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ABSTRACT

In this paper we review the algorithm development and applications in high resolution

shock capturing methods, level set methods and PDE based methods in computer vision

and image processing. The emphasis is on Stanley Osher's contribution in these areas and

in the impact of his work. We will start with shock capturing methods and will review the

Engquist-Osher scheme, TVD schemes, entropy conditions, ENO and WENO schemes and

numerical schemes for Hamilton-Jacobi type equations. Among level set methods we will

review level set calculus, numerical techniques, 
uids and materials, variational approach,

high codimension motion, geometric optics, and the computation of discontinuous solutions

to Hamilton-Jacobi equations. Among computer vision and image processing we will review

the total variation model for image denoising, images on implicit surfaces, and the level set

method in image processing and computer vision.
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1 Introduction

This paper is written on the occasion of Stanley Osher's 60th birthday and serves as a review

article on a few selected areas in high resolution shock capturing schemes, level set methods,

and PDE based methods in computer vision and image processing. The emphasis is on

Stanley Osher's contribution in these areas and in the impact of his work.

Shock capturing numerical methods have seen revolutionary developments over the past

20 years. These are methods which deal with the numerical solutions of PDEs with discon-

tinuous solutions. Such PDEs include nonlinear hyperbolic systems such as Euler equations

of compressible gas dynamics. The problems are diÆcult because traditional linear numer-

ical methods are either too di�usive, or give unphysical oscillations near the discontinuities

which can lead to nonlinear instabilities. The class of high resolution numerical methods

overcomes this diÆculty to a large extent.

Level set methods have seen tremendously expanded applications in many areas over the

past 15 years. This has been made possible by the 
exibility of the level set formulation in

dealing with dynamic evolutions and topological changes of curves and surfaces, and by the

mathematical theory and numerical tools developed in the past 15 years in studying these

methods.

PDE based methods in computer vision and image processing have been actively studied

in the past few years. Again, the rapid development of mathematical models, solution tools

such as level set methods, and high resolution numerical schemes has made PDE based

method one of the major tools in computer vision and image processing.

Stanley Osher has made in
uential contributions to all these �elds. A distinctive feature

of his research is that he emphasizes both fundamental problems in algorithm design and

analysis, and practical considerations for the applications of the algorithms. This seems

also to be the objective of the Journal of Computational Physics. It is thus not a surprise

that a signi�cant portion of Osher's journal publications have appeared in the Journal of

Computational Physics. This is particularly the case for Osher's work over the past 15 years.
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Osher's work has been highly in
uential, an indication of this being the citation statistics.

For example, according to the ISI database, which lists papers in selected journals of high

impact since 1975, the 87 papers of Osher listed there have been collectively cited about

2,500 times (as of July 1, 2002, the same below). Among these, 12 papers have been cited

over 100 times each. The top four highly cited papers of Osher include the paper of Osher

and Sethian [141] on level set methods, cited 538 times; the paper of Harten, Engquist, Osher

and Chakravarthy [76] on ENO schemes, cited 314 times; and the two papers of Shu and

Osher [165, 166] on ENO schemes, cited 251 and 250 times respectively. We remark that all

these four papers were published in the Journal of Computational Physics.

The organization of this paper is as follows. Section 2 is devoted to high resolution

shock capturing methods for problems with discontinuous or otherwise nonsmooth solutions.

Section 3 contains a review of the very popular level set methods, and �nally in section 4 we

address PDE based methods in computer vision and image processing.

Before ending this section, we remark that in the early dates Osher did a lot of research

on the study of linear stability for �nite di�erence and other numerical methods for hy-

perbolic, parabolic, and other types of PDEs, especially those for initial-boundary value

problems. This includes for example the work in [123] which followed up on a seminal paper

of Kreiss [97] and used Toeplitz matrices in an elegant way to derive what was later called

the GKS condition [70], and the work in [124] where stability conditions for initial-boundary

value problems for parabolic equations were obtained, generalizing the work of Varah [184].

In [108], Majda and Osher extended Kreiss' well posedness condition for initial-boundary

value problems for hyperbolic equations to those with uniformly characteristic boundaries.

In [107], Majda and Osher analyzed the re
ection of singularities at the boundary for non-

grazing re
ection for hyperbolic equations. In [109], Majda and Osher showed how error

propagates globally within the domain of dependence for numerical approximations to cou-

pled hyperbolic systems. The paper [106] by Majda, McDonough and Osher was the �rst to

recommend the use of smooth cuto� functions on the frequency domain for spectral methods
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to con�ne errors to local regions near propagating discontinuities and for stability. Sharp

estimates on the region of propagation were obtained. These cuto�s are now widely used in

the literature and the paper is still frequently cited, 45 times total, including many in recent

years. Finally, in [47], Engquist, Osher and Zhong obtained wavelet based fast algorithms for

linear hyperbolic and parabolic equations, and in [44, 54, 53], Fatemi, Engquist and Osher

considered numerical methods for high frequency asymptotics for geometric optics. These

might be considered nonlinear, since the eikonal equation is. We shall not review in detail

these early works of Osher on linear methods in the remaining part of this paper, as they

are less directly related to the objectives of JCP.

2 High resolution shock capturing methods

Shock capturing methods refer to a class of numerical methods for solving problems con-

taining discontinuities (shocks, contact discontinuities or other discontinuities), which can

automatically \capture" these discontinuities without special e�ort to track them. A typical

situation would be the solution of a hyperbolic conservation law, either a scalar equation or

a system, either in one spatial dimension

ut + f(u)x = 0 (2.1)

or in multiple (say, three) spatial dimensions:

ut + f(u)x + g(u)y + h(u)z = 0: (2.2)

A well known system of conservation laws are the Euler equations for inviscid 
uid 
ow

dynamics. The Euler equations are rather interesting because the presence of discontinuities

forces one to consider weak solutions where the derivatives of solution variables can fail to

exist. While a contact discontinuity is essentially linear, the nonlinear nature of a shock

wave discontinuity allows it to develop as the solution progresses forward in time even if the

data is initially smooth. A main ingredient of shock capturing methods is the conservation
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form of a scheme, namely, a scheme approximating (2.1) is in the form

duj
dt

+
1

�x

�
f̂j+ 1

2

� f̂j� 1

2

�
= 0 (2.3)

where uj is an approximation to either the point value u(xj; t) or the cell average �u(xj; t) =

1

�x

R xj+�x
2

xj�
�x
2

u(x; t)dx of the exact solution of (2.1), and f̂j+ 1

2

is a numerical 
ux which typically

depends on a few neighboring points

f̂j+ 1

2

= f̂(uj�k; uj�k+1; :::; uj+m)

and satis�es the following two conditions: it is consistent with the physical 
ux f(u) in

the sense f̂(u; u; :::; u) = f(u), and it is at least Lipschitz continuous with respect to all its

arguments. Notice that (2.3) is written in a semi-discrete method of lines form, while in

practice the time variable t must also be discretized. Conservative schemes in the form of

(2.3) are especially suitable for computing solutions with shocks, because of the important

Lax-Wendro� theorem, which states that solutions to such schemes, if convergent, would

converge to a weak solution of (2.1). In particular, this means that the computed shocks

will propagate with the correct speed. Almost all shock capturing schemes, including those

developed by Osher and his collaborators, are of the conservation form (2.3). However, there

are certain situations where a relaxation on the strict conservation would be bene�cial and

would not hurt the convergence to weak solutions under suitable additional assumptions.

The work of Osher and Chakravarthy [130] on the \weak conservation form" for schemes on

general curvilinear coordinates, and the work of Fedkiw et al. on \ghost 
uid" method [58],

which treats the 
uid interface in a non-conservative fashion, are such examples.

2.1 First Order Monotone Schemes

In the late 70s and early 80s, designing good �rst order monotone schemes for (2.1) and

(2.2), which give monotone shock transitions and can be proven to converge to the physically

relevant weak solutions (e.g. Crandall and Majda [37]), was an active research area. The

Godunov scheme is a scheme with the least numerical dissipation among �rst order monotone
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schemes, however it is costly to evaluate for complex 
ux functions f(u), and its 
ux is only

Lipschitz continuous but not smoother. The Lax-Friedrichs scheme is easy to evaluate and

very smooth but is excessive dissipative.

In [45] and [46], Engquist and Osher designed monotone schemes for the transonic poten-

tial equations and for general scalar conservation laws, which are relatively easy to evaluate,

are C1 smooth, and have a small dissipation almost comparable with Gudonov schemes. The

main idea is to approximate everything by rarefaction waves (multi-valued solutions suitably

integrated over for shocks). These Engquist-Osher schemes soon became very popular, espe-

cially for implicit type methods and steady state calculations, for which the extra smoothness

of the numerical 
uxes helped a lot. Similar schemes for Hamilton-Jacobi equations were

given by Osher and Sethian [141].

