason might be

any of the following. (i) Annealing of small islands might be the source. During

this process, small islands close to bigger islands (thus with small capture num-

bers) are absorbed by the bigger islands, increasing the average capture number

for small islands and leading to the plateau. (ii) Experimental uncertainties, in-

cluding processes that are outside of irreversible aggregation in the submonolayer

regime could also offer a plausible explanation; or (iii) the effect of the finite time

interval required for the approach in [11, 12, 13] is not completely clear.
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Figure 1.11: Capture numbers σs versus the islands sizes s for two different values

of D/F . The corresponding coverage θ is chosen so that it corresponds to the

nucleation phase. Binning this data would give an average capture number of

magnitude slightly below 3, which is consistent with mean-field prediction.
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1.3 Analysis of Rate Equations

1.3.1 Analytical formula for the capture numbers at steady state

We can work out a derivation similar to that outlined in [11] to get a formula

for the capture numbers given the cluster size distribution. The Rate Equations

read:

dn1

dt
= F − 2Dσ1n

2
1 −Dn1

∑
s>1

σsns

dns

dt
= Ragg(s− 1)−Ragg(s) for all s > 1 ,

We want to exploit the scaling:

ns = θs−2
av m(x)

σs = σavC(x) , where x = s/sav (Quasi-hydrodynamics variable)

One can write the term dns/dt as

dns

dt
=

d

dt
(θs−2

av m(x))

=
d

dt
(Fts−2

av m(x))

= F
d

dt
(ts−2

av m(x))

= F

(
s−2

av m(x) + t
d

dt
(s−2

av m(x))

)

= F

(
s−2

av m(x) + t
d

dt
(s−2

av )m(x)) + ts−2
av

d

dt
(m(x)))

)

Now,

d

dt
(s−2

av ) = −2s−3
av

d

dt
(sav)

d

dt
(m(x)) = m′(x)

dx

dt
= sm′(x)

d

dt
(s−1

av ) = −sm′(x)s−2
av

d

dt
(sav)
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Thus,

dns

dt
= F

(
s−2

av m(x)− 2ts−3
av

d

dt
(sav)m(x)− tss−2

av s−2
av m′(x)

d

dt
(sav)

)

= Fs−2
av


m(x)− 2ts−1

av

d

dt
(sav)m(x)− t ss−1

av︸︷︷︸
x

s−1
av

d

dt
(sav)m

′(x)




= Fs−2
av

(
m(x)− 2ts−1

av

d

dt
(sav)m(x)− xts−1

av

d

dt
(sav)m

′(x)

)

Now, if we let β = ts−1
av

d
dt

(sav) we have:

dns

dt
= Fs−2

av ((1− 2β)m(x)− xβm′(x)) (1.15)

On the other hand one can write the rate of change of ns as follows:

dns

dt
= Ragg(s− 1)−Ragg(s)

= −Ragg(s− 1)−Ragg(s)

−1

≈ − d

ds
(Ragg(s))

= − d

ds
(Dρσsns)

= −Dρ
d

ds
(σavC(x)θs−2

av m(x))

= −Dρs−2
av θσav

d

ds
(C(x)m(x))

= −Dρs−2
av θσav

d

dx
(C(x)m(x))

dx

ds

= −Dρs−2
av θσav

d

dx
(C(x)m(x))s−1

av

= −Dρs−2
av

∑
sns

∑
σsns∑
ns

d

dx
(C(x)m(x))(

∑
sns∑
ns

)−1

= −Dρs−2
av

∑
σsns

d

dx
(C(x)m(x))

Now, the adatom density satisfies:

dn1

dt
= F − 2Dσ1n

2
1 −Dn1

∑
s>1

σsns
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At steady state the average adatom density is almost constant in time and the

nucleation term is negligible. Therefore one can take dn1/dt ≈ 0 and σ1n
2
1 ≈ 0.

It then follows that Dρ
∑

σsns = F and thus:

dns

dt
= −Fs−2

av

d

dx
(C(x)m(x)) (1.16)

(1.15) and (1.16) give:

−Fs−2
av

d

dx
(C(x)m(x)) = Fs−2

av ((1− 2β)m(x)− xβm′(x))

⇔ d

dx
(C(x)m(x)) = xβm′(x)− (1− 2β)m(x)

This implies that

⇔ C(x) =
1

m(x)

(∫ x

0

ξβm′(ξ)− (1− 2β)m(ξ)dξ + C(0)m(0)

)

⇔ C(x) =
1

m(x)

(∫ x

0

βξm′(ξ)dξ −
∫ x

0

(1− 2β)m(ξ)dξ + C(0)m(0)

)

⇔ C(x) =
1

m(x)

(
[βξm(ξ)]x0 + (β − 1)

∫ x

0

m(ξ)dξ + C(0)m(0)

)
, by parts

⇔ C(x) =
1

m(x)

(
βxm(x) + (β − 1)

∫ x

0

m(ξ)dξ + C(0)m(0)

)

Hence a formula for the functional form of the capture numbers:

C(x) = βx +
(β − 1)

∫ x

0
m(ξ)dξ + C(0)m(0)

m(x)
(1.17)

That is, the capture numbers are affine (with slope β and intercept C(0)) but

with some correction terms.

Formula (1.17) shows that given the cluster size distribution and a value for

β, there exists a unique functional form C for the capture numbers. However,

one can also see that for a given cluster size distribution, there exists an infinite

family (β, Cβ) that can reproduce it via (1.17). It is instructive to comment on

the value of β and the assumptions made in the derivation of (1.17). In that
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derivation, we set β = ts−1
av

d
dt

(sav) and assumed that steady state is reached at

20% coverage and therefore that there is no nucleation of new islands. In our

computations we obtained β = 0.89, whereas in the point-island model of [11],

β = 2/3. If no new nucleation occurs at steady state and we let N be the total

number of islands on the lattice (note that in this case N is independent of time),

then one has

dsav

dt
=

d

dt

θ

N

=
d

dt

F t

N

=
F

N

and therefore

β
def
= tS−1

av

dsav

dt

= t
N

Ft

F

N

= 1

Now, if nucleation occurs, then we have N = N(t) and therefore

d

dt
(sav) = F

d

dt
(t/N(t))

= F
N(t)− t d

dt
(N(t))

N2(t)

=
F

N(t)

(
1− t

d
dt

(N(t))

N(t)

)

<
F

N(t)
, since with nucleation d

dt
(N(t)) > 0

so we have

β
def
= t

N(t)

Ft

dsav

dt

< t
N(t)

Ft

F

N(t)

< 1
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Moreover, β gets smaller as d
dt

(N(t)) gets larger, which is related to the amount

of nucleation of new islands. It is well known that nucleation never reaches a

steady state in a point-island model [14] and that explains the low value for β in

[11]. Our value for β (0.93), shows that there is still some nucleation in our model

at 20% coverage, but that this amount is small enough to keep the assumption

valid. It is also interesting to use formula (1.17) with β = 2/3 to reproduce the

results of [11] for the functional form of the capture numbers, as shown in Fig.

1.15.

1.3.2 Similarity solution of the CSD at steady state

We now comment on the consistency of our results

(1.15) and (1.16) give:

−Fs−2
av

d

dx
(C(x)m(x)) = Fs−2

av ((1− 2β)m(x)− xβm′(x))

⇔ d

dx
(C(x)m(x)) = xβm′(x)− (1− 2β)m(x)

⇔ C ′(x)m(x) + C(x)m′(x) = xβm′(x)− (1− 2β)m(x)

⇔ m′(x)

m(x)
=

2β − 1− C ′(x)

C(x)− xβ

⇔
∫ x

0

m′(ξ)
m(ξ)

dξ =

∫ x

0

2β − 1− C ′(ξ)
C(ξ)− ξβ

dξ

⇔ ln (m(x)) =

∫ x

0

2β − 1− C ′(ξ)
C(ξ)− ξβ

dξ + ln (m(0)) , since m(x) > 0

which gives:

m(x) = m(0) exp

∫ x

0

2β − 1− C ′(ξ)
C(ξ)− ξβ

dξ (1.18)

Using this formula (that first appeared in [11]) we obtain the CSD from interpo-

lation of the capture numbers obtained from our model (see Fig. 1.16).
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1.3.3 Scaling laws

Some understanding can be gained by deriving scaling laws for the θ-dependence

and D/F -dependence of the adatom density ρ and the total number density of

islands N =
∑

s>1 ns. Standard analysis assumes a point-island model for which

σs = σ1 for all s throughout the nucleation and growth phases. Our results

suggest that this assumption is valid in the nucleation phase (see Fig. 1.11), but

not in the growth phase, for which an affine dependence on the islands sizes is

a better approximation (see Figs. 1.5, 1.6, 1.7 and 1.12). We present here the

scaling laws that one obtains using a point-island model and the affine-dependence

model and what the predominant processes are in each phase.

