UCLA COMPUTATIONAL AND APPLIED MATHEMATICS

Analytic Model for Electron Confinement in a Layered Material

R. E. Caflisch Cheng Ly

November 2001 CAM Report 01-30

Department of Mathematics University of California, Los Angeles Los Angeles, CA. 90095-1555

Analytic Model for Electron Confinement in a Layered Material

R. E. Caflisch and Cheng Ly *

November 15, 2001

Abstract

This report describes a simple analytic model that has been developed to simulate the electron wave function in a layered material. Some optimization has been performed using this model to find system parameters for which there is a single confined electron in the confinement layer and a single state quantum wire in the channel layer.

1 Problem Statement

- Goals: Find a set of system parameters resulting in
 - a quantum dot containing a single confined electron in the confinement layer
 - a quantum wire with a single state in the channel layer
- Layered structure
 - top interface on which gates are positioned, potential ϕ_{top} away from gates
 - layer of material A of thickness dz_1 (in units of nm)

^{*}Mathematics Department, UCLA. Email: caffisch@math.ucla.edu and connell@math.ucla.edu. Research supported in part by a research grant from DARPA under the QuIST Program.

- δ -doped interface of charge density ρ_1 (in units of electrons nm^{-2})
- layer of material A of thickness dz_2 (in units of nm)
- layer of material B of thickness dz_3 (in units of nm)
- layer of material A of thickness dz_4 (in units of nm)
- layer of material B of thickness dz_5 (in units of nm)
- layer of material A of thickness dz_6 (in units of nm)
- δ -doped interface of charge density ρ_2 (in units of electrons nm^{-2})
- layer of material A of thickness dz_7 (in units of nm)
- bottom interface

Gates

- central gate of diameter dgate (in units of nm) and potential ϕ_{top} ϕ_g (in units of eV); the geometry of the central gate is
 - * a circle, if dimgate = 3
 - * an infinite strip, if dimgate = 2
- blocking gates, consisting of parallel infinite half planes
 - * parallel to the central gate if dimgate = 2
 - * distance between the central gate and the blocking gate on each side is dgap
 - * potential on the blocking gates is $\phi_{top} + \phi_b$ (in units of eV)

Material

- -A is InP
- B is InGaAs

• Approximations

- no intrinsic doping
- no temperature effects (T=0)

2 Equations

- Electrostatics
 - Poisson equation

$$\nabla \cdot \epsilon \nabla \phi = \rho_1 \delta_1 + \rho_2 \delta_2 - \rho_{\psi} \tag{2.1}$$

in which ϵ is scaled dielectric constant, δ_i is δ -function on i-th δ -doped interface and ρ_{ψ} is the self-consistent charge density

- Dirichlet boundary conditions at the top
- Neumann boundary conditions at the bottom
- periodic boundary conditions on the sides
- Wave function
 - single particle Schrodinger equation

$$-\nabla \cdot (\frac{\hbar^2}{2m}\nabla \psi) = -(\phi + U)\psi + \lambda \psi \tag{2.2}$$

- m is effective mass, U is conduction band offset, λ is energy level (eigenvalue), ψ is wave function (eigenfunction)
- eigenvalue and eigenfunction in confinement layer are λ^{cf} , ψ^{cf}
- eigenvalue and eigenfunction in channel are $\lambda^{ch},\,\psi^{ch}$
- eigenvalue space $d\lambda = \lambda_2 \lambda_1$ is the difference between the first two eigenvalues
- normalized so that $\int \psi dx = 1$
- Fermi energy E_F set to $E_F = 0$
- self-consistent charge density is $\rho_{\psi} = \sum |\psi|^2$, summed over all $\lambda < E_F$
- Material parameters and physical constants

Parameter	InP	InGaAs	Units
k	12.61	13.9	1
$\epsilon = k\epsilon_0/e^2$.697	.769	1/(eV nm)
m	.079	.041	m_0
$\hbar^2/2m$.484	.94	eV/nm^2
U	0	.224	eV

Constant value units eV/nm^2 $\hbar^2/2m_0$.0382 ϵ_0/e^2 .05531/(eV nm)

Note that since the potential ϕ is potential energy measured in eV, rather than electrostatic potential, the coefficient ϵ in the Poisson equations has units of 1/(eV nm). The dielectric constant for a vacuum is $\epsilon_0 = 8.854 \times 10^{-12} C^2 N^{-1} m^{-2}$.

