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Abstract

We derive a Godunov-type numerical flux for the class of strictly convex,
homogeneous Hamiltonians that includesH(p, q) =

√
ap2 + bq2 − 2cpq,

c2 < ab. We combine our Godunov numerical fluxes with simple Gauss-
Seidel type iterations for solving the corresponding Hamilton-Jacobi Equa-
tions. The resulting algorithm is fast since it does not require a sorting strat-
egy as found, e.g., in the fast marching method. In addition, it provides a way
to compute solutions to a class of HJ equations for which the conventional
fast marching method is not applicable. Our experiments indicate conver-
gence after a few iterations, even in rather difficult cases.

1 Introduction

Hamilton-Jacobi equations have a rich pool of applications, ranging from those of
optimal control theory, geometrical optics, to essentially any problem that needs the
(weighted) distance function [13]. Examples include crystal growth, ray tracing,
etching, robotic motion planning , and computer vision. Solutions of these types
of equations usually develop singularities in their derivatives, and thus, the unique
viscosity solution [5] is sought.
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In this article, we focus on the class of time independent Hamilton-Jacobi Equa-
tions with Dirichlet boundary condition:

H(x,∇u) = r(x), u|Γ = 0;

H(x,p) are strictly convex, non-negative, andlimλ→0H(x, λp )=0. We explain
our method using this following important model equation:

H(φx, φy) =
√
aφ2

x + bφ2
y − 2cφxφy = r, (1)

whereφ : R2 7→ R continuous anda, b, c andr can either be constants or scalar
functions, in which caseH depends also onx, defined onR2, satisfyingab > c2,
a, b, r > 0. With a = b = 1, andc = 0, we have the standard eikonal equation
for which many numerical methods have been developed. This equation has the
essential features of HJ equations with convex Hamiltonians so that we can easily
explain our algorithm, and is general enough that fast marching is not applicable.

In the following subsections, we will review some of the solution methods for the
eikonal equation since it forms the motivation of our work. We then present a fast
Gauss-Seidel type iteration method for equation (1) which utilizes a monotone up-
wind Godunov flux for the Hamiltonian. We show numerically that this algorithm
can be applied directly to equations of the above type with variable coefficients.

1.1 Solving Eikonal Equations

In geometrical optics [9], the eikonal equation√
φ2
x + φ2

y = r(x, y) (2)

is derived from the leading term in an asymptotic expansion

eiω(φ(x,y)−t)
∞∑
j=0

Aj(x, y, t)(iω)−j

of the wave equation:

wtt − c2(x, y)(wxx + wyy) = 0,

wherer(x, y) = 1/|c(x, y)|, is the function of slowness. The level sets of the
solutionφ can thus be interpreted as the first arrival time of the wave front that is
initially Γ. It can also be interpreted as the “distance” function toΓ.
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We first restrict our attention for now to the case in whichr = 1. Let Γ be a closed
subset ofR2. It can be shown easily that the distance function defined by

d(x) = dist (x,Γ) := min
p∈Γ

||x− p||, x = (x, y) ∈ R2,

is the viscosity solution to equation (2) with the boundary condition

φ(x, y) = 0 for (x, y) ∈ Γ.

Rouy and Tourin [19] proved the convergence to the viscosity solution of an iter-
ative method solving equation (2) with the Godunov Hamiltonian approximating
||∇φ||. The Godunov Hamiltonian function can be written in the following form:

HG(p−, p+, q−, q+) =
√

max{p+
−, p

−
+}2 + max{q+−, q−+}2 (3)

wherep± = Dx
±φi,j , q± = Dy

±φi,j , D
x
±φi,j = ±(φi±1,j−φi,j)/h and accordingly

for Dy
±φi,j , andx+ = max(x, 0), x− = −min(x, 0).

Osher [12] provided a link to time dependent eikonal equations by proving that the
t-level set ofφ(x, y) is the zero level set of the viscosity solution of the evolution
equation at timet

ψt = ||∇ψ||

with appropriate initial conditions. In fact, the same is true for a very general
class of Hamilton-Jacobi equations (see [12]). As a consequence, one can try to
solve the time-dependent equation by the level set formulation [16] with high order
approximations on the partial derivatives [8][17]. Crandall and Lions proved that
the discrete solution obtained with a consistent, monotone Hamiltonian converges
to the desired viscosity solution [4].

Tsitsiklis [24] combined heap sort with a variant of the classical Dijkstra algorithm
to solve the steady state equation of the more general problem

||∇φ|| = r(x).

This was later rederived in [22] and also reported in [7]. It has become known as the
fast marching method whose complexity isO(N log(N)), whereN is the number
of grid points. Osher and Helmsen [14] have extended the fast marching type
method to somewhat more general Hamilton-Jacobi equations. We will comment
on this in a following section.

3



1.2 Anisotropic Eikonal Equation

We return to the Hamiltonian in question:H(p, q) =
√
ap2 + bq2 − 2cpq. Writing

the quadratic form as

ap2 + bq2 − 2cpq =
(
p q

)( a −c
−c b

)(
p
q

)
,

it is easy to see that we can diagonalize the symmetric matrix in the middle of the
equation for our previously noted choices ofa, b, c and find a coordinate system
ξ-η such that after rescaling, the Hamiltonian becomes

H(p̃, q̃) =
√
p̃2 + q̃2.