Later, Osher [125] and Osher and Solomon [143] generalized these schemes to systems of

conservation laws, obtaining what was later referred to as the Osher scheme in the literature.

The Osher scheme for systems has a closed form formula (for Euler equations of gas dynamics

and many other systems), hence no iterations are needed, unlike the Godunov scheme. It is

smoother (C1) than the Godunov scheme and also has smaller dissipation than the simpler

Lax-Friedrichs scheme. Applications of the Osher scheme to the Euler equations can be

found in Chakravarthy and Osher [23].

In [139], Osher and Sanders designed a conservative procedure to handle locally varying

time and space grids for �rst order monotone schemes, and proved convergence to entropy

solutions for such schemes. These ideas have been used later by Berger and Colella on their

adaptive methods.

2.2 High Resolution TVD Schemes

First order monotone schemes are certainly nice in their stability and convergence to the

correct entropy solutions, however they are too di�usive for most applications. One would

need to use many grid points to get a reasonable resolution, which seriously restricts their
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usefulness for multidimensional simulations.

In the 70s and early and mid 80s, the so-called \high resolution" schemes, i.e. those

schemes which are at least second order accurate and are stable when shocks appear, were

developed. These started with the earlier work of, e.g., the FCT methods of Boris and

Book [12], and the MUSCL schemes of van Leer [183], and moved to Harten's TVD schemes

[74]. Osher and his collaborators did extensive research on TVD schemes, and contributed

signi�cantly towards the analysis of such methods, during this period. These include the

schemes developed and analyzed in [127], [131], [128], and the very high order (measured by

truncation errors in smooth, monotone regions) TVD schemes in [132].

2.3 Entropy Conditions

The entropy condition is an important feature for conservation laws. Because weak solutions

are not unique, entropy conditions are needed to single out a unique, physically relevant

solution. Osher and his collaborators did extensive research on designing and analyzing

entropy condition satisfying numerical methods for conservation laws.

In [110], Majda and Osher proved that the traditional second order Lax-Wendro� scheme,

although linearly stable, is not L2 stable when solving nonlinear conservation laws with

discontinuous solutions. They then provided a recipe of adding arti�cial viscosities, such

that the scheme maintained second order accuracy yet could be proven convergent to the

entropy solution. This scheme is however oscillatory, hence not very practical in applications.

In [127], Osher provided a general framework to study systematically entropy conditions

for numerical schemes. This was followed by the work of Osher and Chakravarthy [131] in

the study of high resolution schemes and entropy conditions, the work of Osher [128] on

generalized MUSCL schemes, the work of Osher and Tadmor [144] on entropy condition

and convergence of high resolution schemes, and the work of Brenier and Osher [13] on

entropy condition satisfying \maxmod" second order schemes. Entropy condition satisfying

approximations for the full potential equation of transonic 
ow were given in [136].
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2.4 ENO Schemes

In the mid 80s it was realized that TVD schemes, despite their excellent stability and high

resolution properties, have serious de�ciency in that they degenerate to �rst order at smooth

extrema of the solution [131]. Thus, even though TVD schemes can be designed to any

order of accuracy, see for example the schemes up to 13th order accurate in [132], practical

TVD schemes are referred to as second order schemes since the global L1 errors of any TVD

scheme can only be second order, even for smooth, non-monotone solutions.

In [75], Harten and Osher relaxed the TVD restriction, and replaced it by a UNO restric-

tion, in that the total number of numerical extrema does not increase and their amplitudes

could be allowed to increase slightly. The UNO scheme in [75] is uniformly second order

accurate including at smooth extrema. However, it was soon realized that the UNO re-

striction was still too strong and excluded schemes of higher than second order. Thus, the

concept of ENO, or essentially non-oscillatory, schemes was �rst given by Harten, Engquist,

Osher and Chakravarthy [76] in 1987. The clever idea is that of an adaptive stencil, which

is chosen based on the local smoothness of the solution, measured by the Newton divided

di�erences of the numerical solution. Thus the order of accuracy of the scheme is never re-

duced, however the local stencil automatically avoids crossing discontinuities. Such schemes

allow both the number of numerical extrema and their amplitudes to increase, however such

additional oscillations are controlled on the level of truncation errors even if the solution is

not smooth. ENO schemes have been extremely successful in applications, because they are

simple in concept, allow arbitrary orders of accuracy, and generate sharp, monotone (to the

eye) shock transitions together with high order accuracy in smooth regions of the solution

including at the extrema.

The original ENO schemes in [76] are in the cell averaged form, namely they are �nite

volume schemes approximating an integrated version of (2.1). Finite volume schemes have

the advantage of easy handling of non-uniform meshes and general geometry in multi-space

dimensions, however they are extremely costly in multi-space dimensions, when the order of

8



accuracy is higher than two, because then one cannot confuse cell averages with point values,

as they only agree up to second order accuracy, and a complex reconstruction procedure is

needed to obtain point values from cell averages for evaluating the numerical 
uxes. The

cost is also associated with the high order numerical quadratures needed for evaluating the

integration of the numerical 
uxes along cell boundaries in multi-dimensions. Later, Shu

and Osher [165], [166] developed ENO schemes in �nite di�erence using point values of the

numerical solution, but still in conservation form (2.3). An important observation made in

[165] and [166] is that the numerical 
ux f̂j+ 1

2

in (2.3) is not a high order approximation to

the physical 
ux at xj+ 1

2

: the di�erence between the numerical 
ux f̂j+ 1

2

and the physical


ux f(uj+ 1

2

) is O(�x2). This is a common mistake among practitioners of �nite di�erence

schemes. If a high order interpolation on the point values uj is performed to obtain a high

order approximation to uj+ 1

2

, and a numerical 
ux is chosen to approximate f(uj+ 1

2

) to

a high order accuracy, then the scheme is only second order accurate. Correct choice of

the numerical 
uxes to obtain arbitrarily high order accuracy is given in [165] and [166].

The approach in [166] is especially simple. A detailed description of the construction and

comparison of �nite volume and �nite di�erence ENO schemes can be found in the lecture

notes [164].

Also in [165], a class of nonlinearly stable high order Runge-Kutta time discretization

methods is developed. Termed TVD time discretizations, these Runge-Kutta methods have

become very popular and have been used in many schemes. See, e.g. [66] for a review of

such methods.

Analysis of ENO schemes was given in Harten et al. [77]. Applications of ENO schemes

to two and three dimensional compressible 
ows, including turbulence and shear 
ow calcu-

lations, were given in Shu et al. [167]. Triangle based second order non-oscillatory schemes

were given in Durlofsky et al. [40]. Non-oscillatory self-similar maximum principle satisfying

high order shock capturing schemes were given in Liu and Osher [102]. EÆcient character-

istic projection in upwind di�erence schemes was given in Fedkiw et al. [61]. Convex ENO
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schemes without using �eld-by-�eld projection were given in Liu and Osher [103]. Chemically

reactive 
ows were simulated in Ton et al. [176] and in Fedkiw et al. [60].

The popularity of ENO schemes is demonstrated by the citation statistics: among Osher's

four most highly cited papers mentioned in the introduction, three of them are about ENO

schemes, i.e. [76], [165] and [166]. The top cited paper of Osher, [141], is on level set

methods but also uses second order ENO schemes for the numerical solutions and is where

the construction of ENO schemes for general Hamilton-Jacobi equations began.

2.5 WENO Schemes

An improvement of ENO scheme is the WENO (weighted ENO) scheme, which was �rst

developed by Liu, Osher and Chan [104]. Both ENO and WENO use the idea of adaptive

stencils in the reconstruction procedure based on the local smoothness of the numerical

solution to automatically achieve high order accuracy and non-oscillatory property near

discontinuities. ENO uses just one (optimal in some sense) out of many candidate stencils

when doing the reconstruction; while WENO uses a convex combination of all the candidate

stencils, each being assigned a nonlinear weight which depends on the local smoothness of

the numerical solution based on that stencil. WENO improves upon ENO in robustness,

better smoothness of 
uxes, better steady state convergence, better provable convergence

properties, and more eÆciency.

WENO schemes have been further developed later by Jiang and Shu [87] for �fth order

accurate �nite di�erence schemes in one and several space dimensions, by Hu and Shu [79]

and Shi et al. [162] for third and fourth order accurate �nite volume schemes in two space

dimensions using arbitrary triangulations, and by Balsara and Shu [7] on very high order

WENO schemes. A detailed description can again be found in the lecture notes [164].

