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FORMATION OF DELTA-SHOCKS AND VACUUM STATES IN
THE VANISHING PRESSURE LIMIT OF SOLUTIONS TO THE
ISENTROPIC EULER EQUATIONS

GUI-QIANG CHEN HAILIANG LIU

ABSTRACT. The phenomena of concentration and cavitation and the formation
of §-shocks and vacuum states in the vanishing pressure limit are identified and
analyzed in inviscid compressible fluid flow. It is shown that any two-shock
Riemann sclution of the Euler equations for isentropic fluids tends to a d-shock
solution of the Euler equations for pressureless fluids, and the intermediate
density between the two shocks tends to a d-mass that forms the é-shock;
by contrast, any two-rarefaction-wave Riemann solution for isentropic flaids
tends to a two-contaci-discontinuity solution for pressureless fluids, and the
intermediate state between the two rarefaction waves, even away from the
vacuum, tends to a vacuum state. Seme numerical results, which exhibit the
formation process of é-shocks and vacuum states, are presented.

1. INTRODUCTION

We are conecerned with the phenomena of concentration and cavitation and the
formation of §-shocks and vacuum states in the vanishing pressure limit in invisecid
compressible fluid ow. In this paper, we consider the Euler equations of isentropic
gas dynamics in the Eulerian coordinates:

(1.1) Bup + B, (pv) = 0,
(1.2) B(pv) + B:(pv® + p) =0,

where p represents the density, p the scalar pressure, and m = pv the momentum,
respectively; and p and m are in the physical region {(p,m)| p > 0,|m| < Vop} for
some Vp > 0. For p > 0, v = m/p is the velocity with |v| < V5. The scalar pressure
p is a function of density p and a small parameter € > 0 satisfying

lim p(p, €) = 0.

For concreteness, we focus on the prototypical pressure function for polytropic
gases:

(1.3) plp,e) =epolp),  polp)=p"/v, v>1.
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System (1.1)-(1.3} is an archetype of hyperbolic systems of conservation laws
with form

(1.4) S + O flu,e) =0,

with w:= (p, pv) and f(u,¢€) 1= (pv, pv* + p(p,€)).

In Chang-Chen-Yang [4, 5], a phenomenon of concentration of solutions of the
two-dimensional Riemann problem, called a smoothed §-shock wave, was first oh-
served numerically for the Euler equations of gas dynamics, when Riemann data
produce four initial contact discontinuities of different signs and the initial pressure
data are close to zero. One of the main objectives of this paper is to show rigor-
ously that the phenomenon of concentration of solutions, observed numerically in
[4, 5], in inviscid compressible flow is fundamental, which occurs not only in the
multidimensional situations, but also even in the one-dimensional case naturally.

The limit system as ¢ -+ 0 formally reduces to the following transport equations:

(15} 3“9 + 57; (ﬂ”) = 0’
(1.6) i (pv) + 8, (pv®) = 0,

which is also called the one-dimensional system of pressureless Fuler equations.

The transport equations (1.5) and (1.6) have been analyzed extensively since
1995; for example, see Bouchut-James {1}, Bouchut-Jin-Li [2], Brenier-Grenier {3],
Grenier {10], E-Rykov-Sinai [9], Huang-Wang [11], Li-Yang {15}, Li-Zhang [16, 17],
Poupaud-Rascle {18], Sheng-Zhang [24], Wang-Huang-Ding [26], and the references
cited therein. Also see Joseph [12], Keyfitz-Kranzer {13}, Korchinski [14], Sever [19],
Tan-Zhang {22], and Tan-Zhang-Zheng [23] for related equations and results. It has
been shown that, for the transport equations, the d-shocks and vacuum states do
occur in the Riemann solutions. Since the two eigenvalues of the transport equations
(1.5)-{1.6) coincide, the occurrence of é-shocks and vacuum states can be regarded
as a result of resonance between the two characteristic fields.

In this paper, we rigorously analyze the phenomena of concentration and cavi-
tation and the formation of §-shocks and vacuum states in the vanishing pressure
limit, in inviscid, isentropic compressible fluid flow. This limit can be regarded as
a singular flux-function limit of entropy solutions of hyperbolic conservation laws
(1.4). We show that such phenomena do occur even in the one-dimensional case:
any two-shock Riemann solution of the Euler equations for isentropic fluids tends
to a d-shock solution of the FEuler equations for pressureless fluids, and the inter-
mediate density between the two shocks tends to a weighted d-measure that forms
a d-shock; by contrast, any two-rarefaction-wave Riemann solution for isentropic
fluids tends to a two-contact-discontinuity solution for pressureless fluids, and the
intermediate state between the two rarefaction waves, even away from the vacuum,
tends ¢o a vacuum state. This shows that the §-shocks for the transport equa-
tions are a concentration of density, while the vacuum states are a cavitation in the
vanishing pressure limit; both are fundamental and physical in fluid dynamics.