The eigensystem of the above matrix defines the anisotropy. Indeed, the authors in
[14] proposed to solve the constant coefficient equation (1) by first transforming it
to equation (2) in theξ-η coordinate system.

This anisotropy occurs in fields such as ray tracing in special media, e.g. crystals,
in which there are “preferred” directions. Furthermore, we will see that it can be a
result of considering the geodesic distance function on a manifoldM that is defined
as the graph of a smooth functionf .

Let φ be the distance function such that

φ(x, y) = min
γ⊂M

∫
γ
ds,

andγ connects the point(x, y) with the setΓ ⊂M. The minimizing curve is called
the geodesic, andφ the distance function toΓ onM. Moreover,φ solves

||P∇ψ∇φ||2 = 1, φ|Γ = 0, (4)

whereψ(x, y, z) = f(x, y)− z, and the projection operator [3]

P∇ψ = I − ∇ψ
⊗
∇ψ

||∇ψ||2
,

which projects a vector onto a plane whose normal is parallel to∇ψ. Using the
fact thatP∇ψ is a projection operator, a simple calculation shows that

||P∇ψ∇φ||2 = (1− f2
x

f2
x + f2

y + 1
)φ2
x+(1−

f2
y

f2
x + f2

y + 1
)φ2
y−2

fxfy
f2
x + f2

y + 1
φxφy.

(5)
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This is clearly of the form of Hamiltonians that we are interested in. We will apply
our algorithm to compute the geodesic distance later in this paper.

There are other approaches that are designed to compute distances on manifolds.
[10] provided an algorithm to compute the geodesic distance on triangulated mani-
folds. Barth [2] uses the Discontinuous Galerkin Method to find distance on graphs
of functions that are represented by spline functions. In [3], the authors embed
the manifold as the zero level set of a Lipschitz continuous function and solve
the corresponding time-dependent eikonal equation (4) in the embedding space.
As we have mentioned in the previous subsection, the zero level set of the time-
dependent eikonal equation at timet1 is thet1-level set of the solution to the sta-
tionary eikonal equations (see [12]). In [11], the authors adopted the standard fast
marching method to solve the isotropic eikonal equation in a thin band of thickness
ε, that encloses the manifoldM , and proved that the restriction of the solution to
M converges to the geodesic distance asε goes to0. In [20, 21], the authors pro-
vide an ordered upwind method to solve a general class of static Hamilton-Jacobi
equations. We will comment on their method in a later subsection.

1.3 Osher’s Fast Marching Criteria

Since the fast marching method is by now well known, we will not give much detail
on its implementation in this paper. In general, this involves a sorting procedure
and the solution of

HG(Dx
−φi,j , D

x
+φi,j , D

y
−φi,j , D

y
+φi,j) = 1 (6)

for φij in terms of its four neighboring values. More precisely, the heap sort strat-
egy of the fast marching method requires a monotone update sequence. The up-
dated value of a grid node has to be greater than or equal to those of the grid nodes
used to form the finite difference stencil. This amounts to the condition

pHp + qHq ≥ 0,

which dictates that the solution is non-decreasing along the characteristics. How-
ever, if we use one sided upwind finite difference approximations for partial deriva-
tives ofφ on a Cartesian grid, it is equivalent to demanding that the partial deriva-
tives ofφ (i.e. p andq) and their corresponding components of the characteristics
directions (i.e. dx/dt anddy/dt) have the same sign. Sincedx/dt = Hp and
dy/dt = Hq, we have the stricter Osher’s fast marching criterion:

pHp ≥ 0, qHq ≥ 0. (7)
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It does not matter whether the Hamiltonian is convex or not; as long as criterion (7)
is satisfied, a simple fast marching algorithm can be applied. But if the criterion
is not satisfied, fast marching cannot be applied to the problem on a Cartesian
grid. Of course there are Hamiltonians that do not satisfy (7). In the class of
Hamiltonians that we consider, as long asc 6= 0, it is likely that the values ofp
andq differ to the extent that the above criterion is no longer satisfied. In light
of criterion (7), we have also tried to find directionsξ(x, y) andη(x, y) locally in
which p̃Hp̃ ≥ 0, q̃Hq̃ ≥ 0. However, if one insists on using Cartesian grids, the
implementation of this approach might be a bit hairy. We are interested especially
in tackling, over a Cartesian grid, problems where the solution is non-decreasing
along characteristics but Osher’s fast marching criterion is not satisfied.

1.4 The Sweeping Idea

Danielsson [6] proposed an algorithm to compute Euclidean distance to a subset of
grid points on a two dimensional grid by visiting each grid node in some predefined
orders. In [?], Boué and Dupuis suggest a similar “sweeping” approach to solve
the steady state equation which, by experience, results in aO(N) algorithm for
the problem at hand. This “sweeping” approach has recently been used in [23] and
[26] to compute the distance function to an arbitrary data set in computer vision.
In [25], the author provides some theoretical evidence indicating that sweeping
converges to an approaximate Euclidean distance function, i.e. to an approximate
viscostiy solution of|∇φ| = 1 in 2d predetermined iterations. We will talk about
these iterations in a later section. Using this “sweeping” approach, the complexity
of the algorithms drops fromO(N logN) in fast marching toO(N), and the im-
plementation of the algorithms becomes a bit easier than the fast marching method
that requires heap sort.

This sweeping idea is best illustrated by solving the eikonal equation in[0, 1] :

|ux| = 1, u(0) = u(1) = 0.