2.6 Hamilton-Jacobi Equations

We will now move to the description of Osher's work in designing schemes for solving

Hamilton-Jacobi equations. Further discussions on this topic will also be given in the next
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section on level set methods.

Consider the one dimensional Hamilton-Jacobi equation

�t +H(�x) = 0 (2.4)

which becomes

(�x)t +H(�x)x = 0 (2.5)

after taking a spatial derivative of the entire equation. Setting u = �x in equation (2.4)

results in

ut +H(u)x = 0 (2.6)

which is a scalar conservation law. Thus in one spatial dimension, a direct correspondence

between Hamilton-Jacobi equations and conservation laws can be drawn. The solution u to

conservation law is the derivative of a solution � to a Hamilton-Jacobi equation. Conversely,

the solution � to a Hamilton-Jacobi equation is the integral of a solution u to a conservation

law. This observation leads to a number of useful facts. For example, since the integral

of a discontinuity is a kink (discontinuity in �rst derivative), solutions to Hamilton-Jacobi

equations can develop kinks in the solution even if the data is initially smooth. In addi-

tion, solutions to Hamilton-Jacobi equations cannot generally develop a discontinuity (unless

the corresponding conservation law solution develops a delta function). Thus, solutions �

to equation (2.4) are typically continuous. Furthermore, since conservation laws can have

nonunique solutions, one needs to apply an entropy condition to pick out the \physically"

relevant solution to equation (2.4).

Viscosity solutions for Hamilton-Jacobi equations were �rst proposed by Crandall and

Lions [35] in order to pick out the physically relevant solution. In addition, monotone �rst

order accurate numerical methods were �rst proven to converge by Crandall and Lions in [36].

In [126], Osher gave explicit formulas for solutions to the Riemann problems for non-convex

conservation laws and Hamilton-Jacobi equations. See also the multidimensional Riemann

solver of Bardi and Osher [8]. These are important for numerical schemes such as Godunov
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schemes using such Riemann solvers as building blocks.

In [141], Osher and Sethian, in the context of discussing level set methods, provided

a �rst order monotone scheme (an adaptation of the Engquist-Osher scheme [46]) and a

second order ENO scheme based on the framework of [165] and [166]. In [142], Osher and

Shu developed high order ENO schemes for solving Hamilton-Jacobi equations, using various

building blocks including Lax-Friedrichs, local Lax-Friedrichs, and Roe with an entropy �x.

In [98], Lafon and Osher developed high order two dimensional triangle based non-oscillatory

schemes for solving Hamilton-Jacobi equations. Later, Jiang and Peng [86] designed WENO

schemes for solving Hamilton-Jacobi equations on rectangular meshes and Zhang and Shu

[193] designed WENO schemes for solving Hamilton-Jacobi equations on arbitrary triangular

meshes. WENO scheme turns out to be very useful as the �fth order WENO scheme in

[86] reduces the numerical errors by more than an order of magnitude over the third order

accurate HJ ENO scheme for typical applications.

2.7 Additional Topics

Even though it does not exactly �t the title of this section, the work of Lagnado and Osher

[99], [100] is worth mentioning. These papers concern solving an inverse problem to compute

the volatility in the European options Black-Scholes model, and they were the �rst to use

PDE techniques to solve this inverse problem, via gradient descent and Tychono� regular-

ization, allowing the volatility, a coeÆcient in a parabolic equation to be a function of the

independent variables, stock price and time. These papers have attracted a lot of attention

after their publication.

Also worth mentioning is the work of Fatemi, Jerome and Osher [55] on using ENO

schemes to solve the hydrodynamic models of semiconductor device simulations. This was the

�rst work of using high order shock capturing methods in semiconductor device simulations,

and has led to many further developments, e.g. [85] and [22].
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3 Level set methods

Osher's most cited paper was [141], joint with Sethian, which introduced the ever popular

level set method for dynamic implicit surfaces. The key idea that started the level set fanfare

was the Hamilton-Jacobi approach to numerical solutions of a time dependent equation for

a moving implicit surface. The basic idea is as follows. De�ne an implicit surface as the zero

isocontour of a function �(~x), and suppose that the velocity of each point on the implicit

surface is given by ~V (~x). Given this velocity �eld, we wish to move all the points on the

surface with this velocity. The simplest way to do this is to solve the ordinary di�erential

equation

d~x

dt
= ~V (~x) (3.1)

for every point ~x on the implicitly de�ned surface, i.e. for all ~x with �(~x) = 0. This is

the Lagrangian formulation of the interface evolution equation. Since there is generally an

in�nite number of points on the front, this means discretizing the front into a �nite number

of pieces. For example, one could use segments in two spatial dimensions or triangles in

three spatial dimensions. This is not so hard to accomplish if the connectivity does not

change and the surface elements do not distort too much. Unfortunately, even the most

trivial velocity �elds can cause large distortion of boundary elements and the accuracy of

the method can deteriorate quickly if one does not periodically modify the discretization in

order to account for these deformations by smoothing and regularizing inaccurate surface

elements. In order to avoid problems with instabilities, deformation of surface elements and

complicated surgical procedures for topological repair of interfaces, [141] proposed using the

implicit function � both to represent the interface and to evolve it. The evolution of the

implicit function � is governed by the simple convection equation

�t + ~V � r� = 0: (3.2)

This is an Eulerian formulation of the interface evolution since the interface is captured by

the implicit function � as opposed to being tracked by interface elements as in a Lagrangian
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formulation. Equation (3.2) is sometimes referred to as the level set equation. The velocity

�eld given in equation (3.2) can come from a number of external sources. For example, when

the �(~x) = 0 isocontour represents the interface between two di�erent 
uids, the interface

velocity is calculated using the two-phase Navier-Stokes equations.

In general, one does not need to specify tangential components when devising a velocity

�eld. Since the local unit normal to the interface, ~N , and r� point in the same direction,

~T � r� = 0 for any tangent vector ~T implying that the tangential velocity components

vanish when plugged into the level set equation. For example, in two spatial dimensions

with ~V = Vn ~N + Vt ~T , the level set equation

�t +
�
Vn ~N + Vt ~T

�
� r� = 0 (3.3)

is equivalent to

�t + Vn ~N � r� = 0: (3.4)

Furthermore, since

~N � r� =
r�
jr�j � r� =

jr�j2
jr�j = jr�j (3.5)

equation (3.4) can be rewritten as

�t + Vnjr�j = 0 (3.6)

where Vn is the component of velocity in the normal direction (the normal velocity). Equation

(3.6) is also known as the level set equation. Equation (3.2) tends to be used for externally

generated velocity �elds while equation (3.6) tends to be used for (internally) self-generated

velocity �elds.

3.1 Level Set Calculus

In a series of papers that followed [141], Osher and coworkers introduced a level set calculus

for the practical treatment of discretized implicit surfaces de�ned by time evolving partial

di�erential equations. We summarize some of the main points below, but refer the interested
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reader to the recent review article of Osher and Fedkiw [134] and the references within. In

addition, we refer the reader to the books [135] by Osher and Fedkiw and [159] by Sethian.

Suppose that the surface is implicitly de�ned as the zero isocontour of a function �(~x).

Then the local sign of � can be used to de�ne the inside and outside regions of the domain.

That is, ~xo is inside the interface when �(~xo) < 0, outside the interface when �(~xo) > 0 and

on the interface when �(~xo) = 0. Implicit functions make simple Boolean operations easy

to apply. If �1 and �2 are two di�erent implicit functions, then �(~x) = min(�1(~x); �2(~x))

is the implicit function representing the union of their interior regions. Similarly, �(~x) =

max(�1(~x); �2(~x)) represents the intersection of the interior regions. The complement of

�1(~x) is �(~x) = ��1(~x). Etc.
The gradient of the implicit function,r�, is perpendicular to the isocontours of � pointing

in the direction of increasing �. Therefore, if ~xo is a point on the zero isocontour of �, the

local unit (outward) normal to the interface is

~N =
r�
jr�j (3.7)

for points on the interface. Equation (3.7) can be used to de�ne a function ~N everywhere on

the domain embedding the normal in a function ~N that agrees with the normal for points

on the interface. Similarly, the mean curvature of the interface is de�ned as the divergence

of the normal,

� = r � ~N (3.8)

so that � > 0 for convex regions, � < 0 for concave regions and � = 0 for a plane.