From the point of view of hyperbolic conservation laws, since the limiting system
is nonstrictly hyperbolic, the phenomena of concentration and cavitation in the van-
ishing pressure limit can be regarded as a process of resonance formation between
the two characteristic fields. These phenomena show that the Aux-function limit
can be very singular; the spaces of functions, BY or L°°, may not be well-posed in
this limit; and the space of Radon measures, for which the divergences of certain
entropy and entropy flux fields are Radon measures, is a natural space in order to
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deal with the limit in general. In this regard, a theory of divergence-measure fields
has been established in Chen-Frid [6, 7].

The organization of this paper is the following. In Section 2, we discuss 6-
shocks and vacuum states for the transport equations (1.5) and (1.6) and examine
the dependence on the parameter € > 0 of the Riemann solutions for the Euler
equations (1.1)—(1.3} for isentropic fluids. In Section 3, we analyze the formation of
d-shocks in the Riemann solutions of the Euler equations {1.1)—(1.3) in the vanishing
pressure limit. In Section 4, we analyze the formation of vacuum states in the
Riemann solutions, even away from the vacuum, in the vanishing pressure limit
for (1.1)-(1.3}. In Section 5, we present some representative numerical results,
produced by using the higher order ENO scherme designed in [20, 21], to examine
the formation process of d-shocks and vacuum states in the vanishing pressure limit
of the Riemann solutions of (1.1)-(1.3).

The main observations and results in this paper were reported in detail by the
first author at the International Conference on Nonlinear Evolutionary Partial Dif-
ferential Equations, Academia Sinica (China), June 10-15, 2001, and at the first
Joint Meeting of the American Mathematical Society and the Societe Mathema-
tique de France at ENS de Lyon, France, July 17-20, 2001.

2. DELTA-SHOCKS, VACUUM STATES, AND RIEMANN SOLUTIONS

In this section, we first discuss d-shocks and vacuum states in the Riemann
solutions of the transport equations (1.5) and (1.6}, and then we examine the de-
pendence on the parameter € >  of the Riemann solutions of the Euler equations
of gas dynamics {1.1)—(1.3).

2.1. 4-Shocks and Vacuum States for the Transport Equations, Consider
the Riemann problem for the transport equations (1.5) and (1.6) with Riemann
initial data

(21) {p,U)(E,G) = (P:I::“i): x>0,

with gy > 0. Since the equations and the Riemann data are invariant under uniform
stretching of coordinates:
(z,1) = (az,at),
we consider the self-similar solutions of (1.5), (1.6), and {2.1):
{(p.v)(z, 1) = (p,0) (&), &=zt

for which the Riemann problem is reduced to the boundary value problem of the
ordinary differential equations:

—&pg + (pv)e =0,
—E(p)e + () =0,
{p,v)(£00) = {px,vs).

As shown in [24], in the case v.. < v4, we can obtain a solution which consists of
two contact discontinuities and a vacuum state determined by the Riemann data
(p+,v+). That is,

(p“fU“): _OO<£S'U—a

{p,0)(&) = ¢ (0,8), vo <€ <uy,
(p+,?)+), vy €€ < 0.
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In the case v_ > vy, a key observation in [24] is that the singularity is impossible
to be a jump with finite amplitude, that is, there is no solution which is piecewise
smooth and bounded; hence the solutions containing weighted d-measures sup-
ported on curves were constructed as distributional solutions in order to establish
the existence from the mathematical point of views (also see [22, 23]}.

To define the distributional solutions, the weighted é-measure w{t)ds supported
on a smooth curve S parametrized as (2(s),%(s)}, @ < s < b, is defined by

b
(W(')5s,1/f(-,'))=/ w(t(s))(@(s), 1))/ o' (s)” + 1'(s)ds

for all ¥ € C§°(IR%).
With this definition, one can construct a family of solutions for the case v_ > v,..
A §-distributional solution with a parameter o can be obtained as

p(a,1) = polz, t) + w(t)ds,  v(z,t) = v+ P x(z - ot),

where
t

1402

{elp] — lpv]),

po(z,t) = p_ + [pix(z —ot), w(t)=
with
8= {(z,0) : z=ol, 0 <t < oo},

[w] = wy — w.. denoting the jump of the function w across the discontinuity, and
x(x) is the characteristic {or indication} function that is zero when x < 0 and is 1
when o > 0.