Let ui = u(xi) denote the grid values associated to the uniform grid composed
of the gridpoints0 = x0 < x1 < . . . < xn =1. We then solve the discretized
nonlinear system√

max(max(D−ui, 0)2,min(D+ui, 0)2) = 1, u0 = un = 0 (8)

by our sweeping approach. We set initially,u(0)
i = ∞, i = 1, · · · , n − 1. In

practice,∞ can be replaced by some numberK which is larger thanmaxx∈[0,1] u.
Let us begin by sweeping from0 to 1, i.e. we updateui from i = 1 increasing to
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i = n−1. This is “equivalent” to following the characteristics emanating fromx0.

Let u(1)
i denote the grid values after this sweep. We then have

u
(1)
i =

{
i/n, if i = 1, · · · , n− 2

1/n, if i = n− 1.
i/n, i = 1, · · · , n− 1.

Notice that ati = n − 1, we actually use the upwind information from the neigh-
boring right boundary point. Furthermore, notice thatu

(1)
i already has the correct

desired values fori ≤ n/2 since the sweep goes from left to right, the desired
upwind direction for thesei. In the second sweep, we updateui from i = n − 1
decreasing to1, starting withu(1)

i . During this sweep, we follow the characteristics
emanating fromxn. The use of (8) is essential, since it determines what happens
when two characteristics cross each other. It is then not hard to see that after the
second sweep,

ui =
{

i/n, if i ≤ n/2
(n− i)/n otherwise.

Notice the correct values ati ≤ n/2 derived after the first sweep are unchanged and
new and correct values fori > n/2 are created. In summary, this simple iterative
algorithm can be described as: at thek-th iteration, solve

max

(
max

(
u

(k)
i − u

(k−1)
i−1

∆x
, 0

)
,min

(
u

(k−1)
i+1 − u

(k)
i

∆x
, 0

))
= 1

for u(k)
i for eachi going from1 ton−1 in the first iteration (k = 1), and fromn−1

to 1 for the second iteration (k = 2). However, for more complicated equations
and boundary conditions, it is not so easy to write down the equivalent explicit
solution.

In this paper, we will extend this sweeping approach to a class of H-J equations
that cannot be solved by the fast marching algorithm by first deriving a Godunov
Hamiltonian.

In [20, 21], the authors proposed a one-pass method that is based on a control-
theoretic view point. In principle, they solve the Hamilton-Jacobi-Bellman equa-
tion

max
a
∇u · af(a,x) = 1, (9)

wherep = (p, q), and the functionf(a,x) is the speed of motion. This formula is
the second Legendre Transform taken on the sphere, see e.g. [15, 18].

The idea is still to follow the characteristics and update the grid value in a monotone
sequence. In a notation similar to the 2 dimensional setting of [20, 21], we letuo
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be the grid value we are updating. To updateuo, they have to look for two other
grid valuesur andus which are not necessarily on the immediate grid neighbors
of uo. For example, ifuo is the grid valueui,j , the immediate neighbors ofuo are
thenui+1,j ,ui,j+1,ui−1,j , andui,j−1. As we indicated in the previous subsection, it
is possible thatuo is less than all its immediate neighboring values. We then need
to find two other grid values, here denoted asus andur, to form an upwinding
stencil. Thenuo is found by minimizing a nonlinear expression derived from (9),
using the values ofur, us andf. The heap sort data structures is used in order to
find ur andus, therefore, the complexity isN logN, whereN is the total number
of grid points. Also, sinceur andus may not lie on the immediate neighbors, this
algorithm may need a larger region around the initial wavefront to get started.

As one will see in the following section, our proposed method is also based on
following the characteristics. To updateuo, our method only uses the immedi-
ate neighboring grid values and does not need the heap sort data structure. More
importantly, our algorithm follows the characteristics with certain directions si-
multaneously, in a parallel way, instead of a sequential way as in the fast marching
method. The Godunov flux is essential in our algorithm, since it determines what
neighboring grid values should be used to updateu on a given grid nodeo. At least
in the examples presented, we only need to solve a simple quadratic equation and
run some simple tests to determine the value to be updated. This simple proce-
dure is performed in each sweep, and the solution is obtained after a few sweeps.
Our code is not much more than what is presented in Section 3.2. We also point
out the ease of implementing our proposed algorithm and its extension to more
dimensions. This will appear in a sequel paper.

2 A Godunov Flux for Strictly Convex Hamiltonians

By solving the Riemann problem for Hamilton-Jacobi Equations (Godunov’s pro-
cedure), Bardi and Osher [1] proved rigorously that

HG(p−, p+; q−, q+) = extp∈I[p−,p+]extq∈I[q−,q+]H(p, q) (10)

where
ext p∈I[a,b] = min

p∈[a,b]
if a ≤ b,

ext p∈I[a,b] = max
p∈[b,a]

if a > b,

HG(Dx
−φij , D

x
+φij , D

y
−φij , D

y
+φij) = HG(p−, p+; q−, q+)
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and I[a, b] denotes the closed interval bounded bya and b. This is a monotone
upwind flux function, which implies convergence. Godunov’s scheme (10) for the

eikonal equation
√
φ2
x + φ2

y = 1 can be derived from the above formula. It is

one of the central topics of this paper to derive an explicit formula for the class
of strictly convex Hamiltonians in question. Especially, we will demonstrate our

numerical methods onH =
√
aφ2

x + bφ2
y − 2cφxφy, c2 < ab.