The characteristic function �� of the interior region 
� is de�ned as

��(~x) =

�
1 if �(~x) � 0
0 if �(~x) > 0

(3.9)

where the boundary is arbitrarily included with the interior region. The characteristic func-

tion, �+ of the exterior region 
+ is de�ned similarly as

�+(~x) =

�
0 if �(~x) � 0
1 if �(~x) > 0

(3.10)
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again including the boundary with the interior region. �� are functions of a multidimensional

variable ~x. It is often more convenient to work with functions of the scalar variable �. Thus,

the one dimensional Heaviside function is de�ned as

H(�) =

�
0 if � � 0
1 if � > 0

(3.11)

where � depends on ~x, although it is not necessary to specify this dependence when working

with H. Note that �+(~x) = H(�(~x)) and ��(~x) = 1�H(�(~x)). The volume integral (area

integral in R2) of a function f over the interior region 
� is de�ned as

Z



f(~x)��(~x)d~x (3.12)

where the region of integration is all of 
 since �� prunes out the exterior region 
+ au-

tomatically. The one dimensional Heaviside function can be used to rewrite this volume

integral as Z



f(~x) (1�H(�(~x))) d~x (3.13)

representing the integral of f over the interior region 
�. Similarly,

Z



f(~x)H(�(~x))d~x (3.14)

is the integral of f over the exterior region 
+.

By de�nition, the directional derivative of the Heaviside function H in the normal direc-

tion ~N is the Dirac delta function

Æ̂(~x) = rH(�(~x)) � ~N (3.15)

which is a function of the multidimensional variable ~x. This distribution is only nonzero on

the interface @
 where � = 0. Equation (3.15) can be rewritten as

Æ̂(~x) = H 0(�(~x))r�(~x) � r�(~x)jr�(~x)j = H 0(�(~x))jr�(~x)j (3.16)

using the chain rule to take the gradient of H and the de�nition of the normal from equation

(3.7). In one spatial dimension, the delta function is de�ned as the derivative of the Heaviside
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function

Æ(�) = H 0(�) (3.17)

with H(�) de�ned in equation (3.11) above. Æ(�) is identically zero everywhere except where

� = 0. This equation (3.16) can be rewritten as

Æ̂(~x) = Æ(�(~x))jr�(~x)j (3.18)

using the one dimensional delta function Æ(�). The surface integral (line integral in R2) of a

function f over the boundary @
 is de�ned as

Z



f(~x)Æ̂(~x)d~x (3.19)

where the region of integration is all of 
 since Æ̂ prunes out everything except @
 auto-

matically. The one dimensional delta function can be used to rewrite this surface integral

as Z



f(~x)Æ(�(~x))jr�(~x)jd~x: (3.20)

Typically, volume integrals are computed by dividing up the interior region, and surface

integrals are computed by dividing up the boundary @
. This requires treating a complex

two dimensional surface in three spatial dimensions. By embedding the volume and surface

integrals in higher dimensions, equations (3.13), (3.14) and (3.20) avoid the need for iden-

tifying inside, outside or boundary regions. Instead the integrals are taken over the entire

region 
.

Consider the surface integral in equation (3.20) where the one dimensional delta func-

tion needs to be evaluated. Since Æ(�) = 0 almost everywhere, i.e. except on the lower

dimensional interface which has measure zero, it seems unlikely that any standard numerical

approximation based on sampling will give a good approximation to this integral. Thus,

a �rst order accurate smeared out approximation of Æ(�) is used. First, a smeared out

Heaviside function is de�ned as

H(�) =

8<
:

0 � < ��
1

2
+ �

2�
+ 1

2�
sin
�
��

�

� �� � � � �
1 � < �

(3.21)
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where � is a tunable parameter that determines the size of the bandwidth of numerical

smearing. A typically good value is � = 1:54x making the interface width equal to three

grid cells when � is normalized to a signed distance function with jr�j = 1. Then the delta

function is de�ned according to equation (3.17) as the derivative of the Heaviside function

Æ(�) =

8<
:

0 � < ��
1

2�
+ 1

2�
cos

�
��

�

� �� � � � �
0 � < �

(3.22)

where � is determined as above. This delta function allows us to evaluate the surface integral

in equation (3.20) using a standard sampling technique such as the midpoint rule. Similarly,

the smeared out Heaviside function in equation (3.21) aids in the evaluation of the integrals

in equations (3.13) and (3.14).

A distance function d(~x) is de�ned as

d(~x) = min j~x� ~xI j over all ~xI 2 @
 (3.23)

implying that d(~x) = 0 on the boundary where ~x 2 @
. For a given point ~x, suppose that

~xC is the point on the interface closest to ~x. The line segment from ~x to ~xC is the shortest

path from ~x to the interface. In other words, the path from ~x to ~xC is the path of steepest

descent for the function d. Evaluating �rd at any point on the line segment from ~x to ~xC

gives a vector that points from ~x to ~xC . Furthermore, since d is Euclidean distance,

jrdj = 1: (3.24)

A signed distance function is an implicit function � with �(~x) = d(~x) = 0 for all ~x 2 @
,

�(~x) = �d(~x) for all ~x 2 
�, and �(~x) = d(~x) for all ~x 2 
+. Given a point ~x, and using

the fact that �(~x) is the signed distance to the closest point on the interface,

~xC = ~x� �(~x) ~N (3.25)

can be used to calculate the closest point on the interface where ~N is the local unit normal

at ~x.
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3.2 Numerical Techniques

A key factor for the success of level set methods is the use of high order high resolution type

schemes reviewed in section 2, for the conservation laws and Hamilton-Jacobi equations.

These include in particular the ENO and WENO schemes.

Even with these high order accurate approaches to solving the Hamilton-Jacobi equations,

one can obtain surprisingly inaccurate results when the level set function solution becomes

too steep or too 
at, i.e. discontinuous or poorly conditioned. In [33], Chopp considered an

application where certain regions of the 
ow had level sets piling up on each other increasing

the local gradient, and other regions of the 
ow had level sets that separated from each other


attening out �. In order to reduce the numerical errors caused by both the steeping and


attening e�ects, [33] introduced the notion that one should reinitialize the level set function

periodically throughout the calculation. In [152], Rouy and Tourin proposed a numerical

method for the shape from shading problem that was later generalized into the modern day

reinitialization equation of Sussman, Smereka and Osher [171], using the fact that jrdj = 1,

for d the signed or unsigned distance to a given set.

Unfortunately, this straightforward reinitialization routine can be slow, especially if it

needs to be done every time step although [171] noted that just a few time iterations are

usually needed. In order to obtain reasonable run times, [33] restricted the calculations of the

interface motion and the reinitialization to a small band of points near the � = 0 isocontour.

This idea of computing solutions to Hamilton-Jacobi equations local to the interface has

been studied further in the more recent work of Adalsteinsson and Sethian [1] and Peng et

al. [147].

Local methods are important for both solving the Hamilton-Jacobi equation and for

reinitializing the level sets so that they do not become discontinuous or poorly conditioned.

However, at least in the reinitialization case, it is possible to construct an even faster method

that only treats each grid point once while sweeping out from the zero isocontour creating a

signed distance function. This algorithm was invented by Tsitsiklis in a pair of papers, [179]
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and [180]. The most novel part of this algorithm is the extension of Dijkstra's algorithm for

computing the taxicab metric to an algorithm for computing Euclidean distance. See for

example Sethian [160] and Helmsen et al. [78] for the application of these \fast marching

methods" in the level set community.

The great success of level set methods can in part be attributed to the role of curvature

in regularizing the level set function such that the proper vanishing viscosity solution is

obtained. It is much more diÆcult to obtain vanishing viscosity solutions with Lagrangian

methods that faithfully follow the characteristics. For these methods, one usually has to

delete (or add) characteristic information by hand when a shock (or rarefaction) is detected.

This ability of level set methods to identify and delete merging characteristics is clearly seen

in a purely geometrically driven 
ow where a square is advected inward normal to itself at

constant speed. In the corners of the square, the 
ow �eld has merging characteristics that

are appropriately deleted by the level set method. On the other hand, repeating the same

calculation with a Lagrangian numerical method is diÆcult since characteristics will merge

in the corners of the square but not be automatically deleted. One does not easily obtain

the correct viscosity solution. Level set methods are not perfect however, since they tend to

incorrectly delete characteristics in under resolved regions of the 
ow { a behavior frequently

called \loss of mass" (or volume) in reference to the error it represents when level sets are

used to model incompressible 
uid 
ow. In contrast, despite a lack of explicit enforcement of

mass (or volume) conservation, Lagrangian schemes are quite successful in conserving mass

since they preserve material characteristics for all time, i.e. characteristics are never deleted.