• The point-island model assumes that σs = σ1 for all s. In that case the

equations for the adatom density and the total number density of islands

simplify to

dρ

dt
= F − 2Dσ1ρ

2 −Dρ
∑
s>1

σ1ns

dN

dt
=

∑
s>1

Dρ(σs−1ns−1 − σsns)

=
∑
s>1

Dσ1ρ(ns−1 − ns)

= Dσ1ρ
2

For the purpose of deriving scaling laws one can take without loss of gen-

erality σ1 = 1 and, since θ = Ft, we have

dρ

dθ
= 1− 2Rρ2 −RρN ,where R = D/F (1.19)

dN

dθ
= Rρ2 (1.20)
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For the R scaling we look for the constant α and β such that, for R >> 1

N = RαÑ(θ)

ρ = Rβ ρ̃(θ)

With these assumptions, equations (1.19) and (1.20) give

Rβ d

dθ
ρ̃ = R0 − 2R1+2βρ̃2 −R1+α+β ρ̃Ñ (1.21)

Rα d

dθ
Ñ = R1+2β ρ̃2 (1.22)

Matching the powers of R one must have α = 1 + 2β and the method of

dominant balance gives 1 + α + β = 0. Together, these two conditions give

the scaling laws in R:

ρ = O
(
R−2/3

)

N = O
(
R−1/3

)

This scaling for R >> 1, along with (1.21) and (1.22) implies that

1− ρ̃Ñ = 0

dÑ

dθ
= ρ̃2

Thus,

ρ̃ = 1/Ñ

⇔ dÑ

dθ
= 1/Ñ2

⇔ Ñ = 31/3(θ + θ)1/3

and

ρ̃ = 3−1/3(θ + θ)−1/3
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Therefore one has

ρ = 3−1/3R−2/3(θ + θ)−1/3

N = 31/3R−1/3(θ + θ)1/3

These scaling laws are not valid for early time if one starts the growth with

a clean surface (ρ = 0 and N = 0) since in this case the equation for the

adatom density reduces to ρt = F and therefore the adatom density must

initially increase in coverage. Rescaling coverage as θ = R−γ θ̃ which implies

∂
∂θ

= Rγ ∂
∂θ̃

and writing

N = RαÑ(θ̃)

ρ = Rβρ̃(θ̃)

equation (1.19) and (scaling2) give

Rβ+γ d

dθ̃
ρ̃ = R0 − 2R1+2β ρ̃2 −R1+α+β ρ̃Ñ (1.23)

Rα+γ d

dθ̃
Ñ = R1+2βρ̃2 (1.24)

Matching the powers of R one must have α + γ = 1 + 2β and the method

of dominant balance gives 1 + α + β = 1 + 2β = β + γ = 0. Together, these

two conditions give the scaling laws in R:

θ̃ = R−1/2

ρ = R−1/2ρ̃(θ̃)

N = R−1/2Ñ(θ̃)

Our results suggest that this scaling is valid in the nucleation phase, but not

in the growth regime. Rather, we take the functional form for the capture

numbers to be σs = as + b.
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• The affine-dependence model assumes that σs = as + b. Our data suggest

that a = ãR−1/3 and b = b̃θ. In that case the equations for the adatom

density and the total number density of islands simplify to

dρ

dt
= 1− 2Rσ1ρ

2 −Rρ
∑
s>1

(as + b)ns

= 1− 2Rσ1ρ
2 −Rρ

(∑
s>1

asns +
∑
s>1

bns

)

= 1− 2Rσ1ρ
2 −Rρ (aθ + bN)

= 1− 2Rσ1ρ
2 −Rρ

(
ãR−1/3θ + b̃θN

)

dN

dt
=

∑
s>1

Rρ(σs−1ns−1 − σsns)

= Rσ1ρ
2

Now, σ1 = a + b = ãR−1/3 + b̃θ, which reduces to σ1 = b̃θ in the case where

R >> 1. Therefore we have the following two equations

dρ

dt
= 1− 2Rσ1ρ

2 −Rρ
(
ãR−1/3θ + b̃θN

)
(1.25)

dN

dt
= Rb̃θρ2 (1.26)

For the R scaling we look for the constant α and β such that, for R >> 1

N = RαÑ(θ)

ρ = Rβ ρ̃(θ)

With these assumptions, equations (1.25) and (1.26) give

Rβ d

dθ
ρ̃ = R0 − 2σ1R

1+2β ρ̃2 −R1+β ρ̃
(
ãR−1/3θ + b̃θRαÑ

)
(1.27)

Rα d

dθ
Ñ = R1+2β ρ̃2 (1.28)

Matching the powers of R one must have α = 1 + 2β and the method of

dominant balance gives 1 + α + β = 0. Together, these two conditions give
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the scaling laws in R:

ρ = O
(
R−2/3

)

N = O
(
R−1/3

)

This scaling for R >> 1, along with (1.27) and (1.28) implies that

1− ρ̃θ
(
ã + b̃Ñ

)
= 0

dÑ

dθ
= b̃θρ̃2

Thus,

ρ̃ =
1

θ
(
ã + b̃Ñ

)

⇔ dÑ

dθ
= b̃θ−1

(
ã + b̃Ñ

)−2

⇔ Ñ = b̃−1

([
3b̃2 ln

(
θ

θ̃

)]1/3

− ã

)
, where θ̃ ∈ R

and

ρ̃ = θ−1

[
3b̃2 ln

(
θ

θ̃

)]−1/3

Therefore one has

ρ = θ−1

[
3b̃2 ln

(
θ

θ̃

)]−1/3

R−2/3

N = b̃−1

([
3b̃2 ln

(
θ

θ̃

)]1/3

− ã

)
R−1/3 , where θ̃ ∈ R

Therefore, N is increasing in time, ρ is decreasing in time while both ρ

and N decrease as R increases. Moreover, equations (1.27) and (1.28) show

that with this scaling the adatom density is balanced by the deposition

flux and the attachment to islands (dominant terms), and the total number

density is the product of nucleations. The R-dependence is the same as that

obtained with a Point-Island model, but the evolution in time is different.
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Figure 1.15: Data approximating the CSD obtained by Bartelt and Evans using

their Point-Island model (top). Capture numbers obtained using formula (1.17)

with β = 2/3 exhibiting the plateau found in [11] (bottom).
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Figure 1.16: Top: Quadratic interpolation (solid green line) of the capture num-

bers versus the islands sizes scaled by their respective average (blue symbols).

Bottom: The green solid line is the result of formula (1.18) applied with the

quadratic interpolation of the capture numbers on top of level-set (red symbols)

and KMC (blue symbols) simulations for different value of D/F .
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1.4 Conclusion

In summary, we have shown that the capture numbers that include the effect of all

spatial fluctuations are, to first approximation, affinely dependent on the island

size, and that they are nearly time independent after the islands are seeded. In

particular, there is no plateau as found in previous works. We have confirmed

this result by computing the capture numbers self-consistently and have explained

the difference with the results obtained using a point-island model by linking the

functional form of the capture numbers to the amount of nucleation. Further, we

have derived scaling laws for the adatom density and total number density using

the new form of the σs.
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CHAPTER 2

A Symmetric Method for Implicit Time

Discretization of the Stefan Problem -

Application to multiphase flows
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2.1 Introduction

The text of this part of this manuscript is a preprint of what will appear in the

Journal of Computational Physics and is co-authored by Cheng L. T., Fedkiw R.