Note that in general, if we reverse the order onp andq in our ext-ext decision, the
result might be different, although they both give convergent monotone methods.
However, in the convex Hamiltonian at hand, the results are order independent.

For convenience, we will also useHG(φi,j , φi±1,j , φi,j±1) to denote the evaluation
of our Godunov HamiltonianHG(Dx

−φij , D
x
+φij , D

y
−φij , D

y
+φij).

2.1 Derivation of the Flux

In order to derive a compact expression that satisfies equation (10), we need to
study the extremum of the Hamiltonian onIp × Iq ⊂ R2, whereIp is a shorthand
for I[p−, p+].

The extremum may occur on either the critical points ofH, or the boundary of
Ip × Iq. Let us first look at the partial derivatives ofH, i.e. Hp andHq, and their
zeros. Fix aq0, the extremum ofH(p, q0) occurs at either the critical point of
H(p, q0) (i.e. whereHp = 0) or the boundary ofI[p−, p+]. We denote the critical
point bypσ(q0). Similarly, givenp0, we obtain the critical pointqσ(p0). For con-
venience, we shall denotepσ(q0) by pσ whenq0 can be determined from the con-
text, and(pσ, qσ) is the critical point ofH such thatHp(pσ, qσ) = Hq(pσ, qσ) =
0. Therefore, we consider separatelyH(pσ, qσ), H(p−, qσ(p−)), H(p+, qσ(p+)),
H(pσ(q−), q−), H(pσ(q+), q+), andH(p±, q±) as possible evaluations of (10).

For fixedp, we have

HG(p, q−, q+) = H(p, sgnmax{(q− − qσ)+, (q+ − qσ)−}+ qσ ), (11)

where

sgnmax(x, y) = x+ if max{x+, y−} = x+

sgnmax(x, y) = −y− if max{x+, y−} = y−.

The expression for fixedq is a direct analogy to (11). It is easy to see thatHG(·, ·; q−, q+)
is increasing inq− and decreasing inq+. By symmetry,HG(p−, p+; ·, ·) is increas-
ing in p− and decreasing inp+.
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Details of the derivation of the above expression are provided in the appendix.

The following proposition will be of use in analyzing this introduced Godunov
flux.

Proposition 1 If Hpp > 0,Hqq > 0 and pHp ≥ 0, qHq ≥ 0, and pσ(0) =
qσ(0) = 0, thenpσ(q) ≡ 0 ∀q ,andqσ(p) ≡ 0 ∀p.

Proof. pσ(q) by definition, is the zero ofHp(pσ(q), q) = 0. We will write pσ in
place ofpσ(q) for brevity. This Proposition is then proved by simple manipulation
of the definitions.

d

dq
pσH(pσ, q) = p′σHp(pσ, q) + pσ(Hpp(pσ, q)p′σ +Hpq(pσ, q))

= pσp
′
σHpp(pσ, q) +

∂

∂q
Hp(pσ, q)

= pσp
′
σHpp(pσ, q)

= 0

The hypothesisHpp > 0 implies that

pσ(q) = 0 ∀q or p′σ(q) = 0 ∀q.

Again, by the hypothesis thatpσ(0) = qσ(0) = 0, we can conclude thatpσ(q) ≡ 0
∀q.

Similarly, qσ(p) ≡ 0 ∀p. Q.E.D.

Notice that if the Hamiltonian is
√
p2 + q2, our upwinding expression in (11) is

identical to the conventional expressionmax(p+
−, p

−
+). (In this case, the sign of the

second argument does not matter since we are really evaluating the square product
of it in the eikonal equation.) In fact, we have the following Corollary, which is a
direct consequence of Proposition 1.

Corollary 1 If Hpp > 0,Hqq > 0, pHp ≥ 0, qHq ≥ 0, pσ(0) = qσ(0) = 0, and
H(p, q) = H(|p|, |q|), then the Godunov flux can be simplified to

HG(p−, p+; q−, q+) = H(max{p+
−, p

−
+},max{q+−, q−+}).
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3 The Sweeping Algorithms

We will use the model equation (1) as a concrete example for the exposition of
our algorithm. We stress here again that the scheme described below is valid for a
general class of convex, homogeneous Hamilton-Jacobi Equations.

From the assumption that the solution is nondecreasing along the characteristics,
i.e.

pHp + qHq ≥ 0,

we can easily deduce that the solution is non-decreasing at least in either thex- or
y- direction; i.e. eitherpHp ≥ 0 or qHq ≥ 0. Since we approximate the derivatives
φx(xi,j) by finite differencing using the neighbors ofφi,j , the above monotonicity
property translates to the following requirement in the solutionφi,j :

Definition: Let φi,j be the solution ofHG(φ, φi±1,j , φi,j±j) = ri,j . We say thatφ
satisfies the monotonicity requirement if

φi,j ≥ min{φi±1,j , φi,j±1}.

3.1 Derivation of the Scheme

Without loss of generality, we assume thatr(x, y) = 1. Let us re-examine the
equation to be solved:

H(p, q) = 1 (12)

where
H : R× R → R.

