Analytic Model for Electron Confinement in a Layered Material

R. E. Caflisch
Cheng Ly

November 2001
CAM Report 01-30

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90095-1555

http://www.math.ucla.edu/applied/cam/index.html
Analytic Model for Electron Confinement in a Layered Material

R. E. Caflisch and Cheng Ly *

November 15, 2001

Abstract

This report describes a simple analytic model that has been developed to simulate the electron wave function in a layered material. Some optimization has been performed using this model to find system parameters for which there is a single confined electron in the confinement layer and a single state quantum wire in the channel layer.

1 Problem Statement

• Goals: Find a set of system parameters resulting in

 – a quantum dot containing a single confined electron in the confinement layer

 – a quantum wire with a single state in the channel layer

• Layered structure

 – top interface on which gates are positioned, potential ϕ_{top} away from gates

 – layer of material A of thickness d_{z_1} (in units of nm)

*Mathematics Department, UCLA. Email: caflisch@math.ucla.edu and connell@math.ucla.edu. Research supported in part by a research grant from DARPA under the QuIST Program.
- δ-doped interface of charge density ρ_1 (in units of electrons nm^{-2})
- layer of material A of thickness dz_2 (in units of nm)
- layer of material B of thickness dz_3 (in units of nm)
- layer of material A of thickness dz_4 (in units of nm)
- layer of material B of thickness dz_5 (in units of nm)
- layer of material A of thickness dz_6 (in units of nm)
- δ-doped interface of charge density ρ_2 (in units of electrons nm^{-2})
- layer of material A of thickness dz_7 (in units of nm)
- bottom interface

• Gates
 - central gate of diameter $dgate$ (in units of nm) and potential $\phi_{top} - \phi_g$ (in units of eV); the geometry of the central gate is
 * a circle, if $dimgate = 3$
 * an infinite strip, if $dimgate = 2$
 - blocking gates, consisting of parallel infinite half planes
 * parallel to the central gate if $dimgate = 2$
 * distance between the central gate and the blocking gate on each side is $dgap$
 * potential on the blocking gates is $\phi_{top} + \phi_b$ (in units of eV)

• Material
 - A is InP
 - B is InGaAs

• Approximations
 - no intrinsic doping
 - no temperature effects ($T = 0$)
2 Equations

- Electrostatics
 - Poisson equation
 \[\nabla \cdot \epsilon \nabla \phi = \rho_1 \delta_1 + \rho_2 \delta_2 - \rho_{\phi} \] (2.1)
 in which \(\epsilon \) is scaled dielectric constant, \(\delta_i \) is \(\delta \)-function on \(i \)-th \(\delta \)-doped interface and \(\rho_{\phi} \) is the self-consistent charge density
 - Dirichlet boundary conditions at the top
 - Neumann boundary conditions at the bottom
 - periodic boundary conditions on the sides

- Wave function
 - single particle Schrodinger equation
 \[-\nabla \cdot \left(\frac{\hbar^2}{2m} \nabla \psi \right) = -(\phi + U) \psi + \lambda \psi \] (2.2)
 - \(m \) is effective mass, \(U \) is conduction band offset, \(\lambda \) is energy level (eigenvalue), \(\psi \) is wave function (eigenfunction)
 - eigenvalue and eigenfunction in confinement layer are \(\lambda^{cf}, \psi^{cf} \)
 - eigenvalue and eigenfunction in channel are \(\lambda^{ch}, \psi^{ch} \)
 - eigenvalue space \(d\lambda = \lambda_2 - \lambda_1 \) is the difference between the first two eigenvalues
 - normalized so that \(\int \psi dx = 1 \)
 - Fermi energy \(E_F \) set to \(E_F = 0 \)
 - self-consistent charge density is \(\rho_{\phi} = \sum |\psi|^2 \), summed over all \(\lambda < E_F \)