P. and Kang M.

In [20] ideas based on the Ghost Fluid Method [21] were used to develop a

first order accurate discretization of the variable coefficient Poisson equation in

the presence of an irregular interface across which the variable coefficients, the

solution and the derivatives of the solution may have jumps. This new numerical

method was applied to two phase incompressible flow in [22] and to incompress-

ible flame discontinuities in [23]. In this chapter, we consider a similar Poisson

equation where Dirichlet boundary conditions (instead of jump conditions) are

imposed on the irregular interface. In this case, the solution is not coupled across

the interface and we are able to design a second order accurate discretization as

opposed to the first order accurate discretization proposed in [20] for the jump

condition case. Both the discretization proposed here and that in [20] yield sym-

metric matrices which can readily be inverted with a number of fast methods

(e.g. Preconditioned Conjugate Gradient (PCG) method (see [24])).

This new second order accurate discretization of the Poisson equation is ap-

plied to solving the Stefan problem. We use a level-set formulation [25] to evolve

the interface location and a finite difference discretization of the heat equation

on a Cartesian grid to solve for the temperature. In order to avoid the stringent

O(4x2), or even worse O(θ24x2) with 0 < θ ≤ 1 for cells cut by the interface,

time step restriction imposed by explicit time discretization of the heat equation,

we use implicit discretization in time. This implicit time discretization requires a

matrix inversion that can be rather time consuming, especially if the embedded

interface forces a nonsymmetric discretization of the spatial terms. This was the
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case in [26] where the nonsymmetric matrix was inverted with the (very slow)

Gauss-Seidel method (see [24]). In this chapter, we propose an alternative sym-

metric discretization to this problem that allows a (relatively fast) Preconditioned

Conjugate Gradient method to be used for the matrix inversion. We note that

if the interface location is not known exactly, our scheme will fail to be second

order accurate.

The earliest level-set method for solidification type problems was presented

in [27] where the authors recast the equations of motion into a boundary integral

equation and used the level-set method to update the location of the interface.

In [26] the boundary integral equations were avoided by using a finite difference

method to solve the heat equation on a Cartesian grid with Dirichlet boundary

conditions imposed on the interface. The jump in the first derivatives of the

temperature was used to compute an interface velocity which was extended to

a band about the interface and used to evolve a level-set function in time. The

velocity calculation in [26] is rather awkward and both the standard grid and a

45o rotated grid are used to aid in the removal of nonphysical grid anisotropy

effects. This velocity computation was improved upon in [28] where the authors

show good agreement between the level-set method and phase field methods for

the case where the thermal conductivities are the same in both materials. In

addition, [28] showed that the level-set method continues to perform well for the

case where the thermal conductivities are different in the two materials. For more

details on phase field methods for the Stefan problem, see [28] and the references

therein.

In [29], the authors discretized the heat equation on a Cartesian grid in a

manner very similar to that proposed in [26] resulting in a nonsymmetric matrix

when applying an implicit time discretization. [29] used front tracking to update
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the location of the interface improving upon the front tracking approach proposed

in [30] which used the smeared out immersed boundary method from [31] and

explicit time stepping.

In [32], the authors solved a variable coefficient Poisson equation in the pres-

ence of an irregular interface where Dirichlet boundary conditions were imposed.

They used a finite volume method that results in a nonsymmetric discretization

matrix. Both multigrid methods and adaptive mesh refinement were used in

[32], and in [33] this nonsymmetric finite volume discretization was coupled to a

volume of fluid front tracking method in order to solve the Stefan problem.

The interested reader is referred to [30], [26] and the references therein for

an extensive summary of computational results for the Stefan problem. Most

notably, [34] uses adaptive finite element methods for both the heat equation and

for the interface evolution producing spectacular (and rare) three dimensional

results.
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2.2 Equations

2.2.1 Poisson Equation

Consider a Cartesian computational domain, Ω, with exterior boundary, ∂Ω, and

a lower dimensional interface, Γ, that divides the computational domain into

disjoint pieces, Ω− and Ω+. The variable coefficient Poisson equation is given by

∇ · (β(~x)∇u(~x)) = f(~x), ~x ∈ Ω (2.1)

where ~x = (x, y, z) are the spatial dimensions, ∇ = ( ∂
∂x

, ∂
∂y

, ∂
∂z

) is the diver-

gence operator, and β(~x) is assumed continuous on each disjoint sub-domain, Ω−

and Ω+, but may be discontinuous across the interface Γ. Furthermore, β(~x)

is assumed to be positive and bounded below by some ε > 0. On ∂Ω, either

Dirichlet boundary conditions of u(~x) = g(~x) or Neumann boundary conditions

of un(~x) = h(~x) are specified. Note that un = ∇u · ~N is the normal derivative of

u with normal ~N .

In [20], equation (2.1) was solved with a first order numerical method when

the jump conditions, [u]Γ = a(~x) and [βun]Γ = b(~x) were specified across the

interface. If instead, a Dirichlet boundary condition of uΓ = c(~x) is specified on

the interface, then equation (2.1) decouples into two separate equations, one on

Ω− and one on Ω+. Therefore any jumps of u, βun or β across the interface can

be ignored allowing equation (2.1) to be considered separately and independently

on Ω− and on Ω+.

2.2.2 Heat Equation

Our primary interest is in coupling the Stefan problem to multiphase flow simu-

lations, e.g. see [23] where the Stefan problem solution can be used to calculate
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the flame speed. Therefore, we start with conservation of mass, momentum and

energy,

ρt +∇ ·
(
ρ~V

)
= 0 (2.2)

(ρv1)t +∇ ·
(
ρv1

~V
)

+ px = 0 (2.3)

(ρv2)t +∇ ·
(
ρv2

~V
)

+ py = 0 (2.4)

(ρv3)t +∇ ·
(
ρv3

~V
)

+ pz = 0 (2.5)

Et +∇ ·
(
(E + p) ~V

)
= ∇ · (k∇T ) (2.6)

where ρ is the density, ~V =< v1, v2, v3 > are the velocities, p is the pressure,

E = ρe + ρ~V ·~V
2

is the total energy per unit volume, e is the internal energy per

unit mass, T is the temperature and k is the thermal conductivity. Note that

viscosity is ignored.

Equations (2.2) through (2.6) can be manipulated to write

ρet + ρ~V · ∇e + p∇ · ~V = ∇ · (k∇T ) (2.7)

which can be simplified to

ρet + ρ~V · ∇e = ∇ · (k∇T ) (2.8)

with the incompressibility assumption ∇ · ~V = 0. Assuming e depends on at

most temperature, and that the specific heat at constant volume is a constant,

cv, independent of temperature leads to

e = eo + cv (T − To) (2.9)

where eo is internal energy per unit mass at some reference temperature To [36].

This allows equation (2.8) to be rewritten as

ρcvTt + ρcv
~V · ∇T = ∇ · (k∇T ) (2.10)
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which is a convection diffusion equation for T . Ignoring the effects of convection,

i.e. setting ~V = 0, leads to

ρcvTt = ∇ · (k∇T ) (2.11)

which is the standard heat equation.

2.2.3 Interface Velocity

Throughout this text, unreacted and reacted incompressible flows are separated

by an interface across which the unreacted material is converted to the reacted

material, and we use “u” and “r” subscripts to refer to the unreacted and reacted

materials, respectively. The interface velocity is denoted by ~W = D ~N where D

is the normal component of the interface velocity and ~N =< n1, n2, n3 > is the

local unit normal to the interface. The normal component of the interface velocity

is calculated by adding the unreacted materials normal velocity to the reaction

speed, S. That is, D = (VN)u + S where VN = ~V · ~N is the normal velocity.

2.2.4 Jump Conditions

Conservation of mass, momentum and energy in equations (2.2) through (2.6)

implies the standard Rankine-Hugoniot jump conditions across the interface

[ρ(VN −D)] = 0 (2.12)

[
ρ(VN −D)2 + p

]
= 0 (2.13)

[(
ρe +

ρ(VN −D)2

2
+ p

)
(VN −D)

]
=

[
k∇T · ~N

]
(2.14)

where [A] = Ar −Au defines “[·]” as the jump in a quantity across the interface.

Note that equation (2.14) was derived assuming that the tangential velocities are
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continuous across the interface, i.e. [VT1 ] = [VT2 ] = 0 where T1 and T2 are the

unit tangent vectors. This is true as long as D 6= VN , i.e. S 6= 0. For more

details, see [35].