Equation (12) dictates a level set relation; namely, the solution is the1-level set
of H in thep-q plane (denoted here asΛ). Correspondingly, the solutions of the
Hamilton-Jacobi equation with the Godunov Hamiltonian

HG(p+, p−; q+, q−) = extp∈I[p−,p+]extq∈I[q−,q+]H(p, q) = r (13)

satisfy the following two properties:

• they are the intersections ofΛ and the setI[p−, p+]× I[q−, q+];

• they are either the critical points ofH or the boundary points of the set
I[p−, p+]× I[q−, q+].
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Figure 1: The 1-level set of H and the box I[p-,p+]xI[q-,q+]

q

p+p−

p

q−

q+

p

q

p+p−

q+

q−

Figure 1 demonstrates two possible configurations of the intervals. So what our
algorithm should do is find a suitable value ofφ on each grid node so that the
divided forward and backward differences ofφ at that grid node satisfy equation
(13).

Suppose we are on the grid node(i, j), and it is determined that

HG(p+, p−; q+, q−) = H(p−, q+) = 1.

Correspondingly, for our model equation (1), we have to solve the following quadratic
equation:

a(
φi,j − φi−1,j

∆x
)2 + b(

φi,j+1 − φi,j
∆y

)2 − 2c(
φi,j − φi−1,j

∆x
)(
φi,j+1 − φi,j

∆y
) = 1.

(14)
The solutionφi,j has to satisfy not only the above equation, but it ultimately has
to be a solution to equation (13) given its four neighborsφi−1,j , φi+1,j,φi,j−1, and
φi,j+1. The subfigure on the right in figure 1 shows one such possible configuration;
i.e.

φi,j − φi−1,j

∆x
<
φi+1,j − φi,j

∆x
and

φi,j − φi,j−1

∆y
<
φi,j+1 − φi,j

∆y
,

such that

extp∈I[p−,p+]extq∈I[q−,q+]H(p, q) = min
p∈I[p−,p+]

min
q∈I[q−,q+]

H(p, q) = 1.
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One can, of course, implement a tree of all the probable cases from the complete
listing of that of the Godunov Hamiltonian (10). However, we have a more straight-
forward approach that utilizes the compact expressions for the Godunov Hamilto-
nian (11) that we obtained from the previous section.

Instead, we solve the equation with the following reduced formulas for the original
Godunov Hamiltonian:

HG(p+, p−; q+, q−) = extq∈I[q−,q+]H(p−, q), (15)

HG(p+, p−; q+, q−) = extq∈I[q−,q+]H(p+, q), (16)

HG(p+, p−; q+, q−) = extp∈I[p−,p+]H(p, q−), (17)

HG(p+, p−; q+, q−) = extp∈I[p−,p+]H(p, q+), (18)

HG(p+, p−; q+, q−) = H(pσ, qσ) (19)

For example, in the first case, the flux is equivalent to

H(p−, sgnmax{(q− − qσ)+, (q+ − qσ)−}+ qσ ) = 1.

The possible evaluations of sgnmax{(q− − qσ)+, (q+ − qσ)−} + qσ areq−, q+,
qσ(p−), and0.We thus end up solving the H-J equation with all possible arguments
for the Hamiltonian.

Suppose we solve algebraicallyH(p−, q+) = 1 for φi,j and call the solutionφcan.
We then compute the divided differencesp± andq± using thisφcan in place ofφi,j .
We callφcan valid if both

H(p−, sgnmax{(q− − qσ)+, (q+ − qσ)−}+ qσ ) = 1,

H(sgnmax{(p− − pσ)+, (p+ − pσ)−}+ pσ , q+) = 1,

andφcan satisfies the monotonicity requirement (Definition 1).

Finally, we setφi,j to be the minimum of those in the set of all valid candidate
solutionsφcan obtained from using all the possible combinations of the arguments
of H. This is motivated by the first arrival time interpretation of the functionφ.

In essence, we are solving for the central value in the Godunov Hamiltonian in
terms of its four neighbors. It’s well known and easy to show that any monotone
Hamiltonian, let alone Godunov’s, is a monotone function of this value. For these
Hamiltonians, this value goes from−∞ to +∞. Thus there is always a unique
solution.

Definition: (Sweeping iteration)

13



A compact way of writing this sweeping iterations in C/C++ is:

for(s1=-1;s1<=1;s1+=2)

for(s2=-1;s2<=1;s2+=2)

for(i=(s1<0?nx:0);(s1<0?i>=0:i<=nx);i+=s1)

for(j=(s2<0?ny:0);(s2<0?j>=0:j<=ny);j+=s2)

update φi,j

3.2 The Algorithm

For the brevity of the algorithm, we define respectively

hG1(p, q−, q+) := sgnmax{(q− − qσ(p))+, (q+ − qσ(p))−}+ qσ(p),

hG2(p−, p+, q) := sgnmax{(p− − pσ(q))+, (p+ − pσ(q))−}+ pσ(q).

whereqσ(p) = pc/b andpσ(q) = qc/a.

Algorithm: We assume thatφ(i, j) is given the exact values in a small neigh-
borhood ofΓ. We denote this neighborhood Nbd(Γ). We initialize φ by setting

φ(i, j) = φ
(0)
i,j to∞1 . We begin by computingφ(n)

i,j , for n = 1.

Do the following steps while||φ(n) − φ(n−1)|| > δ: (δ > 0 is the given tolerance.)

