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Abstract

This report describes a simple analytic model that has been de-
veloped to simulate the electron wave function in a layered material.
Some optimization has been performed using this model to find system
parameters for which there is a single confined electron in the confine-
ment layer and a single state quantum wire in the channel layer,

1 Problem Statement

e Goals: Find a set of system parameters resulting in

— a quantum dot containing a single confined electron in the con-
finement layer

— a quantum wire with a single state in the channel layer
e Layered structure

~ top interface on which gates are positioned, potential ¢y, away
from gates

— layer of material A of thickness dz; (in units of nm)
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— ¢é-doped interface of charge density p; (in units of electrons nm=2)
— layer of material A of thickness dz; (in units of nm)
— layer of material B of thickness dz; (in units of nm)
— layer of material A of thickness dz; (in units of nm)
— layer of material B of thickness dzs (in units of nm)
— layer of material A of thickness dzg (in units of nm)
— d-doped interface of charge density po (in units of electrons nm™2)
— layer of material A of thickness dz; (in units of nm)
- bottom interface
o Gates
— central gate of diameter dgate (in units of nm) and potential ¢sop—
P, (in units of eV'); the geometry of the central gate is
* a circle, if dimgate = 3
* an infinite strip, if dimgate = 2
— blocking gates, consisting of parallel infinite half planes

= parallel to the central gate if dimgate = 2

* distance between the central gate and the blocking gate on
each side is dgap

* potential on the blocking gates is ¢y, + @ (in units of V)
e Material

— Aig InP
— B is InGaAs

e Approximations

— 1o intrinsic doping

— no temperature effects (7' = 0)



2 Equations

o Electrostatics

— Poisson equation
V - eV = p161 + pads — py (2.1)
in which e is scaled dielectric constant, d; is é-function on i-th
§-doped interface and py is the self-consistent charge density
— Dirichlet boundary conditions at the top
— Neumann boundary conditions at the bottom

— periodic boundary conditions on the sides
e Wave function

— gingle particle Schrodinger equation

V- (V) = (6 U+ M 22)

— m is effective mass, U is conduction band offset, A is energy level
(eigenvalue), v is wave function (eigenfunction)

~ eigenvalue and eigenfunction in confinement layer are A%, ¢/
— eigenvalue and eigenfunction in channel are A, ¢

— eigenvalue space dA = Ay — A, is the difference between the first
two eigenvalues

— normalized so that [vdz =1
— Fermi energy Fg set to Ilp = 0
— self-consistent charge density is py = Y. [¢|?, summed over all
A< Ep
e Material parameters and physical constants
Parameter InP  InGaAs Units

k 12.61 13.9 1
€=keofe® 697  .769 1/(eV nm)
m 079 041 Mo

i /2m 484 .94 eV /nm?

U 0 224 eV



Constant value units
R /2mg  .0382 eV/mm?
€0/ e” 0553 1/(eV nm)

Note that since the potential ¢ is potential energy measured in eV,
rather than electrostatic potential, the coeflicient ¢ in the Poisson equa-
tions has units of 1/{eV nm). The dielectric constant for a vacuum is
¢ = 8.854 x 10 2C2N~"1m~2.

e (Goals

— Confinement layer: single confined electron under gate, no wire
(i.e. 2D) electron states away from gate

X (8y) < 0< 25 ()
0 < A(py=0)

— Channel layer: single confined electron under gate, single wire (i.e.
2D) electron states away from gate

M ge) <0< M () (2.5)
’\Th(‘ﬁg =0) < 0< )\gh(qby = 0) 2.6

— Since A*{(@,) < A (d, = 0), it is enough to check that
A (gy) < 0<minQF (¢), 0 (8 =0)  (27)
AP(g, =0) < 0< A (D) 2

3 Approximations for Electrostatics

e 10 BCs on sides

bottom boundary at co

no self-consistent term

variation in dielectric constant is neglected; value for InP used through-
out {easy to correct)



e potential ¢ = ¢'” due to charges in modulationally doped layers

biop — €4 P2(2 — Ztop) 7 <z< (3.1)

D ¢’top - 621(,01 + pZ)(z - ztOP) Ztop < 2 < 21
P =
Brop — €4 272 = Ziop) Zy < Z < Zpottom

in which z;1 = dz; and 2o = dz; + dzy + dz3 + dzy + dzs + dzg are the
positions of the d-doped layers.

o potential ¢ = ¢2P for gate that is on a line (in 2D} or a strip (in 3D)
|z| < L/2 with potential ¢ = 1 on gate and ¢ = 0 away from gate

— full solution

2(x, z) = 7~ {arctan(

— L2
i j5/2) - arctan(%w)
Z

) (3.2)