Equation (2.14) can be rewritten as

−ρuS

([
e +

p

ρ

]
+

ρ2
uS

2

2

[
1

ρ2

])
=

[
k∇T · ~N

]
(2.15)

using equation (2.12) and D = (VN)u + S. It is often easier to deal with the

enthalpy per unit mass, h = e + p
ρ

instead of the internal energy. Assuming h

depends on at most temperature, and that the specific heat at constant pressure

is a constant, cp, independent of temperature leads to

h = ho + cp (T − To) (2.16)

where ho is the enthalpy per unit mass at some reference temperature To [36].

Then equation (2.15) can be rewritten as

−ρuS

(
[ho] + [cp] (TI − To) +

ρ2
uS

2

2

[
1

ρ2

])
=

[
k∇T · ~N

]
(2.17)

where we have used the fact that the temperature is continuous across the in-

terface, [T ] = 0, and labeled the interface temperature TI . It is convenient to

choose the reference temperature To equal to the standard temperature at which

the reaction takes place, e.g. in the case of freezing water To = 273K.

In the case of the Stefan problem, we assume that there is no expansion across

the front, i.e. [ρ] = 0. This reduces equation (2.12) to [VN ] = 0, equation (2.13)

to [p] = 0, and equation (2.17) to

−ρS ([ho] + [cp] (TI − To)) =
[
k∇T · ~N

]
(2.18)

where ρ = ρu = ρr. Furthermore, the standard interface boundary condition of

TI = To reduces equation (2.18) to

−Sρ [ho] =
[
k∇T · ~N

]
(2.19)
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where [ho] is calculated at the reaction temperature of TI = To.

2.2.5 level-set Equation

The level-set equation

φt + ~W · ∇φ = 0 (2.20)

is used to keep track of the interface location as the set of points where φ = 0.

The unreacted and reacted materials are then designated by the points where

φ > 0 and φ ≤ 0 respectively. Using φ ≤ 0 instead of φ = 0 for the reacted

points removes the measure zero ambiguity of points that happen to lie on the

interface. In this sense, the numerical interface lies in between φ = 0 and the

positive values of φ and can be located numerically by finding the zero level of φ.

To keep the values of φ close to those of a signed distance function, i.e. |∇φ| = 1,

the reinitialization equation

φτ + S(φo) (|∇φ| − 1) = 0 (2.21)

is iterated for a few steps in ficticious time, τ . The level-set function is used to

compute the normal

~N =
∇φ

|∇φ| (2.22)

and the curvature

κ = −∇ · ~N (2.23)

in a standard fashion. For more details on the level-set function see [21, 22, 25, 37].
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2.3 Numerical Method

2.3.1 Poisson Equation

Consider the variable coefficient Poisson equation in one spatial dimension

(βux)x = f (2.24)

with Dirichlet boundary conditions of u = g on the interface where φ = 0.

One can consider each simply connected portion of the domain separately, i.e.

equation (2.24) can be solved on the subdomain where φ ≤ 0 independent of the

solution procedure for the subdomain where φ > 0. Although in practice, it is

usually simpler and more efficient to solve for both subdomains at the same time.

The computational domain is discretized into cells of size 4x where the cell

centers are referred to as grid points or grid nodes with the i-th grid node located

at xi. The cell edges are referred to as fluxes so that the two fluxes bounding the i-

th computational cell are located at xi± 1
2
. The solution to the Poisson equation is

computed at the grid nodes and is written as ui = u(xi). An analogous definition

holds for fi, βi, and φi. Since β and φ are known only at the grid nodes xi,

their values at the fluxes is defined by the linear average of the nodal values, e.g.

φi+ 1
2

= φi+φi+1

2
is a second order accurate approximation to φ at the flux located

between the i-th and (i + 1)-th cells.

In the absence of an irregular interface, the standard discretization for equa-

tion (2.24)

βi+ 1
2

(
ui+1−ui

4x

)
− βi− 1

2

(
ui−ui−1

4x

)

4x
= fi (2.25)

can be used to solve this problem with Dirichlet u = g boundary conditions on

∂Ω enforced by setting ui = gi when xi is a boundary point. For each unknown,
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ui, equation (2.25) is used to fill in one row of a matrix creating a linear system

of equations. Since the resulting matrix is symmetric, a wide number of fast

linear solvers can be used. For linear solvers that require an initial guess, setting

all ui identically equal to zero is usually sufficient. In the examples section,

the symmetric linear system is solved with a PCG method using an Incomplete

Choleski preconditioner [24].

Next, suppose that an interface point, xI , is located in between two grid points

xi and xi+1 with a Dirichlet u = uI boundary condition applied at xI . Consider

the solution to the left of xI noting that it is independent of the solution to

the right of xI . Equation (2.25) is still valid for all the unknowns to the left

and including ui−1, but can no longer be applied at xi to solve for ui since the

subdomain to the left of xI does not contain a valid value of ui+1. This can be

remedied by defining a ghost value of uG
i+1 at xi+1 and rewriting equation (2.25)

as

βi+ 1
2

(
uG

i+1−ui

4x

)
− βi− 1

2

(
ui−ui−1

4x

)

4x
= fi (2.26)

in order to solve for ui. Possible candidates for uG
i+1 include

uG
i+1 = uI (2.27)

uG
i+1 =

uI + (θ − 1) ui

θ
(2.28)

and

uG
i+1 =

2uI + (2θ2 − 2) ui + (−θ2 + 1) ui−1

θ2 + θ
(2.29)

using constant, linear and quadratic extrapolation respectively. Here θ ∈ [0, 1]

is defined by θ = xI−xi

4x
, and can be calculated as θ = |φ|

4x
since φ = 0 at xI and

is signed distance away from xI . Since equations (2.28) and (2.29) are poorly

behaved for small θ, they are not used when θ ≤ 4x. Instead, ui is set equal to
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uI which effectively moves the interface from xI to xi. This second order accurate

perturbation of the interface location does not degrade the overall second order

accuracy of the solution obtained using equation (2.25) to solve for the remaining

unknowns. Furthermore, ui = uI is second order accurate as long as the desired

solution has bounded first derivatives.

Plugging equation (2.29) into equation (2.25) gives a nonsymmetric discretiza-

tion of
(

uI−ui

θ4x

)
−

(
ui−ui−1

4x

)

.5 (θ4x +4x)
= fi (2.30)

in the case of β = 1. Equation (2.30) is the nonsymmetric discretization used in

[26] and [29] to obtain second order accurate numerical methods. That is, both

[26] and [29] use the quadratic extrapolation given in equation (2.29) to obtain

second order accuracy. Alternatively, plugging (2.28) into equation (2.25) gives

a symmetric discretization of

βi+ 1
2

(
uI−ui

θ4x

)
− βi− 1

2

(
ui−ui−1

4x

)

4x
= fi (2.31)

based on linear extrapolation in the partial cell. Surprisingly, this symmetric

discretization is second order accurate as well. This was first pointed out in [38]

and is elaborated on here.

Assume that the standard second order accurate discretization in equation

(2.25) is used to obtain the standard linear system of equations for u at every

grid point except for xi, and equation (2.26) is used to write a linear equation

for ui introducing a new unknown uG
i+1. The system is closed with equation

(2.28) for uG
i+1. In practice, equations (2.28) and (2.26) are combined to obtain

equation (2.31) and a symmetric linear system. Solving this linear system of

equations leads to well determined values (up to some prescribed tolerance near
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round-off error levels) of u at each grid node in the subdomain as well as a well

determined value of uG
i+1 (from equation (2.28)). For the sake of reference, we

designate ~u as the solution vector containing all these values of u. Below, ~u is

shown to be a second order accurate solution to equation (2.24) on the subdomain

under consideration by showing that it is the second order accurate solution to a

modified problem where the interface location has been perturbed by O(∆x2).

Consider a modified problem where a Dirichlet boundary condition of ui+1 =

uG
i+1 is specified at xi+1, and uG

i+1 is chosen to be the value of uG
i+1 from ~u defined

above. This modified problem can be discretized to second order accuracy every-

where using the standard discretization in equation (2.25) at every node except

at xi where equation (2.26) is used instead. Note that equation (2.26) is the stan-

dard second order accurate discretization when a Dirichlet boundary condition

of ui+1 = uG
i+1 is applied at xi+1. Thus, this new linear system of equations can

be solved in standard fashion to obtain a second order accurate solution at each

grid node. The realization that ~u is an exact solution to this new linear system

implies that ~u is a valid second order accurate solution to this modified problem.