1. For each grid point (i, j) visited in the sweeping iteration, if xi,j 6=
Nbd(Γ), do the following:

(a) For(sx, sy) = (−1, 1), (−1,−1), (1,−1), and(1, 1)

i. Solve

H(
sx · (φtmp(sx, sy)− φ(n)(i− sx, j))

dx
,
sy · (φtmp(sx, sy)− φ(n)(i, j − sy))

dy
) = r(i, j)

for φtmp(sx, sy).
ii. Let

p(sx, sy) =
sx · (φtmp(sx, sy)− φ(n)(i− sx, j))

dx
,

and

q(sx, sy) =
sy · (φtmp(sx, sy)− φ(n)(i, j − sy))

dy
.

1Notice that we only need to use a large value in actual implementation.
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iii. Let TG1(sx, sy) be the logical evaluation of the equality:

H(p(sx, sy), hG1(p(sx, sy), q(sx, 1), q(sx,−1))) = r(i, j),

andTG2(sx, sy) be that of

H(hG2(p(1, sy), p(−1, sy), q(sx, sy)), q(sx, sy)) = r(i, j).

iv. Let M(sx, sy) = φtmp(sx, sy)−min(φ(n)(i− sx, j), φ(n)(i, j −
sy)).

v. If TG1(sx, sy), TG2(sx, sy) are true, andM(sx, sy) ≥ 0, add
φtmp(sx, sy) to the listphi_candidate.

(b) For(sx, sy) = (1, 0), (−1, 0),

i. Solve

H(
sx · (φtmp(sx, 0)− φ(n)(i− sx, j))

dx
,
sx · (φtmp(sx, 0)− φ(n)(i− sx, j))

dx

c

b
) = r(i, j),

for φtmp(sx, sy)
ii. Computep(sx, sy), andq(sx, sy) following the definition.

iii. EvaluateTG1(sx, sy).
iv. If TG1(sx, sy) is true andM(sx, sy) ≥ 0, addφtmp(sx, sy) to the

list phi_candidate.

(c) For(sx, sy) = (0, 1) and(0,−1),

i. Solve

H(
sy · (φtmp(0, sy)− φ(n)(i, j − sy))

dy

c

a
,
sy · (φtmp(0, sy)− φ(n)(i, j − sy))

dy
) = r(i, j),

for φtmp(sx, sy).
ii. Computep(sx, sy), andq(sx, sy) following the definition.

iii. EvaluateTG2(sx, sy).
iv. If TG2(sx, sy) is true andM(sx, sy) ≥ 0, addφtmp(sx, sy) to the

list phi_candidate.

(d) Letφmin be the minimum element of phi_candidate .

φ(n)(i, j) = min(φ(n)(i, j), φmin).

(e) Clearphi_candidate.
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2. Setn = n+ 1, go back to 1.

As described in the previous section, we have to solve the H-J equation with all pos-
sible arguments for the Hamiltonian and take the minimum of those in the set of
all valid candidate solutions. The possible arguments of the Hamiltonian consists
of the forward/backward differences ofφ and the critical points centered at each
grid node. In the above algorithm, this set of all possible arguments is indexed
by {−1, 0, 1}2. Therefore, byX(−1, 1), we denote the quantityX that is com-
puted from usingH(p−, q+). The number0 encodes the cases of critical points.
For example,φtmp(−1, 1) denotes the roots of the quadratic equation formed by
H(p−, q+) = r; φtmp(1, 0) denotes that ofH(p+, qσ(p+)).

We remark that in the case ofc = 0, our algorithm is equivalent to what is used
in the fast marching method under the Rouy-Tourin formula (10). Secondly, in
our numerical implementation, we put a threshold value in the evaluationsTG1 and
TG2 due do numerical accuracy reasons.

4 Examples

Proposition 1 and Corollary 1 show the equivalence of the Godunov flux derived in
this paper to the one commonly used in the fast marching applications. The use of
this sweeping approach with the Godunov flux (10) has been reported in [23, 25]
for eikonal equations, we will not repeat the examples in this paper. Instead, we
present results of our algorithm applied to our model equation.

4.1 Quadratic Hamiltonians
√

ap2 + bq2 − 2cpq, ab > c2, a, b > 0

In each of the following examples, we compute the difference in the approxima-
tions in each successive iteration, i.e.||φn+1 − φn||L1 , and say that the iterations
have converged if this distance is less thanε∆x, whereε > 0, and∆x is the grid
size. In the examples presented in this paper, we simply set the threshold to be
10−10. Notice also that the setΓ, on whichφ = 0, is depicted in red in the contour
plots in the following examples.

We started out by testing our algorithm on constant coefficient cases. In the case of
a = b, c = 0, we have solutions that match the fast marching solutions. Figure 2
shows a result of a computation of the anisotropic case wherea = b = 1, c = 0.9.
This is our first example in which the fast marching method is not applicable.
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Figure 2: A sweeping result after 2 sweeping iteration on a 50x50 grid. The initial
boundary is a single point in the center.a = 1.0, b = 1.0, c = 0.9.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Next we apply the sweeping algorithm directly to cases in which the coefficients
of the quadratic Hamiltonian or the right hand sides are not constant. Figure 3
shows a computational result on a constant coefficient isotropic Hamiltonian and
rather oscillatory forcing function. The rectangle in the middle is the setΓ. Figure
4 shows a computational result for a very anisotropic case. We notice that the
number of iterations needed for convergence seems to depend on the anisotropy of
the Hamiltonian and also on how oscillatory the forcing term is. Figure 5,6,7 show
results obtained from variable coefficient Hamiltonians with constant and variable
forcing functionr(x, y).