- Material parameters and physical constants

<table>
<thead>
<tr>
<th>Parameter</th>
<th>InP</th>
<th>InGaAs</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>12.61</td>
<td>13.9</td>
<td>1</td>
</tr>
<tr>
<td>(\epsilon = k \epsilon_0 / e^2)</td>
<td>.697</td>
<td>.769</td>
<td>1/(eV nm)</td>
</tr>
<tr>
<td>(m)</td>
<td>.079</td>
<td>.041</td>
<td>(m_0)</td>
</tr>
<tr>
<td>(\hbar^2 / 2m)</td>
<td>.484</td>
<td>.94</td>
<td>eV/(nm^2)</td>
</tr>
<tr>
<td>(U)</td>
<td>0</td>
<td>.224</td>
<td>eV</td>
</tr>
</tbody>
</table>
Constant value units
\(\hbar^2/2m_0 \) 0.0382 eV/nm²
\(\epsilon_0/e^2 \) 0.0553 1/(eV nm)

Note that since the potential \(\phi \) is potential energy measured in eV, rather than electrostatic potential, the coefficient \(\epsilon \) in the Poisson equations has units of \(1/(eV \text{ nm}) \). The dielectric constant for a vacuum is \(\epsilon_0 = 8.854 \times 10^{-12} C^2 N^{-1} m^{-2} \).

- Goals

 - Confinement layer: single confined electron under gate, no wire (i.e. 2D) electron states away from gate
 \[
 \lambda_{1f}^{cf}(\phi_g) < 0 < \lambda_{2f}^{cf}(\phi_g)
 \]
 \[
 0 < \lambda_{1f}^{cf}(\phi_g = 0)
 \] (2.3)

 - Channel layer: single confined electron under gate, single wire (i.e. 2D) electron states away from gate
 \[
 \lambda_{1h}^{ch}(\phi_g) < 0 < \lambda_{2h}^{ch}(\phi_g)
 \]
 \[
 \lambda_{1h}^{ch}(\phi_g = 0) < 0 < \lambda_{2h}^{ch}(\phi_g = 0)
 \] (2.5)

 - Since \(\lambda_{1h}^{ch}(\phi_g) < \lambda_{1h}^{ch}(\phi_g = 0) \), it is enough to check that
 \[
 \lambda_{1f}^{cf}(\phi_g) < 0 < \min(\lambda_{2f}^{cf}(\phi_g), \lambda_{1f}^{cf}(\phi_g = 0))
 \]
 \[
 \lambda_{1h}^{ch}(\phi_g = 0) < 0 < \lambda_{2h}^{ch}(\phi_g)
 \] (2.7)

3 Approximations for Electrostatics

- no BCs on sides
- bottom boundary at \(\infty \)
- no self-consistent term
- variation in dielectric constant is neglected; value for InP used throughout (easy to correct)
potential $\phi = \phi^{1D}$ due to charges in modulationally doped layers

$$
\phi^{1D} = \begin{cases}
\phi_{\text{top}} - \epsilon_A^{-1} (\rho_1 + \rho_2) (z - z_{\text{top}}) & z_{\text{top}} < z < z_1 \\
\phi_{\text{top}} - \epsilon_A^{-1} \rho_2 (z - z_{\text{top}}) & z_1 < z < z_2 \\
\phi_{\text{top}} - \epsilon_A^{-1} \rho_2 (z_2 - z_{\text{top}}) & z_2 < z < z_{\text{bottom}}
\end{cases}
$$

(3.1)

in which $z_1 = d z_1$ and $z_2 = d z_1 + d z_2 + d z_3 + d z_4 + d z_5 + d z_6$ are the positions of the δ-doped layers.