Next consider the interface location dictated by the modified problem. Since

~u is a second order accurate solution to the modified problem, ~u can be used

to obtain the modified problem interface location to second order accuracy. The

linear interpolant that uses ui at xi and uG
i+1 at xi+1 predicts an interface location

of exactly xI . Since higher order accurate interpolants (higher than linear) can

contribute at most an O(∆x2) perturbation of the interface location, the interface

location dictated by the modified problem is at most an O(∆x2) perturbation of

the true interface location, xI .

As a final note, plugging equation (2.27) into equation (2.25) effectively per-

turbs the interface by an O(4x) amount resulting in a first order accurate algo-
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rithm.

In certain situations, β may only be known at the grid nodes and the interface

in which case βi+ 1
2

in equation (2.31) is determined from a ghost value, βG
i+1, and

the usual averaging

βi+ 1
2

=
βi + βG

i+1

2
(2.32)

noting that the ghost value is easily defined using linear extrapolation

βG
i+1 =

βI + (θ − 1) βi

θ
(2.33)

according to equation (2.28).

In multiple spatial dimensions, the equations are discretized in a dimension by

dimension manner using the one dimensional discretization outlined above. That

is, the (βux)x, (βuy)y and (βuz)z terms in equation (2.1) are each discretized

independently in the same manner that (βux)x was discretized in equation (2.24)

above.

2.3.2 Heat Equation

Consider the heat equation (2.11) with an explicit Euler time discretization

T n+1 − T n

4t
=

1

ρcv

∇ · (k∇T n) (2.34)

and Dirichlet boundary conditions of T = g on the interface where φ = 0. The ∇·
(k∇T n) term is discretized in the same fashion as the variable coefficient Poisson

equation (above) noting that each subdomain can be considered independently.

Assuming that ρ and cv are constant in the subdomain, allows equation (2.34) to

be rewritten as
T n+1 − T n

4t
= ∇ ·

(
k̂∇T n

)
(2.35)
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where k̂ = k
ρcv

. For stability, a time step restriction of

4tH k̂

(
2

(θ14x)2
+

2

(θ24y)2
+

2

(θ34z)2

)
≤ 1 (2.36)

is needed where θ1, θ2 and θ3 are the cell fractions in each spatial dimension for

cells cut by the interface with 0 < θ1, θ2, θ3 ≤ 1.

Implicit Euler time discretization

T n+1 − T n

4t
= ∇ ·

(
k̂∇T n+1

)
(2.37)

avoids the time step stability restriction in equation (2.36). Equation (2.37) can

be rewritten as

T n+1 −4t∇ ·
(
k̂∇T n+1

)
= T n (2.38)

where the ∇ ·
(
k̂∇T n+1

)
term is discretized in the same fashion as the variable

coefficient Poisson equation (above). For each unknown, T n+1
i , equation (2.38) is

used to fill in one row of a matrix creating a linear system of equations. Since the

resulting matrix is symmetric, a wide number of fast linear solvers can be used.

For linear solvers that require an initial guess, setting all T n+1
i identically zero is

usually sufficient. In the examples section, the symmetric linear system is solved

with a PCG method using an Incomplete Choleski preconditioner [24]. Note that

equation (2.37) is first order in time and second order in space, and one needs to

choose 4t proportional to 4x2 in order to obtain an overall asymptotic accuracy

of O(4x2). In the numerical examples section, we chose the time step for the

heat equation as either 4tH = .54x or 4tH = .54x2 depending on whether we

are trying to obtain first or second order overall accuracy respectively.

The Crank-Nicolson scheme

T n+1 − T n

4t
=

1

2
∇ ·

(
k̂∇T n+1

)
+

1

2
∇ ·

(
k̂∇T n

)
(2.39)
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can be used to achieve second order accuracy in both space and time with 4t

proportional to 4x. In the numerical examples section, we choose 4tH = .54x.

For the Crank-Nicholson scheme,

T n+1 − 4t

2
∇ ·

(
k̂∇T n+1

)
= T n +

4t

2
∇ ·

(
k̂∇T n

)
(2.40)

is used to create a symmetric linear system of equations for the unknowns T n+1
i .

2.3.3 Stefan Problem

2.3.3.1 Interface Velocity

There are four cases to consider when computing (Tx)i,j,k: Case 1 - If Ti,j,k, Ti−1,j,k

and Ti+1,j,k all lie on the same side of the interface, then (Tx)i,j,k is calculated

with Ti,j,k and either Ti−1,j,k or Ti+1,j,k depending on which of these two are closer

to the interface as determined by the local absolute value of φ. Case 2 - If Ti,j,k

and Ti−1,j,k lie on one side of the interface, and Ti+1,j,k lies on the other side of the

interface, then (Tx)i,j,k is calculated using Ti,j,k and the local interface boundary

condition for T as long as the distance from ~xi,j,k to the interface is greater than

4x2. Otherwise, Ti−1,j,k is used in place of Ti,j,k. Case 3 - If Ti,j,k and Ti+1,j,k lie

on one side of the interface, and Ti−1,j,k lies on the other side of the interface, then

(Tx)i,j,k is calculated using Ti,j,k and the local interface boundary condition for T

as long as the distance from ~xi,j,k to the interface is greater than 4x2. Otherwise,

Ti+1,j,k is used in place of Ti,j,k. Case 4 - If Ti,j,k lies on one side of the interface

and both Ti−1,j,k and Ti+1,j,k lie on the opposite side of the interface, then the two

local interface boundary conditions for T are used to calculate (Tx)i,j,k as long as

the distance between the two interface locations is greater than 4x2. Otherwise,

the problem is under-resolved and we set (Tx)i,j,k = 0. Ty and Tz are calculated

in a similar fashion, and ~N is computed using equation (2.22) as described in

54



[22]. Finally, the normal derivative of the temperature is defined as TN = ∇T · ~N

at each grid node near the interface.

Once TN is defined in a band about the interface, we extrapolate the values of

(TN)r from the reacted side of the interface to the unreacted side of the interface

and extrapolate the values of (TN)u from the unreacted side of the interface

to the reacted side of the interface so that both (TN)r and (TN)u are defined

at every grid point in a band about the interface. This is accomplished with

constant extrapolation in the normal direction to the interface and implemented

by solving

Iτ ± ~N · ~∇I = 0 (2.41)

to steady state where Iτ = 0. This is done separately to advect I = (TN)r in

one direction and to advect I = (TN)u in the other direction. Instead of time

marching equation (2.41) in fictitious time τ , a first order accurate solution to

the steady state of equation (2.41) is obtained using the fast (velocity) extension

method in [39] (which is based on the Fast Marching Method, see e.g. [40]).

For grid nodes adjacent to the interface, equation (2.19) is used to find the

reaction speed S where
[
k∇T · ~N

]
is calculated in a node by node fashion using

the values of (TN)r and (TN)u that have been defined at each grid node as outlined

above.

The level set function is evolved in time from φn to φn+1 using nodal velocities,

~W = S ~N , and a 3rd order accurate TVD Runge-Kutta (see [22] and [41]) time

stepping method. Detailed discretizations for equation (2.20) and for equation

(2.21) are given in [21]. Note that the 5th order WENO discretization from

[21] is used to discretize the spatial terms in equations (2.20) and (2.21) for the
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numerical examples in this chapter. For stability, a time step restriction of

4tL
(

w1

4x
+

w2

4y
+

w3

4z

)
≤ .5 (2.42)

is used when solving equation (2.20) with ~W =< w1, w2, w3 >. The overall time

step is chosen as min(4tH ,4tL) where 4tH = .54x or 4tH = .54x2.

2.3.3.2 Ghost Cells

Equations (2.38) and (2.40) require a valid value of T n at each grid point. As the

interface moves, the grid points that cross the interface may no longer have valid

values of T n. For example, consider the solidification of water where a grid point

in the water with T n > 273.15K crosses over the interface into the ice. Now that

grid point is associated with the ice, but still has T n > 273.15K as opposed to a

correct value of T n < 273.15K. These errors seem to have been ignored by most

authors and are probably negligible when the temperature is continuous across

the interface. However, when the temperature (or more likely its equivalent in a

related problem) is discontinuous across the interface, using this invalid value of

T n can cause significant errors.