4.2 Examples of Distance on Manifolds

We now apply our sweeping algorithm to compute the geodesic distance on mani-
folds that are the graphs of certain functions. Given a functionf(x, y),, with graph
z= f(x,y), we compute the coefficientsa(x, y), b(x, y) andc(x, y) according to (5),
and apply our algorithm directly to the corresponding H-J equation. We first test
the algorithm on a half sphere with radius one. Figures 8 and 9 show the equidis-
tance lines to one and two seed points respectively. Figures 10, 11 and 12 show
similar computation results applied to somewhat more oscillatory manifolds. As
we expected, more sweeping iterations are required for convergence.
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Figure 3:a = 1, b = 1, c = 0, with a more oscillatoryr(x) = 2.1− cos(4π2xy),
on a 200x200 grid, convergence is reached in7 sweeping iterations. The subplot
on the top is the contour of the solution started with the square in the center. On
the bottom is the graph ofr(x). Level curves with step0.02 are plotted.
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Figure 4: (A very degenerate case)a = 0.375, b = 0.25, c = 0.29, with a more
oscillatoryr(x) = (2.1− cos(4π2xy))/4.0, on a 100x100 grid. Notice that in this
case,ab = 0.0938 is barely greater thanc2 = 0.0841. The contour of the solution
is plotted. The convergence is reached at 43 sweeping iterations.
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Figure 5: a = 1, b = 1, c(x, y) = 0.9 sin(5πx), andr(x, y) = 1. 50x50 grid.
Convergence after 10 iterations.
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Figure 6:a = 1.5 + sin(5πx), b = 1, c = −0.6. 50x50 grid. Convergence after
10 iterations.
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Figure 7:a = 1.5 + sin(5πx), b = 1, c = −0.6, andr(x, y) = 2.1 + cos(4πxy).
100x100 grid. Convergence after 10 iterations.
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Figure 8: This is an example of the distance on a half sphere. The sweeping algo-
rithm applied to the graph off(x, y) =

√
1.0− (x2 + y2), with φ(0, 0) = 0 as

boundary condition on a 100x100 grid.
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Figure 9: This is an example of the distance on a half sphere. The sweeping algo-
rithm applied to the graph off(x, y) =

√
1.0− (x2 + y2), with two seed points.

The convergence is reached after 2 sweeping iterations.
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Figure 10: The distance contour from the seed point(0, 0) on the graph of
f(x, y) = cos(2πx) sin(2πy). 100x100 grid, convergence after 9 iterations.
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Figure 11: The distance contour from the seed point(0, 0) and(−0.8,−0.5) on
the graph off(x, y) = cos(2πx) sin(2πy). 100x100 grid, convergence after 11
iterations.
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4.3 Grid Effects

We first perform a rotation of the coordinate system. We represent this by

(x, y) 7→ (x̃, ỹ),

and let
(a, b, c) 7→ (ã, b̃, c̃)

To study the grid effects of our sweeping algorithm, we setu = 0 on a rotated
square whose sides do not align with the grid lines. Comparing the results, shown
in figure 13, we see that the second picture, concentrating especially on the di-
amond shaped contour in the middle, indeed shows grid effects compared to the
first picture. However, with further grid refinement, as shown in the third picture,
grid effects become unnoticeable and the solution from our sweeping algorithm
accurately approximates the exact solution.
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Figure 12: The distance contour from the seed point(0, 0) on the graph of
f(x, y) = cos(2πx − π) sin(2πy − π/2). 100x100 grid, convergence after 9 it-
erations.
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Figure 13: Anisotropic case with a point source at(0, 0). a = 1, b = 1, c =
0.9 and ã = 1.70365 b̃ = 0.296352, and c̃ = −0.561141. 50x50 and 100x100.
Convergence after 2 iterations.
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Table 1: Comparison of the time-marching solution and the sweeping solution to
the example shown in figure 12.

dx = 2/50 2/100 2/200 2/400 2/800
||φ− φ̃||L1 2.85423 1.83377 1.04008 0.56206 0.295738
||φ− φ̃||∞ 1.03825 0.708986 0.436469 0.246439 0.133858

4.4 Comparison with the Time Marching Solutions

We use the first order RK-Lax-Friedrichs method [17] to discretize the following
equation and march to steady state:

φ̃t + sgn(φ(x, y))(H(x, y, φ̃x, φ̃y)− r(x, y)) = 0. (20)

whereφ̃(x, y, t = 0) = φ(x, y) = 0 for (x, y) ∈ Γ, andφ is the solution obtained
from the sweeping algorithm.

We remark that solving equation (20) is by no means a practical method for solving
the steady state equation. Thousands of iterations are required for steady state,
even if we takeφ as the initial Cauchy data. We only use it to verify the validity
of our algorithm. Secondly, the solutions of equation (20) suffer from excessive
smearing due to the numerical viscosity introduced by the Lax-Friedrichs method.
As a consequence,̃φ does not match well withφ on coarse grids. The reader can
compare figure 14 with figure 12, for example. However, we do see that||φ − φ̃||
decreases with the refinement of the grid size. See table 1 and figure 14. We remark
that higher order approximation schemes such as RK3-WENO5 will greatly reduce
the numerical viscosity. The reader is referred to [17]. Our purpose here is only to
show that the sweeping approximations converge to the viscosity solution.