The diÆculty stems from the fact that the level set method cannot accurately tell if

characteristics merge, separate, or run parallel in under-resolved regions of the 
ow. This

indeterminacy leads to vanishing viscosity solutions that can incorrectly delete characteristics

when they appear to be merging. In [49], Enright et al. designed a hybrid particle level set

method to alleviate the mass loss issues associated with level set methods. In the case of


uid 
ows, knowing a priori that there are no shocks present in the 
uid velocity �eld, one
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can assert that characteristic information associated with that characteristic �eld should

never be deleted. Particles are randomly seeded near the interface and passively advected

with the 
ow. When marker particles cross over the interface, it indicates that characteristic

information has been incorrectly deleted, and these errors are �xed by locally rebuilding

the level set function using the characteristic information present in these escaped marker

particles.

3.3 Fluids and Materials

Chronologically, the �rst attempt to use the level set method for 
ows involving external

physics was in the area of two phase inviscid compressible 
ow. Mulder et al. [118] appended

the level set equation to the standard equations for one phase compressible 
ow. The level

set was advected using the velocity of the compressible 
ow �eld so that the zero level set

of � corresponds to particle velocities and can be used to track an interface separating two

di�erent compressible 
uids. Later, Karni [89] pointed out that such method su�ered from

spurious oscillations at the interface. This was later �xed by Fedkiw et al. [58] by creat-

ing a set of �ctitious ghost cells on each side of the interface, and populating these ghost

cells with a specially chosen ghost 
uid that implicitly captures the Rankine-Hugoniot jump

conditions across the interface. This method was referred to as the ghost 
uid method.

Later extensions included the treatment of shocks, detonations and de
agrations [59], inter-

faces separating compressible 
ows from incompressible 
ows [17], and interfaces separating

Eulerian discretizations of 
uids from Lagrangian discretizations of solids [57].

The earliest real success in the coupling of the level set method to problems involving

external physics came in computing two-phase incompressible 
ow, in particular see Sussman

et al. [171] and Chang et al. [28]. The Navier-Stokes equations were used to model the


uids on both sides of the interface. Generally, the 
uids will have di�erent densities and

viscosities and the presence of surface tension forces cause the pressure to be discontinuous

across the interface as well. Although these early works smeared out these discontinuous
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quantities across the interface, this was later remedied by Kang et al. [88] using the methods

developed by Liu et al. [105]. More recently, Nguyen et al. [121] extended these techniques

to treat low speed 
ames.

A level set regularization procedure was proposed in Harabetian and Osher [72] for ill-

posed problems such as vortex motion in incompressible 
ows. This regularization, coupled

with non-oscillatory numerical methods for the resulting level set equations, provides a reg-

ularization which is topological and is automatically accomplished through the use of nu-

merical schemes whose viscosity shrinks to zero with grid size. There is no need for explicit

�ltering, even when singularities appear in the solution. The method also has the advantage

of automatically allowing topological changes such as merging of surfaces.

An application of this procedure for incompressible vortex motion was given in Hara-

betian, Osher and Shu [73]. An Eulerian, �xed grid, approach to solve the motion of an

incompressible 
uid, in two and three dimensions, in which the vorticity is concentrated on

a lower dimensional set, is provided. The numerical variables for the level sets are actually

smooth, thus allowing for accurate numerical simulations. Numerical examples including

two and three dimensional vortex sheets, two dimensional vortex dipole sheets and point

vortices, are given. This was the �rst three dimensional vortex sheet calculation in which

the sheet evolution feeds back to the calculation of the 
uid velocity, although vortex in cell

calculations for three dimensional vortex sheets were done earlier by Trygvasson et al. in

[177].

Level set type analysis was also used to obtain rigorous results identifying the Wul�

minimizing shape and the evolution of growing crystals moving with normal velocity de�ned

as a given positive function of the normal direction, thus verifying a conjecture of Gross.

Moreover it was also shown that the Wul� energy decreases monotonically under such an

evolution to its minimum [137]. A spino� came in [146] where it was proven that any two

dimensional Wul� shape can be interpreted as the solution a corresponding Riemann problem

for a scalar conservation law { jumps in the direction of the normal correspond to contact
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discontinuities, smoothly varying thin 
at faces correspond to rarefaction curves and planar

facets correspond to constant states. The work in [137] also motivated the derivation of a

new class of isoperimetric inequalities for convex plane curves [68].

Molecular beam epitaxy (MBE) is a method for growing extremely thin �lms of material.

A new continuum model for the epitaxial growth of thin �lms has been developed. This new

island dynamics model has been designed to capture the larger length scale features. The key

idea involves the level set based motion of islands of various integer levels { see for example

[117, 29, 71].

3.4 A Variational Approach

In [195] a variational level set approach was developed. Key ideas were the use of a single

level set function for each phase, the gradient projection method of [153] to prevent overlap

and / or vacuum, and the liberal use of the level set calculus as described earlier. This

general variational approach has many applications. The �rst was to study the behavior

of bubbles and droplets in two and three dimensions [197], for example drops falling or

remaining attached to a generally irregular ceiling, and mercury sitting on the 
oor. Many

problems in engineering design involve optimizing the geometry to maximize a certain design

objective. In [140] the variational level set method was used to analyze a vibrating system

whose resonant frequency or whose spectral gap is to be optimized subject to constraints

on the geometry. This variational approach has applications in computer vision as well, e.g.

snakes and active contours [25]. This will be discussed further in section 4.

3.5 High Codimension Motion

Typically level set methods are used to model codimension one objects, e.g. curves in R2

or surfaces in R3. In [15], this technology was extended to treat codimension two objects,

e.g. curves in R3, using the intersection of the zero level sets of two functions. This means
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a curve is determined by

�(t) = f~xj�1(~x; t) = �2(~x; t) = 0g:

The geometry of the curve can be derived from �1 and �2. For example, the tangent to the

curve is de�ned by

~T =
r�1 �r�2
jr�1 �r�2j :

The curvature times the normal is the derivative of the tangent vector along the curve,

� ~N = r~T � ~T : (3.26)

The normal vectors can be de�ned by normalizing this quantity,

~N =
� ~N

j� ~N j : (3.27)

The binormal is

~B =
~T � ~N

j~T � ~N j :

The torsion times the normal vector is � ~N = �r ~B � ~T . These geometric quantities are all

de�ned numerically just as in the standard codimension one level set method. Geometric

motion of a curve in R3 is thus obtained by solving coupled systems of two evolution equa-

tions. This is done locally near �(t), saving on storage and complexity. See [15] for results

involving merging and breaking which appear to agree with the reaction-di�usion limit when

appropriate. Another application of this idea comes from the following observation. If we

freeze one of the functions, say �1, we can generate the motion of curves on a surface. Here

the surface is de�ned by f~xj�1(~x) = 0g and the evolving curve is de�ned by the intersection

of that �xed surface with f~xj�2(~x; t) = 0g. This is useful for path planning on terrain data,

see [32].

3.6 Geometric Optics

In [133] a level set based approach for ray tracing and for the construction of wavefronts in

geometric optics was introduced. The approach automatically handles the multivalued solu-

tions that appear and automatically resolves the wavefronts. The key idea, �rst introduced
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in [48] in a \segment projection" (rather than a level set) approach, is to use the linear Li-

ouville equation in twice as many independent variables and solve in this higher dimensional

space via the idea introduced in [15]. In two dimensional ray tracing, this involves solving

for an evolving curve in x; y; � space, where � is the angle of the normal to the curve. This

uses two level set functions and gives codimension 2 motion in 3 space dimension plus time.

A local level set method can be used to make the complexity tractable { O(n2 log(n)) { for

n the number of points on the curve for every time iteration. The memory requirement is

O(n2). In three dimensional ray tracing, this involves solving for an evolving two dimen-

sional surface in x; y; z; �;  space, where � and  give the angle of the normal, and results in

codimension 3 motion in 5 space dimension plus time. The complexity goes up by a power

of n over the two dimensional case, as does the memory requirement. Again, this involves

a local level set method, this time using three level set functions. The interested reader is

referred to [169] and [156] for a di�erent Eulerian approach.

3.7 Computing Discontinuous Solutions to Hamilton-Jacobi Equa-

tions

Hamilton-Jacobi equations of the form

�t +H(~x; t; �;r�) = 0 (3.28)

have uniformly continuous solutions if H is non-decreasing in �. However, there are interest-

ing cases in which this hypothesis fails. Moreover, discontinuous initial data is appropriate

for some problems in control theory and di�erential games. The solution devised in [65] uses

the evolution of the level set of an auxiliary level set equation. The idea has antecedents

in [129] where it was proven that, under reasonable circumstances, the zero level set of the

viscosity solution of

�t +H(~x;r�) = 0
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Figure 3.1: The level set method can be used to create impressively smooth surfaces on
relatively coarse grids. Here the level set method is used to represent the interface separating
water from air as water is being poured into a glass.

for H homogeneous of degree one in r� is the same as the t level set of the viscosity solution

of

H(~x;r ) = 1

i.e.

f~xj�(~x; t) = 0g = f~xj (~x) = tg: (3.29)

This idea was used in [65] to go one dimension higher in equation (3.28). This leads to new

and successful numerical methods for a wide class of initial value problems for Hamilton-

Jacobi equations with discontinuous solutions, see [178].