- Goals
 - Confinement layer: single confined electron under gate, no wire (i.e. 2D) electron states away from gate

$$\lambda_1^{cf}(\phi_q) < 0 < \lambda_2^{cf}(\phi_q) \tag{2.3}$$

$$0 < \lambda_1^{cf}(\phi_g = 0) \tag{2.4}$$

- Channel layer: single confined electron under gate, single wire (i.e. 2D) electron states away from gate

$$\lambda_1^{ch}(\phi_a) < 0 < \lambda_2^{ch}(\phi_a) \tag{2.5}$$

$$\lambda_1^{ch}(\phi_g) < 0 < \lambda_2^{ch}(\phi_g)$$
(2.5)
$$\lambda_1^{ch}(\phi_g = 0) < 0 < \lambda_2^{ch}(\phi_g = 0)$$
(2.6)

– Since $\lambda_i^{ch}(\phi_g) < \lambda_i^{ch}(\phi_g = 0)$, it is enough to check that

$$\lambda_1^{cf}(\phi_g) < 0 < \min(\lambda_2^{cf}(\phi_g), \lambda_1^{cf}(\phi_g = 0))$$
 (2.7)

$$\lambda_1^{ch}(\phi_q = 0) < 0 < \lambda_2^{ch}(\phi_q)$$
 (2.8)

Approximations for Electrostatics 3

- no BCs on sides
- bottom boundary at ∞
- no self-consistent term
- variation in dielectric constant is neglected; value for InP used throughout (easy to correct)

• potential $\phi = \phi^{1D}$ due to charges in modulationally doped layers

$$\phi^{1D} = \begin{cases} \phi_{top} - \epsilon_A^{-1}(\rho_1 + \rho_2)(z - z_{top}) & z_{top} < z < z_1 \\ \phi_{top} - \epsilon_A^{-1}\rho_2(z - z_{top}) & z_1 < z < z_2 \\ \phi_{top} - \epsilon_A^{-1}\rho_2(z_2 - z_{top}) & z_2 < z < z_{bottom} \end{cases}$$
(3.1)

in which $z_1 = dz_1$ and $z_2 = dz_1 + dz_2 + dz_3 + dz_4 + dz_5 + dz_6$ are the positions of the δ -doped layers.

- potential $\phi = \phi_L^{2D}$ for gate that is on a line (in 2D) or a strip (in 3D) |x| < L/2 with potential $\phi = 1$ on gate and $\phi = 0$ away from gate
 - full solution

$$\phi_L^{2D}(x,z) = \pi^{-1}(\arctan(\frac{x+L/2}{z}) - \arctan(\frac{x-L/2}{z}))$$
 (3.2)

- value and second derivative on central axis x = 0

$$\phi_L^{2D}(x=0,z) = 2\pi^{-1}\arctan(L/2z)$$
 (3.3)

$$\phi_{Lxx}^{2D}(x=0,z) = -\pi^{-1}z^{-2}\frac{2L/z}{(1+L^2/4z^2)^2}$$
 (3.4)

- potential $\phi = \phi_d^{3D}$ for gate that is circle r < d/2, for r = |(x, y)|, with potential $\phi = 1$ on gate and $\phi = 0$ away from gate
 - full solution

$$\phi_d^{3D}(\mathbf{x}) = \phi(r, z)
= \frac{|z|}{2\pi} \int_0^{2\pi} \int_0^{d/2} |\mathbf{x} - \mathbf{x}'|^{-3} r' dr' d\theta'
= \frac{|z|}{2\pi} \int_0^{2\pi} \int_0^{d/2} (z^2 + (r - r' \cos \theta')^2 + r'^2 \sin^2 \theta')^2)^{-3/2} r' dr' d\theta'$$
(3.5)

- value and second derivative on central axis r=0

$$\phi_d^{3D}(r=0,z) = 1 - (1+d/2z)^2)^{-1/2}$$
 (3.6)

$$\phi_{drr}^{3D}(r=0,z) = -\frac{3}{2}|z|(d/2)^2(z^2+(d/2)^2)^{-5/2}$$
 (3.7)

- Summary
 - The total potential is

$$\phi = \begin{cases} \phi^{1D} + \phi_b (1 - \phi_d^{2D}) - \phi_g \phi_L^{2D} & \text{if dimgate} = 2\\ \phi^{1D} + \phi_b (1 - \phi_d^{2D}) - \phi_g \phi_L^{3D} & \text{if dimgate} = 3 \end{cases}$$
(3.8)

- The second derivatives of the total potential on the central axis are

$$\phi_{xx} = \begin{cases} -\phi_b \phi_{dxx}^{2D} - \phi_g \phi_{Lxx}^{2D} & \text{if dimgate} = 2\\ -\phi_b \phi_{dxx}^{2D} - \phi_g \phi_{Lrr}^{3D} & \text{if dimgate} = 3 \end{cases}$$
(3.9)

$$\phi_{yy} = \begin{cases} 0 & \text{if dimgate} = 2\\ -\phi_g \phi_{Lrr}^{3D} & \text{if dimgate} = 3 \end{cases}$$
 (3.10)