- potential $\phi = \phi^{2D}_L$ for gate that is on a line (in 2D) or a strip (in 3D) $|x| < L/2$ with potential $\phi = 1$ on gate and $\phi = 0$ away from gate
 - full solution
 $$\phi^{2D}_L (x, z) = \pi^{-1} (\arctan \left(\frac{x + L/2}{z} \right) - \arctan \left(\frac{x - L/2}{z} \right))$$
 (3.2)
 - value and second derivative on central axis $x = 0$
 $$\phi^{2D}_L (x = 0, z) = 2 \pi^{-1} \arctan (L/2z)$$
 (3.3)
 $$\phi^{2D}_{Lxx} (x = 0, z) = -\pi^{-1} z^{-2} \frac{2L/z}{(1 + L^2/4z^2)^2}$$
 (3.4)

- potential $\phi = \phi^{3D}_d$ for gate that is circle $r < d/2$, for $r = |(x, y)|$, with potential $\phi = 1$ on gate and $\phi = 0$ away from gate
 - full solution
 $$\phi^{3D}_d (x) = \phi (r, z)$$
 $$= \frac{|z|}{2\pi} \int_0^{2\pi} \int_0^{d/2} |x' - x|^{-3} r' dr' d\theta'$$
 (3.5)
 $$= \frac{|z|}{2\pi} \int_0^{2\pi} \int_0^{d/2} \left(z^2 + (r - r' \cos \theta')^2 + r'^2 \sin^2 \theta' \right)^{-3/2} r' dr' d\theta'$$
 - value and second derivative on central axis $r = 0$
 $$\phi^{3D}_d (r = 0, z) = 1 - (1 + d/2z)^{-1/2}$$
 (3.6)
 $$\phi^{3D}_{drr} (r = 0, z) = -\frac{3}{2} |z| (d/2)^2 (z^2 + (d/2)^2)^{-5/2}$$
 (3.7)
• Summary

 - The total potential is

\[
\phi = \begin{cases}
\phi_{1D} + \phi_{b}(1 - \phi_{d}^{2D}) - \phi_{g}\phi_{L}^{2D} & \text{if dimgate} = 2 \\
\phi_{1D} + \phi_{b}(1 - \phi_{d}^{2D}) - \phi_{g}\phi_{L}^{3D} & \text{if dimgate} = 3
\end{cases} \tag{3.8}
\]

 - The second derivatives of the total potential on the central axis are

\[
\begin{align*}
\phi_{xx} &= \begin{cases}
-\phi_{b}\phi_{d}^{2D} - \phi_{g}\phi_{L}^{2D} & \text{if dimgate} = 2 \\
-\phi_{b}\phi_{d}^{2D} - \phi_{g}\phi_{L}^{3D} & \text{if dimgate} = 3
\end{cases} \tag{3.9} \\
\phi_{yy} &= \begin{cases}
0 & \text{if dimgate} = 2 \\
-\phi_{g}\phi_{L}^{3D} & \text{if dimgate} = 3
\end{cases} \tag{3.10}
\end{align*}
\]

4 Approximations for Schrodinger

• Separable solutions: If \(m \) is constant and \(\phi(x, y, z) = \phi^{x}(x) + \phi^{y}(y) + \phi^{z}(z) \), then

\[
\begin{align*}
\lambda &= \lambda^{x} + \lambda^{y} + \lambda^{z} \tag{4.1} \\
\psi(x, y, z) &= \psi^{x}(x)\psi^{y}(y)\psi^{z}(z) \tag{4.2}
\end{align*}
\]

in which

\[
\begin{align*}
-(\hbar^{2}/2m)\psi^{x}_{xx} &= -\phi^{x}\psi^{x} + \lambda^{x}\psi^{x} \tag{4.3} \\
-(\hbar^{2}/2m)\psi^{y}_{yy} &= -\phi^{y}\psi^{y} + \lambda^{y}\psi^{y} \tag{4.4} \\
-(\hbar^{2}/2m)\psi^{z}_{zz} &= -\phi^{z}\psi^{z} + \lambda^{z}\psi^{z} \tag{4.5}
\end{align*}
\]

• use separation to find eigenvalues in channel of width \(w \) and center \(z \)