3.8 Additional Topics

Level set methods have been applied to a variety of other problems as well. They have been

used to compute solutions to Stefan problems to study crystal growth [30, 92], to simulate

water and �re for computer graphics applications [62, 50, 120], and to reconstruct three

dimensional models from arbitrary unorganized data points [196, 194]. Figure 3.1 shows an
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Figure 3.2: The level set method allows one to accurately represent the thin 
ame zone that
separates the unreacted gaseous fuel from the reacted hot gaseous products. This allows one
to more accurately model the gaseous expansion across this interfacial zone. Here the level
set method is used to simulate a ball catching on �re.

Figure 3.3: The �gure on the left shows an unorganized data point set extracted from an
MRI of a rat brain, while the �gure on the right shows a level set reconstruction of the
rat brain using only these data points. Note how well the level set method can accurately
predict connectivity.
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example calculation of water being poured into a glass. Here the level set method gives a

smooth visually realistic appearance to the water surface. Moreover this calculation can be

carried out using a reasonable number of grid cells and without the need for complicated

surgical methods to treat interface pinching and merging. Figure 3.2 shows an example

calculation of a sphere catching on �re. Here the level set method allows one to accurately

represent the thin 
ame zone that separates the unreacted gaseous fuel from the reacted hot

gaseous products. Gaseous expansion can then be accurately modeled across this interfacial

zone. Figure 3.3 (left) shows an unorganized data point set extracted from an MRI of a rat

brain, while �gure 3.3 (right) shows a level set reconstruction of the rat brain using only

these data points. Note how well the level set method can accurately predict connectivity.

The use of level set methods for computer vision will be discussed further in section 4.

4 Image processing and computer vision

The use of partial di�erential equations (PDE's) and curvature driven 
ows in image pro-

cessing and computer vision has become an active research topic in the past few years. The

basic idea is to deform a given curve, surface, or image with a PDE, and obtain the desired

result as the solution of this PDE. Sometimes, as in the case of color images, a system of cou-

pled PDE's is used. The art behind this technique is in the design, analysis, and numerical

implementation of these PDE's.

Partial di�erential equations can be obtained from variational problems. Assume a varia-

tional approach to an image processing problem formulated as a minimization of U(u) where
U is a given energy computed over the image (or surface) u. Let F(�) denote the Euler

derivative (�rst variation) of U . Since under general assumptions, a necessary condition for

u to be a minimizer of U is that F(u) = 0, the (local) minima may be computed via the

steady state solution of the equation

@u

@t
= �F(u);

where t is an `arti�cial' time marching parameter. PDE's obtained in this way have been
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used already for quite some time in computer vision and image processing, and the literature

is large. The most classical example is the Dirichlet integral,

U(u) =
Z
jruj2(x)dx;

which is associated with the linear heat equation

@u

@t
(x; t) = �u(x):

Extensive research is also being done on the direct derivation of evolution equations which

are not necessarily obtained from the energy approaches. The attributes of PDE's in image

processing are discussed for example in [21, 157]. In the pioneering paper [2] the authors

prove that a few basic image processing principles naturally lead to PDE's.

Note that when considering PDE's for image processing and numerical implementations,

we are dealing with derivatives of non-smooth signals, and the right framework must be

de�ned. As introduced by the image processing group formerly at CEREMADE [2, 3],

the theory of viscosity solutions provides a framework for rigorously employing a partial

di�erential formalism, in spite of the fact that the image may not be smooth enough to give

a classical de�nition to the derivatives involved in the PDE. These works also showed with

a very elegant axiomatic approach the importance of PDE's in image processing.

Ideas on the use of PDE's in image processing go back at least to Gabor [64] and to Jain

[84]. The �eld took o� thanks to the independent works of Koenderink [96] and Witkin [189].

These researchers rigorously introduced the notion of scale-space, that is, the representation

of images simultaneously at multiple scales. In their work, the multi-scale image representa-

tion is obtained by Gaussian �ltering, see below. This is equivalent to deforming the original

image via the classical heat equation, obtaining in this way an isotropic di�usion 
ow. In the

late 80's, R. Hummel [81] noted that the heat 
ow is not the only parabolic PDE that can

be used to create a scale-space, and indeed argued that an evolution equation which satis�es

the maximum principle will de�ne a scale-space as well. The maximum principle appears to

be a natural mathematical translation of causality. Koenderink once again made a major
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contribution into the PDE's arena when he suggested to add a thresholding operation to the

process of Gaussian �ltering. As later suggested by Merriman, Bence and Osher [115, 116]

and by Ruuth, Merriman and Osher [155], and proved by a number of groups [6, 51, 82, 83],

this leads to a curvature motion geometric PDE, one of the most famous among geometric

PDE's. In [154], Ruuth et al. extended it to di�usion generated motion of curves in IR3.

Solving a vector heat equation and thresholding lead to moving the curve in the direction of

the normal with velocity equal to its curvature.

Perona and Malik's work [148] on anisotropic di�usion, together with the work by Rudin,

Osher and Fatemi on Total Variation [153] and by Osher and Rudin on shock �lters [138],

have been among the most in
uential papers in the area, explicitly showing the importance

of understanding non-linear PDE's theory to deal with images. They proposed to replace

the linear Gaussian smoothing, equivalent to isotropic di�usion via the heat 
ow, by a

selective non-linear di�usion that preserves edges, see below. Their work opened a number

of theoretical and practical questions that continue to occupy the PDE image processing

community, see, e.g., [3, 151]. We should also point out that, at about the same time, Price

et al. published a very interesting paper on the use of Turing's reaction-di�usion theory

for a number of image processing problems [150]. Reaction di�usion equations were also

suggested to create arti�cial texture [182, 191].

Many of the PDE's used in image processing and computer vision are based on moving

curves and surfaces with curvature based velocities. In this area, the level-set numerical

method developed by Osher and Sethian [141], which is reviewed in section 3, is very in-


uential and examples will be provided later in this section. The representation of static

objects as level-sets (zero-sets) is of course not completely new to the computer vision and

image processing communities, since it is one of the fundamental techniques in mathematical

morphology [158]. Considering the image itself as a collection of its level-sets, and not just as

the level-set of a higher dimensional function, is a key concept in the PDE's community [2].

Implicit surfaces and level-set representations appear in computer graphics as well [11, 190].
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Other works, like the segmentation approach of Mumford and Shah [119] and the snakes

of Kass, Witkin and Terzopoulos [90] have been very in
uential in the PDE's community as

well. More on this will be mentioned below.

It should be noted that a number of the above approaches rely quite heavily on a large

number of mathematical advances in di�erential geometry for curve evolution [67] and in

viscosity solutions theory for curvature motion (see e.g., [31, 52].)

One of the basic ideas behind this area is that the fact that images are represented in

digital computers in the form of discrete objects should not limit the tools to those of discrete

mathematics. It is \legal" to use tools from di�erential equations and di�erential geometry,

and then deal with the computer implementation of the algorithms from the point of view of

numerical analysis. The result of this approach is then not only a set of state of the art image

processing techniques, but more a new complementary approach to classical techniques.

The frameworks of PDE's and geometry driven di�usion have been applied to many prob-

lems in image processing and computer vision, since the seminal works mentioned above.

Examples include continuous mathematical morphology, invariant shape analysis, shape from

shading, segmentation, tracking, object detection, optical 
ow, stereo, image denoising, im-

age sharpening, contrast enhancement, and image quantization. In this section we provide

a few examples of these. Since this is a paper in honor of Osher, the presentation of the

examples is of course biased by his involvement and contributions in the area. Important

sources of literature in the area are the excellent collection of papers in the book edited by

Romeny [151], the book by Guichard and Morel [69] that contains an outstanding descrip-

tion of the topic from the point of view of iterated in�nitesimal �lters, Sethian's book on

level-sets [159], the book of Osher and Fedkiw [135], Lindeberg's book which is a classic in

scale-space theory [101], Weickert's book on anisotropic di�usion in image processing [186],

Kimmel's lecture notes [95], Sapiro's recent book [157], Toga's book on brain warping that

includes a number of PDE's based algorithms [175], and the special March 1998 issue of

the IEEE Transactions on Image Processing [21]. The interested reader will �nd in these
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publications some fascinating contributions in the area of PDE's in image processing and

computer vision, much beyond the few introductory examples provided below.