In order to determine a ghost cell value of T n
i,j,k at a grid point adjacent to

the interface, we use the interface boundary condition TI = g( ~xI) at the closest

interface location ~xI = ~xi,j,k − φi,j,k
~N . Then assuming the temperature profile is

locally linear, the ghost value is defined as T n
i,j,k = TI+φi,j,k(TN)i,j,k where (TN)i,j,k

is the value of TN that has already been extrapolated from the other side of the

interface. That is, on the reacted side of the interface the extrapolated value of

(TN)u is used, and on the unreacted side of the interface the extrapolated value

of (TN)r is used.

Besides a valid value of T n, equation (2.40) requires a valid value of 4t
2
∇ ·
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(
k̂∇T n

)
at each grid point implying that ghost cell values of 4t

2
∇·

(
k̂∇T n

)
need

to be defined in grid cells adjacent to the interface in case they are uncovered

as the interface moves across the grid. Since a second order accurate quadratic

extension of a function does not change the values of its second derivative, ghost

cell values of 4t
2
∇ ·

(
k̂∇T n

)
are calculated by extrapolating this term across the

interface according to equation (2.41) with I = 4t
2
∇ ·

(
k̂∇T n

)
. Once again the

fast extension method from [39] is used. Here, in order to get smooth values of

I, an Isobaric Fix technique (see [42] and [21]) is used to extrapolate the values

of I across the interface that are at least one grid cell away from the interface,

as opposed to the usual procedure of extrapolating the values that are adjacent

to the interface.
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2.4 Examples

In each example, we use the level-set function φ in order to decompose the domain

into separate regions. The interior region Ω− is defined by φ ≤ 0 while the exterior

region Ω+ is defined by φ > 0.

2.4.1 Poisson Equation

Here we consider equation (2.1) for cases where β is either constant on each

subdomain or spatially varying on each subdomain. When β is constant on each

subdomain, it can be moved to the right hand side rewriting equation (2.1) as

4u = f̂ where f̂ = f
β
. Therefore, when β is constant on each subdomain, it can

be ignored completely, i.e. absorbed into the right hand side.

Since Ω− is completely decoupled from Ω+, we only compute solutions for Ω−

here.

2.4.1.1 Example 1

Consider uxx = f on Ω = [−.5, .5] with an exact solution of u = 4x2 sin(2πx)

on Ω− where φ = |x| − .313 so that the interface does not lie on a grid point in

any if the test cases. The right hand side is f = 8 sin(2πx) + 32πx cos(2πx) −
16π2x2 sin(2πx).

Figure 2.1 shows the numerical solution with 61 grid points plotted on top

of the exact solution and Table 2.1 shows the results of the numerical accuracy

tests.
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Number of Points L1 − error order L∞ − error order

41 4.422× 10−4 −− 9.236× 10−4 −−
81 1.132× 10−4 1.97 2.654× 10−4 1.79

161 2.736× 10−5 2.04 7.306× 10−5 1.86

Table 2.1: 1D Laplace Equation

Number of Points L1 − error order L∞ − error order

41 1.939× 10−2 −− 8.072× 10−2 −−
81 5.015× 10−3 1.95 2.010× 10−2 2.01

161 1.198× 10−3 2.06 5.532× 10−3 1.86

Table 2.2: 1D Poisson Equation

2.4.1.2 Example 2

Consider (βux)x = f on Ω = [−.65, .25] with an exact solution of u = e4x sin(2πx)

and β = cos(x) on Ω− where φ = |x|− .313 so that the interface does not lie on a

grid point in any if the test cases. The right hand side is f = −2e4x sin(x)(2 sin(2πx)+

π cos(2πx))+4e4x cos(x)(4 sin(2πx)+π cos(2πx)−π2 sin(2πx)). Figure 2.2 shows

the numerical solution with 61 grid points plotted on top of the exact solution

and Table 2.2 shows the results of the numerical accuracy tests.

2.4.1.3 Example 3

This example was taken from [44]. Consider 4u = f on Ω = [−1, 1] × [−1, 1]

with an exact solution of u = x2 + y2 on Ω−. The interface is parameterized by

(x(θ), y(θ)) where x(θ) = .02
√

5 + (.5 + .2 sin(5θ)) cos(θ) and y(θ) = .02
√

5 +

(.5 + .2 sin(5θ)) sin(θ) with θ ∈ [0, 2π]. In order to compute φ, the interface was

divided into 2000 equally spaced points. At each grid node, the magnitude of the
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Number of Points L1 − error order L∞ − error order

101× 101 7.329× 10−5 −− 9.777× 10−5 −−
201× 201 1.776× 10−5 2.04 2.427× 10−5 2.01

401× 401 4.714× 10−6 1.92 6.178× 10−6 1.97

Table 2.3: 2D Laplace Equation

signed distance function φ was computed using the closest point, and the sign

of φ was computed by using the cross-product between the normal and tangent

vectors to the interface, so that φ is negative inside the closed contour. The right

hand side is f = 4. Figure 2.3 shows the numerical solution with 61 grid points

in each spatial direction plotted above a contour showing the interface location,

and Table 2.3 shows the results of the numerical accuracy tests.

2.4.1.4 Example 4

This example was taken from [44]. Consider ∇· (β∇u) = f on Ω = [−1, 1]× [0, 3]

with an exact solution of u = ex(x2 sin(y) + y2) and β = 2 + sin(xy) on Ω−. The

interface is parameterized by (x(θ), y(θ)) where x(θ) = .6 cos(θ)− .3 cos(3θ) and

y(θ) = 1.5+.7 sin(θ)−.07 sin(3θ)+.2 sin(7θ) with θ ∈ [0, 2π]. In order to compute

φ, the interface was divided into 2000 equally spaced points. At each grid node,

the magnitude of the signed distance function φ was computed using the closest

point, and the sign of φ was computed by using the cross-product between the

normal and tangent vectors to the interface, so that φ is negative inside the closed

contour. The right hand side is f = y cos(xy)(ex(x2 sin(y) + y2) + 4xex sin(y) +

2ex sin(y))+cos(xy)xex(x2 cos(y)+2y)+(2+sin(xy))ex(−x2 sin(y)+2). Figure 2.4

shows the numerical solution with 61 grid points in the x-direction and 121 grid

points in the y-direction plotted above a contour showing the interface location,
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Number of Points L1 − error order L∞ − error order

81× 121 2.414× 10−4 −− 1.129× 10−3 −−
161× 241 6.291× 10−5 1.93 3.043× 10−4 1.87

321× 481 1.707× 10−5 1.88 7.804× 10−5 1.94

Table 2.4: 2D Poisson Equation

Number of Points L1 − error order L∞ − error order

26× 26× 26 6.394× 10−5 −− 2.272× 10−4 −−
51× 51× 51 1.635× 10−5 1.96 5.198× 10−5 2.12

101× 101× 101 3.997× 10−6 2.03 1.306× 10−5 1.99

Table 2.5: 3D Laplace Equation

and Table 2.4 shows the results of the numerical accuracy tests.

2.4.1.5 Example 5

Consider4u = f on Ω = [0, 1]×[0, 1]×[0, 1] with an exact solution of u(x, y, z) =

e−x2−y2−z2
on Ω− where φ =

√
(x− .5)2 + (y − .5)2 + (z − .5)2 − .3. The right

hand side is f = 4(x2 + y2 + z2 − 3/2)e−x2−y2−z2
. Figure 2.5 shows the z = .5

cross section of the numerical solution with 41 grid points in each spatial direction

plotted above the z = .5 cross section of the interface, and Table 2.5 shows the

results of the numerical accuracy tests.

2.4.1.6 Example 6

Consider ∇· (β∇u) = f on Ω = [0, 1]× [0, 1]× [0, 1] with an exact solution of u =

sin(4πx) sin(4πy) sin(4πz), and β = xyz on Ω− where φ =
√

(x− .5)2 + (y − .5)2 + (z − .5)2−
.3. The right hand side is f = 4(x2 + y2 + z2 − 3/2)e−x2−y2−z2

. Figure 2.6 shows

61



Number of Points L1 − error order L∞ − error order

21× 21× 21 1.059× 10−2 −− 3.690× 10−2 −−
41× 41× 41 2.370× 10−3 2.16 8.989× 10−3 2.03

81× 81× 81 5.619× 10−4 2.03 2.170× 10−3 2.08

Table 2.6: 3D Poisson Equation

the z = .5 cross section of the numerical solution with 81 grid points in each

spatial direction plotted above the z = .5 cross section of the interface, and Table

2.6 shows the results of the numerical accuracy tests.