4.5 Numerical Convergence

Since we can easily compute the geodesic distance on a sphere, we will use it as an
example to show numerical convergence of our algorithm. A distance contour plot
is shown in figure 8. Table 2 shows a numerical convergence of order 1. We have
also noticed that the number of iterations, that is needed for theL1 difference of the
approximations in each successive iteration to decrease below the given tolerance,
seem to be bounded independently of the grid size. This number seems to depend
on the anisotropy(c2/ab), the forcing functionr, and the configuration of the
interfaceΓ.
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Figure 14: Steady state of the time marching on a 100x100 grid and 800x800 grid.
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Table 2: A numerical convergence study of the sweeping algorithm applied to the
graph off(x, y) =

√
1.0− (x2 + y2), with φ(0, 0) = 0 as boundary condition on

the domain[−0.7, 0.7]× [−0.7, 0.7].

dx = 1.4/200 1.4/400 1.4/800 1.4/1600
||φ− φ̃||L1 0.0138803 0.0079927 0.00453004 0.00253513

rate 0.796 0.819 0.84
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5 Conclusion

In this article, we have studied a fast method for solving a class of time independent
Hamilton-Jacobi equations with Dirichlet boundary conditions. The Hamiltonians
of interest are homogeneous and convex. This fast method combines the idea of
tracing the characteristics with Godunov construction and Gauss-Seidel iterations
with smart choices of different updating sequences. In particular, we discussed
some important properties of the HamiltonianH =

√
ap2 + bq2 − 2cpq, c2 < ab,

and the corresponding H-J equations. By the simple structure of the convexity, we
derived a compact expression for the Godunov Hamiltonian that involves taking
extrema of the Hamiltonian in relation to the evaluations of the derivatives of the
solution. With our compact Godunov flux, the complexity of evaluating the Go-
dunov Hamiltonian is reduced to only eight cases in two space dimensions. We
then incorporated the expression into a simple Gauss-Seidel type iteration pro-
cedure. We have produced some computational results using this algorithm. In
particular, we have applied our algorithm to compute geodesic distances on graphs
of functions. This is of some importance since people are interested in finding the
geodesics on terrain-like manifolds.

We also remark that this Godunov-flux sweeping approach can be extended to
higher dimensional cases. We are currently preparing another paper on this subject.

Our experience shows that the number of iterations needed depends on the amount
of anisotropy and the nature of the forcing function. Under normal non-degenerate
circumstances, experience shows aO(N) complexity for convergence, whereN
is the number of grid points. Recently, in [25], the author provided some theoreti-
cal evidence on the bound of the number of iterations for isotropic, homogeneous
eikonal equations. This points out a future research direction of bounding the num-
ber of sweeping iterations needed for convergence in relation to the anisotropy.

6 Appendix

6.1 Derivation of the Flux for Homogeneous Convex Hamiltonians

To obtain the formula used earlier in this paper, we simply verify its equivalence to
the following cases, which rely only on the convexity ofH :

p− < p+, andq− < q+ :

HG = min
p∈[p−,p+]

min
q∈[q−,q+]

H(p, q).
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• if qσ ∈ [q−, q+],

– pσ < p− < p+, H(p−, qσ)

– p− < p+ < pσ, H(p+, qσ)

– p− < pσ < p+, H(pσ, qσ)

• if qσ < q−,

– pσ < p− < p+, H(p−, q−)

– p− < p+ < pσ, H(p+, q−)

– p− < pσ < p+, H(pσ, q−)

• if qσ > q+,

– pσ < p− < p+, H(p−, q+)

– p− < p+ < pσ, H(p+, q+)

– p− < pσ < p+, H(pσ, q+)

p− < p+, andq− > q+ :

HG = min
p∈[p−,p+]

max
q∈[q+,q−]

H(p, q) = min
p∈[p−,p+]

max{H(p, q−),H(p, q+)}.

• if qσ < q+,

– pσ < p− < p+, H(p−, q−)

– p− < p+ < pσ, H(p+, q−)

– p− < pσ < p+, H(pσ, q−)

• if qσ > q−,

– pσ < p− < p+, H(p−, q+)

– p− < p+ < pσ, H(p+, q+)

– p− < pσ < p+, H(pσ, q+)

• if q+ < qσ < q−
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– (qσ − q+) > (q− − qσ), H(·, q+)
– (qσ − q+) ≤ (q− − qσ), H(·, q−)

p− > p+, andq− > q+ :

HG = max
p∈[p+,p−]

max
q∈[q+,q−]

H(p, q)

• if qσ > q−,

– pσ > p−, H(p+, q+).
– pσ < p+, H(p−, q+).

• if qσ < q+,

– pσ > p−, H(p+, q−).
– pσ < p+, H(p−, q−).

• if q+ < qσ < q−

– (qσ − q+) > (q− − qσ), H(·, q+)
– (qσ − q+) ≤ (q− − qσ), H(·, q−)

p− > p+, andq− < q+ :

HG = max
p∈[p+,p−]

min
q∈[q−,q+]

H(p, q)

• if qσ ∈ [q−, q+],

– pσ > p−, H(p+, qσ).
– pσ < p+, H(p−, qσ).

• if qσ < q−,

– pσ > p−, H(p+, q−).
– pσ < p+, H(p−, q−).

• if qσ > q+,

– pσ > p−, H(p+, q+).
– pσ < p+, H(p−, q+).
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