4.1 The Total Variation Model for Image Denoising

As mentioned above, the use of PDE's for image enhancement has become one of the most

active research areas in image processing [21]. In particular, di�usion equations are com-

monly used for image regularization, denoising, and multiscale representations (representing

the image simultaneously at several scales or levels of resolution). This started with the

pioneering works in [96, 189], where the authors suggested the use of the linear heat 
ow for

this task, given by

@u

@t
= �u; (4.1)

where u : 
 � IR2 ! IR represents the image gray values (the original noisy image is used

as initial condition). As it is well known, this equation is the gradient-descent of

Z



k ru k2 d
: (4.2)

An example of the e�ect of the linear heat 
ow or Laplace equation (4.1) is presented in

Figure 4.1. It is clear that although this technique can be used to denoise images, it is also

blurring them. That is, not only the noise is being removed, but the edges and the relevant

information is getting destroyed as well. Moreover, it can be shown that edges are destroyed

faster than the actual noise is removed [10]. The e�ect of this is that if for example this

is used as a pre-process for image segmentation (see below), then the exact location of the

objects in the image is modi�ed. There is then a need to remove the noise, and to simplify

the image, without disturbing the main objects in it. The approaches now described address

this issue.

Two directions were taken to address this problem. On one hand, Perona and Malik [148]

suggested to replace the linear heat 
ow by a PDE that preserves edges. Simultaneously,

Rudin, Osher and Fatemi [153] started to look at the modi�cation of the variational problem

(4.2). In certain cases, the two directions can be shown to be equivalent, the PDE being
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Figure 4.1: Example of the heat 
ow (isotropic di�usion). On the left we have the original
image and on the middle two di�erent time steps of the di�usion 
ow, showing how the image
is getting blurred. This blurring impedes the achievement of an accurate segmentation, right
�gure. See below for details on the segmentation technique.

the gradient descent of the proposed variational formulation. Rudin, Osher and Fatemi

suggested to replace the linear L2 norm in (4.2) by the edge oriented Total Variation (TV)

norm in the energy, thereby obtaining

Z



k ru k d
; (4.3)

whose gradient descent 
ow is given by

@u

@t
= div

� ru
k ru k

�
: (4.4)

We notice that in comparison with the linear heat 
ow, the TV one has a stopping term

of the form 1

kruk
. This helps to preserve edges, as can be seen in Figure 4.2. Rudin et al.

also suggested to add constraints to this minimization, in order to avoid reaching the trivial

(
at) steady state, thereby improving the results in Figure 4.2. In this case the corresponding

Lagrange multiplier is evaluated via a projection method that was found to be useful in other

applications as well, e.g., [140].

From the point of view of edge preservation, the TV 
ow is optimal if we limit ourselves

to convex functionals [10]. Motivated by the seminal work of Perona and Malik [148] and

that of Rudin, Osher and Fatemi [153], signi�cant theoretical and practical studies have been

conducted in this kind of anisotropic di�usion 
ows in general and the TV 
ow in particular.

Numerical implementation issues have been studied in, e.g., Chan, Golub and Mulet [24],
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Figure 4.2: Example of the TV 
ow for anisotropic di�usion. On the left we have the
original image and on the middle the result of the 
ow, showing how the edges are much
better preserved than with the isotropic 
ow. This allows, for example, to perform accurate
segmentation, as shown on the right (compare to previous �gure). See below for details on
the segmentation technique.

Weickert [186], and Marquina and Osher [113]. Formal mathematical properties have been

studied in, e.g., Alvarez, Lions and Morel [3], Weickert [186], and more recently in Andreu

et al. [4, 5] with a full study of the TV 
ow in general dimensions. This work has also in

part motivated researchers to connect wavelets with the TV space, e.g., [34].

To conclude, let us note that the TV model is frequently used as a regularization term

for inverse problems. In Figure 4.3, obtained from the work of Chan and Wong [27], we see

an example.

4.2 Images on Implicit Surfaces

In the last subsection we dealt with images on the plane. There is of course more than that

in practice, as data can be de�ned on surfaces. In [9] the authors dealt with this issue. A

framework for solving variational problems and partial di�erential equations for scalar and

vector-valued data de�ned on surfaces was introduced. The key idea is to implicitly represent

the static surface as the level set of a higher dimensional static function, and solve the surface

equations in a �xed Cartesian coordinate system using this new embedding function. This

leads to the use of simple and well studied numerical techniques instead of complicated

(and not always mathematically justi�ed) implementations. Typically, the software with the
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Figure 4.3: Example of the use of the TV model as a regularization term for inverse problems.
The �rst row shows from left to right the original image, the out-of-focus blur, and the blurred
image. The basic idea is to recover the original image, without knowing the blurring function,
from the blurred data. This problem is known as blind deconvolution. The recovered image
and blurring function are shown on the second row. The technique developed by Chan and
Wong uses the TV model of Rudin-Osher-Fatemi for this problem.

implicit approach described below has only a few lines of code, in contrast with packages

based on triangulated surfaces that lead to hundreds, if not thousands, of lines.

Implicit surfaces can be obtained for example from the algorithms in [42, 63, 173, 180,

196]. Applications of PDE's on surfaces include computer graphics [181, 182, 191], visu-

alization [38], weathering simulation [39], vector �eld computation or interpolation process

[149, 188], inverse problems [56], and surface parameterization [41].

We assume then that the three dimensional surface S of interest is given in implicit form,

as the zero level set of a given function � : IR3 ! IR. This function is negative inside

the closed bounded region de�ned by S, positive outside, Lipschitz continuous a.e., with

S � fx 2 IR3 : �(x) = 0g. To ensure that the data, which needs not to be de�ned outside of

the surface originally, is now de�ned in the whole band, one simple possibility is to extend

this data u de�ned on S (i.e the zero level set of �) in such a form that it is constant normal

to each level set of �. This, which is easily realizable [30], is only done if the data is not
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already de�ned in the whole embedding space.

We will exemplify the framework with the simplest case, the heat 
ow or Laplace equation

for scalar data de�ned on a surface. For scalar data u de�ned on the plane, that is, u(x; y) :


 � IR2 ! IR, as we saw before, the heat 
ow is given by (4.1), and its corresponding

energy by (4.2). If we now want to smooth scalar data u de�ned on a surface S, that is,
u(x; y) : S ! IR, we must �nd the minimizer of the energy given by

1

2

Z
S

k rSu k2 dS: (4.5)

The equation that minimizes this energy is its gradient descent 
ow (e.g., [170]):

@u

@t
= �Su: (4.6)

HererS is the intrinsic gradient and �S the intrinsic Laplacian or Laplace-Beltrami operator.

Classically, eq. (4.6) would be implemented in a triangulated surface, giving place to

sophisticated and elaborated algorithms even for such simple 
ows. We now show how to

simplify this when considering implicit representations.

Let ~v be a generic three dimensional vector, and P~v the operator that projects a given

three dimensional vector onto the plane orthogonal to ~v. It is then easy to show that the

harmonic energy (4.5) ([43]) is equivalent to (see for example [168])

1

2

Z
S

k P ~Nru k2 dS; (4.7)

where ~N is the normal to the surface S. In other words, rSu = P ~Nru. That is, the gradient
intrinsic to the surface (rS) is just the projection onto the surface of the 3D Cartesian

(classical) gradient r. We now embed this in the function �:

1

2

Z
S

k rSu k2 dS =
1

2

Z

2IR3

k Pr�ru k2 Æ(�) k r� k dx;

where Æ(�) stands for the delta of Dirac, and all the expressions above are considered in the

sense of distributions. Note that �rst we got rid of intrinsic derivatives by replacing rS by

P ~Nru (or Pr�ru) and then replaced the intrinsic integration (
R
S
dS) by the explicit one
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(
R

2IR3

dx) using the delta function. Intuitively, although the energy lives in the full space,

the delta function forces the penalty to be e�ective only on the level set of interest. The

gradient descent of this energy is given by

@u

@t
= r � (Pr�ru): (4.8)

In other words, this equation corresponds to the intrinsic heat 
ow for data on an implicit

surface. But all the gradients in this PDE are de�ned in the three dimensional Cartesian

space, not in the surface S (this is why we need the data to be de�ned at least on a band

around the surface). The numerical implementation is then straightforward. Once again,

due to the implicit representation, classic numerics are used, avoiding elaborate projections

onto discrete surfaces and discretization on general meshes, e.g., [80]. The same framework

can be applied to other variational formulations as well as to PDE's de�ned on surfaces, e.g.,

the ones exempli�ed below [9]. In addition, it can be applied to the TV model described

above for images on the plane. An example of this is presented in Figure 4.4.