• for 2D (half plane) gates, neglect variation of \(\phi \) across wells and approximate \(x \) dependence by second derivative as

\[
\phi = \phi^{x}(x) = .5\phi_{xx}(x = 0, z)x^{2} \tag{4.6}
\]
• for 3D (circular) gates, neglect variation of ϕ across wells and approximate (x,y) dependence by second derivative as,
\[
\phi \approx .5\phi_{rr}(r = 0, z)r^2 \\
= \phi^x(x) + \phi^y(y) \\
\phi^x(x) = .5\phi_{rr}(r = 0, z)x^2 \\
\phi^y(y) = .5\phi_{rr}(r = 0, z)y^2
\]
(4.7) (4.8) (4.9) (4.10)

• eigenvalue and eigenvalue spacing for 1D parabolic potential $\phi(x) = \phi_2 x^2$ are
\[
\lambda_1^p = (\phi_{xx}\hbar^2/4m)^{1/2} \\
d\lambda^p = 2\lambda_1^p
\]
(4.11) (4.12)

• denote λ^{P_x} and λ^{P_y} for the eigenvalues due to the parabolic potential in the x- and y-directions, respectively.

• denote $d\lambda^{P_x}$ and $d\lambda^{P_y}$ for the eigenvalue eigenvalue spacing due to the parabolic potential in the x- and y-directions, respectively.

• for offset in wells, neglect variation across the well, and use
\[
\phi(z) = \begin{cases}
0 & |z - z_0| > L/2 \\
-U & |z - z_0| < L/2
\end{cases}
\]
(4.13)

• eigenvalues for this square well are solutions of
\[
\lambda_{sw} = c_1 k_1^2 - U \\
k_1^2(1 + (c_1/c_0)\tan^2(k_1 w/2)) = U/c_1
\]
(4.14) (4.15)
in which c_0 and c_1 are the values of $\hbar^2/2m$ outside the well and in the well, respectively; i.e. c_0 is the value for InP and c_1 is the value for InGaAs.

• Summary
 - We want a single eigenvalue in the quantum dot formed in the confined layer, and a single transverse state for the quantum wire in the channel.
The lowest eigenvalue comes from the z-eigenvalue of the well, plus the x- and y-eigenvalues from the parabolic potential formed by the gates.

The spacing between the first and second eigenvalues comes from the spacing of the x- or y-eigenvalues, since the spacing for the z-eigenvalues is much larger.

For the channel layer, only the spacing from the x-eigenvalue is used, since the objective is to have only a single state that is transverse to the quantum wire. There should be multiple states in the y-direction along the wire.

For the confining layer, the spacing in the minimum of the spacing of x- and y-eigenvalues.

The eigenfunctions, lowest eigenvalue and eigenvalue spacing are

$$
\psi = \psi^{sw}(z)\psi^{P_x}(x)\psi^{P_y}(y) \\
\lambda = \lambda^{sw} + \lambda^{P_x} + \lambda^{P_y} \\
d\lambda = \begin{cases}
\min(d\lambda^{P_x}, d\lambda^{P_y}) & \text{if dimgate} = 2 \\
\frac{d\lambda^{P_x}}{} & \text{if dimgate} = 3
\end{cases}
$$

$$
\tag{4.16} \\
\tag{4.17} \\
\tag{4.18}
$$

5 Matlab Programs

- gateChanWireSim
 - for given set of parameters computes potential ϕ and eigenvalues for channel and confining layer

- gateChanWireSimRSearch
 - searches for parameter sets that satisfy goals

- gateChanWireSimSample
 - for fixed geometry and charge, draws curves in ϕ_g, ϕ_b plane on which the inequalities of (2.7), (2.8) are equalities; i.e. the curves where energies cross the Fermi energy
6 Results

- random search of large volume in parameter space yielded a small number of parameter sets satisfying bounds (2.7), (2.8).