4 Approximations for Schrodinger

• Separable solutions: If m is constant and $\phi(x, y, z) = \phi^x(x) + \phi^y(y) + \phi^z(z)$, then

$$\lambda = \lambda^x + \lambda^y + \lambda^z \tag{4.1}$$

$$\psi(x, y, z) = \psi^x(x)\psi^y(y)\psi^z(z) \tag{4.2}$$

in which

$$-(\hbar^2/2m)\psi_x^x x = -\phi^x \psi^x + \lambda^x \psi^x \tag{4.3}$$

$$-(\hbar^2/2m)\psi_y^y y = -\phi^y \psi^y + \lambda^y \psi^y \tag{4.4}$$

$$-(\hbar^2/2m)\psi_z^z z = -\phi^z \psi^z + \lambda^z \psi^z \tag{4.5}$$

- use separation to find eigenvalues in channel of width w and center z
- for 2D (half plane) gates, neglect variation of ϕ across wells and approximate x dependence by second derivative as

$$\phi = \phi^{x}(x) = .5\phi_{xx}(x=0,z)x^{2} \tag{4.6}$$

• for 3D (circular) gates, neglect variation of ϕ across wells and approximate (x, y) dependence by second derivative as,

$$\phi \approx .5\phi_{rr}(r=0,z)r^2 \tag{4.7}$$

$$= \phi^x(x) + \phi^y(y) \tag{4.8}$$

$$\phi^x(x) = .5\phi_{rr}(r=0,z)x^2 \tag{4.9}$$

$$\phi^{y}(y) = .5\phi_{rr}(r=0,z)y^{2} \tag{4.10}$$

• eigenvalue and eigenvalue spacing for 1D parabolic potential $\phi(x) =$ $\phi_2 x^2$ are

$$\lambda_1^p = (\phi_{xx}\hbar^2/4m)^{1/2}$$
 (4.11)
 $d\lambda^p = 2\lambda_1^p$ (4.12)

$$d\lambda^p = 2\lambda_1^p \tag{4.12}$$

- denote λ^{Px} and λ^{Px} for the eigenvalues due to the parabolic potential in the x- and y-directions, respectively.
- denote $d\lambda^{Px}$ and $d\lambda^{Px}$ for the eigenvalue eigenvalue spacing due to the parabolic potential in the x- and y-directions, respectively.
- for offset in wells, neglect variation across the well, and use

$$\phi(z) = \begin{cases} 0 & |z - z_0| > L/2 \\ -U & |z - z_0| < L/2 \end{cases}$$
 (4.13)

eigenvalues for this square well are solutions of

$$\lambda^{sw} = c_1 k_1^2 - U (4.14)$$

$$k_1^2(1+(c_1/c_0)\tan^2(k_1w/2)) = U/c_1$$
 (4.15)

in which c_0 and c_1 are the values of $\hbar^2/2m$ outside the well and in the well, respectively; i.e. c_0 is the value for InP and c_1 is the value for InGaAs.

- Summary
 - We want a single eigenvalue in the quantum dot formed in the confined layer, and a single transverse state for the quantum wire in the channel.

- The lowest eigenvalue comes from the z-eigenvalue of the well, plus the x- and y-eigenvalues from the parabolic potential formed by the gates.
- The spacing between the first and second eigenvalues comes from the spacing of the x- or y-eigenvalues, since the spacing for the z-eigenvalues is much larger.
- For the channel layer, only the spacing from the x-eigenvalue is used, since the objective is to have only a single state that is transverse to the quantum wire. There should be multiple states in the y-direction along the wire.
- For the confining layer, the spacing in the minimum of the spacing of x- and y-eigenvalues.
- The eigenfunctions, lowest eigenvalue and eigenvalue spacing are

$$\psi = \psi^{sw}(z)\psi^{Px}(x)\psi^{Py}(y)$$

$$\lambda = \lambda^{sw} + \lambda^{Px} + \lambda^{Py}$$
(4.16)
$$(4.17)$$

$$\lambda = \lambda^{sw} + \lambda^{Px} + \lambda^{Py} \tag{4.17}$$

$$d\lambda = \begin{cases} \min(d\lambda^{Px}, d\lambda^{Py}) & \text{if dimgate} = 2\\ d\lambda^{Px} & \text{if dimgate} = 3 \end{cases}$$
 (4.18)

Matlab Programs 5

- gateChanWireSim
 - for given set of parameters computes potential ϕ and eigenvalues for channel and confining layer
- gateChanWireSimRSearch
 - searches for parameter sets that satisfy goals
- gateChanWireSimSample
 - for fixed geometry and charge, draws curves in ϕ_g , ϕ_b plane on which the inequalities of (2.7), (2.8) are equalities; i.e. the curves where energies cross the Fermi energy

6 Results

• random search of large volume in parameter space yielded a small number of parameter sets satisfying bounds (2.7), (2.8).