2.4.2 Heat Equation

Here we consider equation (2.11) where k is a (possibly different) constant on

each subdomain. In this case, equation (2.11) can be rewritten as Tt = k̂4T

where k̂ = k
ρcv

. In the examples below, we take k̂ = 1.

2.4.2.1 Example 7

Consider Tt = Txx on Ω = [−1, 1] with an exact solution of T = e−π2t cos(πx)

on Ω− where φ = |x| − .313 so that the interface does not lie on a grid point

in any if the test cases. Figure 2.7 shows the numerical solution computed with

the Crank Nicholson scheme at t = 1
π2 with 121 grid points plotted on top of the

exact solution. Tables 2.7, 2.8 and 2.9 show the results of the numerical accuracy

tests.
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Number of Points L1 − error order L∞ − error order

41 1.443× 10−2 −− 2.222× 10−2 −−
81 7.240× 10−3 0.99 1.118× 10−2 1

161 3.634× 10−3 0.99 5.609× 10−3 0.97

Table 2.7: 1D Heat Equation - Backward Euler - 4t ≈ 4x

Number of Points L1 − error order L∞ − error order

41 6.198× 10−4 −− 8.866× 10−4 −−
81 1.540× 10−4 1.98 2.194× 10−4 2.00

161 3.839× 10−5 2.01 5.458× 10−5 2.00

Table 2.8: 1D Heat Equation - Backward Euler - 4t ≈ 4x2

Number of Points L1 − error order L∞ − error order

41 4.084× 10−4 −− 6.811× 10−4 −−
81 9.907× 10−5 2.01 1.623× 10−4 2.08

161 2.424× 10−5 2.03 3.993× 10−5 2.00

Table 2.9: 1D Heat Equation - Crank Nicholson - 4t ≈ 4x
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Number of Points L1 − error order L∞ − error order

81× 81 1.282× 10−5 −− 2.340× 10−4 −−
161× 161 5.618× 10−6 1.19 4.131× 10−5 2.50

321× 321 2.539× 10−6 1.14 7.966× 10−6 2.37

Table 2.10: 2D Heat Equation - Backward Euler - 4t ≈ 4x

Number of Points L1 − error order L∞ − error order

81× 81 4.886× 10−6 −− 2.340× 10−4 −−
161× 161 9.307× 10−7 2.39 4.131× 10−5 2.50

321× 321 1.687× 10−7 2.46 7.569× 10−7 5.77

Table 2.11: 2D Heat Equation - Backward Euler - 4t ≈ 4x2

2.4.2.2 Example 8

Consider Tt = 4T on Ω = [−1, 1] × [−1, 1] with an exact solution of T =

e−2t sin(x) sin(y) on Ω−. The interface is parameterized by (x(θ), y(θ)) where

x(θ) = .02
√

5 + (.5 + .2 sin(5θ)) cos(θ) and y(θ) = .02
√

5 + (.5 + .2 sin(5θ)) sin(θ)

with θ ∈ [0, 2π]. In order to compute φ, the interface was divided into 2000 equally

spaced points. At each grid node, the magnitude of the signed distance function

φ was computed using the closest point, and the sign of φ was computed by

using the cross-product between the normal and tangent vectors to the interface,

so that φ is negative inside the closed contour. Figure 2.8 shows the numerical

solution computed with the Crank Nicholson scheme at t = .1 with 81 grid points

in each spatial direction plotted above a contour showing the interface location.

Tables 2.10, 2.11 and 2.12 show the results of the numerical accuracy tests.
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Number of Points L1 − error order L∞ − error order

81× 81 5.440× 10−6 −− 2.340× 10−4 −−
161× 161 7.888× 10−7 2.78 4.131× 10−5 2.50

321× 321 1.424× 10−7 2.46 6.207× 10−7 6.05

Table 2.12: 2D Heat Equation - Crank Nicholson - 4t ≈ 4x

Number of Points L1 − error order L∞ − error order

26× 26× 26 1.727× 10−6 −− 4.129× 10−6 −−
51× 51× 51 7.591× 10−7 1.19 1.937× 10−6 1.09

101× 101× 101 3.596× 10−7 1.08 9.524× 10−7 1.03

Table 2.13: 3D Heat Equation - Backward Euler - 4t ≈ 4x

2.4.2.3 Example 9

Consider Tt = 4T on Ω = [0, .5] × [0, .5] × [0, .5] with an exact solution of T =

e−3t sin(x) sin(y) sin(z) on Ω− where φ =
√

(x− .5)2 + (y − .5)2 + (z − .5)2− .15.

Figure 2.9 shows the z = .25 cross section of the numerical solution computed

with the Crank Nicholson scheme at t = .1 with 41 grid points in each spatial

location plotted above the z = .25 cross section of the interface. Tables 2.13, 2.14

and 2.15 show the results of the numerical accuracy tests.

Number of Points L1 − error order L∞ − error order

26× 26× 26 4.139× 10−7 −− 1.294× 10−6 −−
51× 51× 51 1.049× 10−7 1.98 2.958× 10−7 2.12

101× 101× 101 2.559× 10−8 2.03 7.536× 10−8 1.97

Table 2.14: 3D Heat Equation - Backward Euler - 4t ≈ 4x2
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Number of Points L1 − error order L∞ − error order

26× 26× 26 5.607× 10−7 −− 2.805× 10−6 −−
51× 51× 51 7.620× 10−8 2.87 2.079× 10−7 3.75

101× 101× 101 2.094× 10−8 1.86 5.617× 10−8 1.88

Table 2.15: 3D Heat Equation - Crank Nicholson - 4t ≈ 4x

2.4.3 Stefan Problem

Here we consider the Stefan problem with k = ρ = cv = 1 in each subdomain.

Then the temperature in each subdomain is governed by the heat equation Tt =

4T , and the interface velocity is given by

S = − 1

[ho]

[
∇T · ~N

]
(2.43)

from equation (2.19). A Dirichlet T = 0 interface boundary condition is used at

the interface separating the two subdomains.

2.4.3.1 Example 10

Let Ω = [0, 1] with an exact solution of T = et−x+.5 − 1 on Ω− and T = 0 on

Ω+ where φ = x − .5 at t = 0. Here, [ho] = −1 so that the interface velocity

is S =
[
∇T · ~N

]
. Dirichlet boundary conditions are enforced on the ∂Ω using

the exact solutions. Figure 2.10 shows the numerical solution computed with the

Crank Nicholson scheme at t = .25 with 81 grid points plotted on top of the exact

solution. Tables 2.16 and 2.17 show the results of the numerical accuracy tests.

Note that the Crank Nicholson scheme is no longer second order accurate overall,

due to the loss of accuracy in the computed interface velocity. In Table 2.18, we

use the exact interface velocity and obtain the expected second order accurate

results. In general, the exact interface velocity is not known, so the similarity
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Number of Points L1 − error order L∞ − error order

41 7.065× 10−4 −− 8.949× 10−4 −−
81 3.542× 10−4 0.99 4.527× 10−4 1.01

161 1.769× 10−4 1.01 2.272× 10−4 0.98

Table 2.16: 1D Stefan Problem - Backward Euler - 4t ≈ 4x

Number of Points L1 − error order L∞ − error order

41 2.372× 10−4 −− 4.501× 10−4 −−
81 1.129× 10−4 1.07 2.125× 10−4 1.08

161 5.388× 10−5 1.06 9.975× 10−5 1.09

Table 2.17: 1D Stefan Problem - Backward Euler - 4t ≈ 4x2

between the results in Tables 2.16 and 2.17 compel us to use the simpler backward

Euler method for the two and three dimensional examples that follow. Even

though the backward Euler method is only first order accurate overall, we still

derive benefits from the symmetric second order accurate spatial discretization.