A particularly interesting example is obtained when we have unit vectors de�ned on

the surface. That is, we have data of the form u : S ! Sn�1. When n = 3 our unit

vectors lie on the sphere. Following the work [172] for color images de�ned on the plane,

we show in Figure 4.5 how to denoise a color image painted on an implicit surface. The

basic idea is to normalize the RGB vector (a three dimensional vector) to a unit vector

representing the chroma, and di�use this unit vector with the harmonic maps 
ow embedded

on the implicit surface extending the intrinsic heat 
ow example presented above. The

corresponding magnitude, representing the brightness, is smoothed separately via scalar

di�usion 
ows as those presented before for images on the plane (e.g., an intrinsic TV

anisotropic heat 
ow). That is, we have to regularize a map from the zero level-set onto S2

(the chroma) and another one onto IR (the brightness).

Following the same framework and the work in [181, 182, 191], we show in Figure 4.6

the result of reaction di�usion 
ows solved on implicit surfaces in order to generate intrinsic

patterns.
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Figure 4.4: Intrinsic heat 
ow (�rst row, original, and 15 and 50 iterations respectively) and
TV 
ow (second row, original, and 50 and 90 iterations respectively) for data de�ned on
surfaces. Note how as expected, the heat 
ow blurs the data while the TV 
ow removes
the noise while preserving the sharp edges (constraints on the noise have been added to the

ow).

Finally, inspired by the work on line integral convolution [16] and that on anisotropic

di�usion [148], the authors of [38] suggested to use anisotropic di�usion to visualize 
ows

in 2D and 3D. The basic idea is, starting from a random image, anisotropically di�use it

in the directions dictated by the 
ow �eld. The authors presented very nice results both

in 2D (
ows on the plane) and 3D (
ows on a surface), but once again using triangulated

surfaces which introduce many computational diÆculties. In a straightforward fashion we

can compute these anisotropic di�usion equations on the implicit surfaces with the framework

here introduced, and some results are presented in Figure 4.7.

4.3 The Level-Set Method in Image Processing and Computer

Vision

We now present a number of examples on the use of the Osher-Sethian level-set method

reviewed in section 3 for problems in image processing and computer vision, in particular
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Figure 4.5: Intrinsic vector �eld regularization. Left: original color image. Middle: heavy
noise has been added to the 3 color channels. Right: color image reconstructed after 20 steps
of anisotropic di�usion of the chroma vectors.

Figure 4.6: Texture synthesis via intrinsic reaction-di�usion 
ows on implicit surfaces. Left:
isotropic. Right: anisotropic.

for image segmentation.

One of the most popular applications of level-set methods in image processing and com-

puter vision is for image segmentation. The contributions in this area started shortly after the

work in [93] (which is one of the �rst papers in computer vision using the level-set method)

by the works in [18, 111, 112]. These authors showed how to embed in the level-set frame-

work the pioneering work on snakes and active contours by Kass, Witkin and Terzopoulos

[90].

Consider the image on the left of Figure 4.8. Kass et al. suggested to detect the objects

in this image (segment the image) starting with a curve that surrounds the object/s, and

letting the curve deform (active-contour/snake) toward the boundary of the objects. The
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deformation is driven by the minimization of a given energy that penalizes non-smooth

curves that do not sit at the objects boundaries. The authors of [90] proposed a Lagrangian

implementation of the curve deformation process, while Caselles et al. [20] and Malladi

et al. [111] pioneered the use of the level-set method for this approach. This added the

classical topological freedom, thereby allowing the detection of multiple objects without

prior knowledge of their number. Later McInerney and Terzopoulos showed a technique

based on Lagrangian implementation to achieve this [114]. Following this work, in [19] (see

also [20, 91, 161, 174, 187] and [145] for pioneering extensions of this to object tracking),

the authors showed that both approaches can be formally uni�ed if one considers an energy

given by

E(C) =
Z
C

g(C)ds; (4.9)

where ds is the Euclidean arc-length over the deforming curve C : [a; b] ! IR2 and g(�) is a
function that penalizes curves that do not sit on the objects boundaries (a function of the

image gradient for example). That is, image segmentation has been translated into �nding

a curve minimizing (4.9), thereby a geodesic in a space with metric g(�). The geodesic was
computed using the level-set method. Examples are provided in Figure 4.8.

When describing image segmentation, variational problems, and PDE's, we can not avoid

but think about the famous Mumford-Shah work [119], and ask ourselves the relationship

between these techniques. Some of this relationship is described in [157], while additional

one comes to light from recent works connecting the Mumford-Shah model and level-set

techniques, see for example the works by Paragios and Deriche [145], by Yezzi and Soatto

[192], and by Chan and Vese [26, 185]. One of the works in this direction is presented

in [26, 185]. This work is inspired in part by Zhao et al. [195]. In their work, multiple

phases and their boundaries, represented via the level set method, evolve and interact in

time, to minimize a bulk-surface energy. Combining several level set functions together,

triple junctions were also represented and evolved in time. Inspired by this, Chan and

Vese presented a multi-phase level set model for image segmentation. Triple junctions and
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complex topologies are segmented using more than one level set function. An example is

provided in Figure 4.9. In this example, a multi-phase model with four phases is used,

obtained by combining two level set functions. Here, the phases and their boundaries evolve

in time, by minimizing an energy related to the Mumford-Shah piecewise-constant model

for segmentation. We show the evolution of the curves and of the four phases, in a level set

framework.

4.4 Shape from Shading

According to the so called Lambertian shading rule, the 2D array of pixel gray levels, corre-

sponding to the shading of a 3D object, is proportional to the cosine of the angle between

the light source direction and the surface normal. The shape from shading problem is the

inverse problem of reconstructing the 3D surface from this shading data. The history of this

problem is extensive. Here we describe a basic technique, developed by Kimmel and Bruck-

stein [94] to address this problem. We remark that this work by Kimmel and Bruckstein

on shape from shading using curve evolution and level-sets is inspired in part by the work

of Osher in [129]. This presents the general connection between the unsteady and steady

approaches to curve and surface evolution. An outstanding contribution to the problem was

done in [152], based on the theory of viscosity solutions, see also [122]. More details and an

extensive literature can be found in these references.

Consider a smooth surface, actually a graph, given by z(x; y). According to the Lamber-

tian shading rule, the shading image I(x; y) is equal (or proportional) to the inner product

between the light direction l̂ = (0; 0; 1) and the normal ~N (x; y) to the parameterized surface.

This gives the so called irradiance equation:

I(x; y) = l̂ � ~N =
1p

1 + p2 + q2
;

where p := @z=@x and q := @z=@y. Starting from a small circle around a singular point,

Bruckstein [14] observed that equal height contours C(p; t) : S ! IR2 of the surface z (t
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stands for the height) hold

@C
@t

=
Ip

1� I2
~n;

where now ~n is the 2D unit normal to the equal height contour (or level-set of z). This

means that the classical shape from shading problem is simply a curve evolution problem,

and as so, we can use all the curve evolution machinery to solve it. In particular, we can use

both the level-set and the fast marching numerical techniques (the weight for the distance

is always positive and given by
p
1=I2 � 1). An example, courtesy of the authors of [94], is

presented in Figure 4.10.
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Figure 4.7: Flow visualization on implicit 3D surfaces via intrinsic anisotropic di�usion 
ows.
Left: 
ow aligned with the major principal direction of the surface. Right: 
ow aligned with
the minor principal direction of the surface. Pseudo-color representation of scalar data is
used.

Figure 4.8: Level-set based object segmentation. The �rst �gure on the left shows the original
image and original contour, surrounding an un-known number of objects. The results of the
geodesic active contours is given in the middle image. The properties of using the level-set
framework are clear in this example. It not only allows for very accurate computations
of geometric characteristics such as curvature but also freely permits topological changes,
thereby detecting all of the un-known number of objects. The image in the right is a result
of the geodesic active contours framework implemented following Cohen and Kimmel.
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Figure 4.9: Evolution of the four-phase segmentation model from [26], using two level set
functions: evolving curves (top) and phases (bottom). The fundamental use of the level-set
implementation is once again observed here, since the splitting and merging of the evolving
curves is automatically handled, with no programming e�ort.

Figure 4.10: Example of shape from shading via curve evolution. The �gure shows the
original surface, the simulated shading, the reconstructed surface, and the reconstruction
error.
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