— value and second derivative on central axis x =0

Py =0,2z) = 2r tarctan(L/2z) (3.3)
2L
D (5=0,2) = —nlp (3.4)

(1 + 12/4:2)

e potential ¢ = @37 for gate that is circle r < d/2, for r = |(z, y)|, with
potential ¢ = 1 on gate and ¢ = 0 away from gafte

— full solution

L) = orz)

2| (2 pas2 \
= 5 | fﬂ le —a |7 rdr'dd’ (3.5)
2| 2m pdr2
= 5 f (2% + (r — 7' cos )2 + r% sin? §)2) =2 dr' 4@’
o Jo

— value and second derivative on central axisr =0
P(r=0,z) = 1~ (1+d/22)%)~1/2 (3.6)
3 _
ar=0,z) = —§|2|(fm’/2)2(22 +(d/2)% (3.7)



e Summary

— The total potential is

g [ 9D B —d) — 9,47 i dimgate =25 o)
T P+ du(1l - ¢2°) — degi” if dimgate =3 |

— The second derivatives of the total potential on the central axis
are

bow = — @2l — 2D if dimgate = 2 (39)
i —p gL, — 3L if dimgate = 3 :

b, = 0 if dimgate = 2
W] —g,t2 if dimgate = 3

4 Approximations for Schrodinger

e Separable solutions: If m is constant and ¢(z,y, 2) = ¢*(z) + ¢¥(y) +

@*(z), then
A= AN N (4.1)
Y(z,y,2) = P™{(@)P (Y)v ()
in which
—(W?2myfge = %P + X" (4.3)
—(R*f2m)gly = -y AV (4.4)
~(B[2m)diz = —¢"t + N (4.5)

e use separation to find eigenvalues in channel of width w and center z

o for 2D (half plane) gates, neglect variation of ¢ across wells and ap-
proximate z dependence by second derivative as

¢ = ¢°(x) = Bdss(x = 0, 2)z* (4.6)



e for 3D (circular) gates, neglect variation of ¢ across wells and approx-
imate (z,y) dependence by second derivative as,

b = 59’5”(?‘ = 0, z)r? (4.7)

= ¢"(z) +¢*(y) (4.8)
¢°(z) = Bdo(r =0, z)z* (4.9)
¢(y) = Sgn(r=0,2)y° (4.10)

e ecigenvalue and eigenvalue spacing for 1D parabolic potential ¢(z) =
¢oz? are

N = (P h?/4m) 2 (4.11)
¥ = 2x% (4.12)

o denote AT% and AT® for the eigenvalues due to the parabolic potential
in the x- and y-directions, respectively.

e denote dA\T* and dAT'” for the eigenvalue eigenvalue spacing due to the
parabolic potential in the x- and y-directions, respectively.

e for offset in wells, neglect variation across the well, and use

0 lz—a|>L/2
¢(2) w{ Uzl < L2 (4.13)

e cigenvalues for this square well are solutions of

MY = ek~ U (4.14)
E2(1 4 (e1/co) tan®(kyw/2)) = Ule (4.15)
in which ¢p and ¢; are the values of ;2 /2m outside the well and in the

well, respectively; i.e. ¢ is the value for InP and ¢; is the value for
InGaAs.

e Summary

— We want a single eigenvalue in the quantum dot formed in the
confined layer, and a single transverse state for the quantum wire
in the channel.



— The lowest eigenvalue comes from the z-eigenvalue of the well, plus
the x- and y-eigenvalues from the parabolic potential formed by
the gates.

— The spacing between the first and second eigenvalues comes from
the spacing of the x- or y-eigenvalues, since the spacing for the
z-eigenvalues is much larger.

— For the channel layer, only the spacing from the x-eigenvalue is
used, since the objective is to have only a single state that is
transverse to the quantum wire. There should be multiple states
in the y-direction along the wire.

— For the confining layer, the spacing in the minimum of the spacing
of x- and y-eigenvalues.

— The eigenfunctions, lowest eigenvalue and eigenvalue spacing are

¥ = P ()P (@) (y) (4.16)

A o= XA AP (4.17)
_ | min(d)\®,dA"Y) if dimgate = 2

dr = { dAPe if dimgate =3 (+18)

5 Matlab Programs

e gateChanWireSim

— for given set of parameters computes potential ¢ and eigenvalues
for channel and confining layer

e gateChanWireSimRSearch
— searches for parameter sets that satisfy goals
e gateChanWireSimSample

— for fixed geometry and charge, draws curves in ¢4, ¢, plane on
which the inequalities of (2.7), (2.8) are equalities; i.e. the curves
where energies cross the Fermi energy



6 Results

o random search of large volume in parameter space yielded a small num-
ber of parameter sets satisfying bounds (2.7), (2.8).