2.4.3.2 Example 11

Let Ω = [−5, 5]× [−5, 5] and consider the Frank Sphere which is an exact solution

of the Stefan problem, see for example [43]. In two spatial dimensions, the exact

interface location is a disk of radius R = so

√
t with an exact solution of T = 0

Number of Points L1 − error order L∞ − error order

41 2.716× 10−5 −− 6.621× 10−5 −−
81 6.789× 10−6 2.00 1.479× 10−5 2.16

161 1.681× 10−6 2.01 4.055× 10−6 1.87

Table 2.18: 1D Stefan Problem - Crank Nicholson - 4t ≈ 4x
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Number of Points L1 − error order L∞ − error order

41 1.912× 10−3 −− 2.706× 10−2 −−
81 9.587× 10−4 0.99 1.600× 10−2 0.75

161 4.195× 10−4 1.19 1.148× 10−2 0.47

Table 2.19: 2D Stefan Problem - Backward Euler - 4t ≈ 4x

inside the disk and

T = T∞

(
1− F (s)

F (so)

)
(2.44)

outside the disk where s = r√
t
, r =

√
x2 + y2, F (s) = E1(s

2/4),

E1(z) =

∫ ∞

z

exp (z)

z
dz (2.45)

and the value of so depends on the choice of T∞, e.g. we take T∞ = −.5 implying

so = 1.56. Initially, t = 1 so that R = 1.56 and φ =
√

x2 + y2 − 1.56. In this

example, [ho] = 1 and the interface velocity is given by S = −
[
∇T · ~N

]
= so

2
√

t
.

Dirichlet boundary conditions are enforced on the ∂Ω using the exact solution.

Figure 2.11 shows the numerical solution computed with the backward Euler

scheme at t = 1.5 with 60 grid points in each spatial dimension plotted on top

of the exact solution. Figure 2.12 shows the convergence of the Frank Sphere

solution’s radius as the grid size is refined. Table 2.19 and 2.20 shows the results of

the numerical accuracy tests on the temperature field and the radius, respectively.

Note that the numerical estimates for the radius were calculated using only the

grid points adjacent to the interface.

2.4.3.3 Example 12

Let Ω = [−1.5, 1.5] × [−1.5, 1.5] with an initially circular interface of radius .1

given by φ =
√

x2 + y2− .1. Initially, T = 0 inside the circle and T = −.5 outside
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Number of Points L1 − error order L∞ − error order

21 1.812× 100 −− 1.674× 10−1 −−
41 3.105× 10−1 2.54 6.350× 10−2 1.39

81 6.013× 10−2 2.30 2.847× 10−2 1.15

161 1.396× 10−2 2.17 1.159× 10−2 1.29

Table 2.20: 2D Stefan Problem - Backward Euler - 4t ≈ 4x2

the circle. Here, [ho] = 1 so the interface velocity is given by S = −
[
∇T · ~N

]
.

Dirichlet boundary conditions of T = −.5 are enforced on ∂Ω. The T = −.5

material is supercooled and the interface grows outward in an unstable fashion as

shown in figures 2.13 and 2.14 after 5 iterations with respectively 500 and 1000

grid points in each spatial dimension.

2.4.3.4 Example 13

Let Ω = [−1.5, 1.5]× [−1.5, 1.5]× [−1.5, 1.5] with an initially spherical interface

of radius .1 given by φ =
√

x2 + y2 + z2 − .1. Here, [ho] = 1 so the interface

velocity is given by S = −
[
∇T · ~N

]
. Dirichlet boundary conditions of T = −.5

are enforced on ∂Ω. The T = −.5 material is supercooled and the interface grows

outward in an unstable fashion as shown in figure 2.15 at t = .14 with 100 grid

points in each spatial dimension.
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Figure 2.1: 1D Laplace Equation: Numerical solution (open symbol) with 61 grid

points plotted on top of the exact solution (solid line).
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Figure 2.2: 1D Poisson Equation: Numerical solution (open symbol) with 61 grid

points plotted on top of the exact solution (solid line).
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Figure 2.3: 2D Laplace Equation: Numerical solution (open symbol) with 61 grid

points in each direction plotted above a contour showing the interface location

(solid line).
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Figure 2.4: 2D Poisson Equation: Numerical solution (opened symbols) with 61

grid points in the x-direction and 121 grid points in the y-direction plotted above

a contour showing the interface location (solid line)
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Figure 2.5: 3D Laplace Equation: z = .5 cross section of the numerical solution

(open symbols) with 41 grid points in each spatial direction plotted above the

z = .5 cross section of the interface (solid line).
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Figure 2.6: 3D Poisson Equation: z = .5 cross section of the numerical solution

(open symbols) with 41 grid points in each spatial direction plotted above the

z = .5 cross section of the interface (solid line).
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Figure 2.7: 1D Heat Equation: Numerical solution (open symbols) computed

with the Crank Nicholson scheme at t = 1
π2 with 121 grid points plotted on top

of the exact solution (solid line).
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Figure 2.8: 2D Heat Equation. Numerical solution (open symbol) computed with

the Crank Nicholson scheme at t = .1 with 81 grid points in each spatial direction

plotted above a contour showing the interface location (solid line).
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Figure 2.9: 3D Heat Equation: z = .25 cross section of the numerical solution

(open symbols) computed with the Crank Nicholson scheme at t = .1 with 41

grid points in each spatial location plotted above the z = .25 cross section of the

interface (solid line).
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Figure 2.10: 1D Stefan Problem: Numerical solution (open symbol) computed

with the Crank Nicholson scheme at t = .25 with 81 grid points plotted on top

of the exact solution (solid line).
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Figure 2.11: 2D Stefan Problem - Frank Sphere - Cross section of the temperature

(open symbols) computed with the backward Euler scheme at t = 1.5 with 60

grid points in each spatial dimension plotted on top of the exact solution (solid

line).
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Figure 2.12: 2D Stefan Problem - Radius of the Frank’s sphere computed (open

symbols) with the backward Euler scheme at t = 1.5 with 20, 40, 80 and 160 grid

points in each spatial dimension. The solid line shows the exact solution of the

radius.
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Figure 2.13: 2D Stefan Problem - Initially, T = 0 inside the circle of radius 0.1

and T = −.5 outside. Shown here is the interface that has grown outward in an

unstable fashion after 5 iterations with 500 grid points in each spatial dimension.
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Figure 2.14: 2D Stefan Problem - Initially, T = 0 inside the circle of radius 0.1

and T = −.5 outside. Shown here is the interface that has grown outward in an

unstable fashion after 5 iterations with 1000 grid points in each spatial dimension.
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Figure 2.15: 3D Stefan Problem - Initially, T = 0 inside the sphere of radius 0.1

and T = −.5 outside. Shown here is the interface at t = .14 that has grown

outward in an unstable fashion with 100 grid points in each spatial dimension.
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2.5 Application to multiphase flows

We can apply the method described in the previous chapter along with the

method developed in [23] to properly model flame propagation with inclusion

of thermal conductivity. The local flame speed S is proportional to the jump

in the temperature gradient at the flame interface as derived from the conserva-

tion of energy equations of the Euler equations, whereas the fluid velocity and

other variables are obtained by solving the incompressible Euler equations for the

conservation of mass and momentum.

As an example we compare our numerical results with the analytical Frank

sphere solution in one spatial dimension, simulating the melting of ice. Consider

the domain [0, 5]. The exact interface location is at distance R(t) = S
√

t from

the origin, with exact solution

T (x, t) =





To

(
1− F (x)

F (S)

)
for x ≤ S

0 for x > S

, where x = s√
t
, F (x) = erfc(1

2
x) and erfc(z) = 2√

π

∫ z

o
e−t2dt. We choose S = 2,

which implies To = 4.06.

We start our computation at t = 1 with the following values for the fluid

variables:

• Density: ρLeft = 1/2, ρRight = 1.

• Velocity: ρLeft = 0, ρRight = 0.

• Pressure: ρLeft = 0, ρRight = 0.

Figure 2.16 shows the temperature at different time. Figure 2.17 shows the

space position of the interface compared with the analytic solution and Figure

2.18 shows the velocity initially (t = 1) and at the end of the computation (t = 3).
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Figure 2.16: Exact solution for flame propagation problem - Numerical solution

of the temperature profile’s evolution (open symbol) on top of the exact solution

(solid line).
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Figure 2.17: Exact solution for flame propagation problem - Numerical solution

of the interface position (open symbol) on top of the exact solution (solid line).
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Figure 2.18: Initial velocity (t = 1 - top) and final velocity (t = 3 - bottom).
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2.6 Conclusion

In summary, we have shown that our scheme is second order accurate for the

Poisson equation, the heat equation and the Stefan problem in the case where

the exact interface position is known. Our method yields symmetric matrix which

is more efficient in terms of cpu time. Future work on this topic will explore the

possibility of obtaining a second accurate scheme in the case where the exact

interface position is not known.
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