It is shown.in [24] that the above §-distributional solution (p, v) satisfies

(22) (P: ¢t) + (plua ¢a:} = O;
(2.3) (pv, de) + (pv*, ) = 0,

for any ¢ € C§°(IR x IRT), where

(0, ) = ]ﬂ L dpodedt + (w(t)bs, 8),
and
(pv, 6) = f fm pupodads + (ow(t)ds, §).

A unique solution can be singled out by the so called mathematical §-Rankine-
Hugoniot condition:

o= VPV +V/P-T-
VLD

and the d—entropy condition:
)\+ o< A,

The entropy condition means that, in the (r,f)-plane, the characteristic lines on
both sides of a d-shock wave are all incoming, which implies that the §-shocks are
overcompresive shocks.
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2.2. Riemann Solutions for the Iseniropic Euler Equations, The Euler
equations {1.1)—{1.3) can be written into:
(2.4) Oep + O (pv) =0,
(2.5) B (pv) + B (pv® 4 epo(p)) = 0.
The eigenvalues of system (2.4) and (2.5) are
AL = v —~c(p, €), Ao = v+ elp,e), for p > 0,

clp,€) = [epjlp) =Vep®, 8= ’YTMJ"

The Riemann invariants are

with

_-\/E

o & —
wv+9p, =

Ve 4
g7

Then the Riemann solutions, which are the functions of £ = 2/t, are governed by

(2.6) ~&pe + (pr)e =0,
(2.7) ~ E(pv)e + (pv* + epo{p))g = 0,
(2.8 (p,v){F00) = (pt, vt )-

Shock Curves. The Rankine-Hugoniot condition for discoatinuous solutions of
(2.4) and (2.5) is

—olpl+[pv] =0,  —alev] + [ov* + epo(p)] = 0.
The Lax entropy condition is
p+ > p— (1 —shock); o < p— (2 - shock).

Then, given a state u_ = {p_,m..) = (p-, p—v_), the shock curves, which are the
sets of states that can be connected on the right by a 1-shock or 2-shock, in the
phase plane are the following:

1-shock curve S;(u.):

v— v = _\/_}__E(po(ﬂ) - po{p-))
) pp— (p—p-)

(P - p*); P > p—;
2-shock curve Sy(u_):
v —U_ = __\/m}_me (pO(P} —po(p-)
) pp—  (p—p-)

Then the shock curves are concave or convex, respectively, with respect tou_ =
(p—,m_) in the p —m plane.

)(p—p-), p<p-

We now turn to the study of rarefaction-wave solutions of the system. There are
two families of rarefaction waves, corresponding to characteristic families A; and
As, respectively.

Rarefaction Wave Curves. A rarefaction wave is a continuous solution of
(2.6)~(2.8) of form (p, pr)(£), & = = /1, satisflying

£ =vF/epp(p), ~€pe + (pv)g = 0.
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Then, give a state u.. = (p_, p_v_.), the rarefaction wave curves, which are the sets
of states that can be connected on the right by a 1-rarefaction wave or 2-rarefaction
wave, in the phase plane are the following:

l-rarefaction wave curve R (u..):

P T
v—vm:_/ —Ei—o(s—)ds, p < pa;
P

2-rarefaction wave curve Rp(u_):

? Verls)
s 1

e

v — . == P> p—.
The rarefaction wave curves are concave or convex, respectively, in the p —m
plane.

Given a left state u_ = (p_,m_), the set of states that can be connected on the
right by a shock or a rarefaction wave in the phase plane consists of the 1-shock
curve S;(u.), the l-rarefaction curve R;(u_), the 2-shock curve Sz(u_), and the
2-rarefaction curve Ry(u_). These curves divide the phase plane into four regions
S8 (1), SaRi(u_), RaS1(u), and RoRy(u_); every right state of the Riemann
data staying in one of them yields a unique global Riemann solution R(z/t), which
contains a I-shock (or 1-rarefaction wave) and/or a 2-shock (or 2-rarefaction wave)
satisfying

w(R(z/t)) < wlur), 2(R(z/t)) = z(ur), w(R(z/t)) - 2(R(z/1)) = 0.

For example, when u, € SoSi(u_), R(z/t) contains a l-shock, a 2-shock, and a
nonvacuum intermediate constant state; when uy € RoRy{(u_), R{z/t) contains a
1-rarefaction wave, a 2-rarefaction wave, and an intermediate constant state that
may be a vacuum state. For more details about the Riemann solutions, see {8].

3. FORMATION OF DELTA-SHOCKS IN THE VANISHING PRESSURE LIMIT

I this section, we study the formation of §-shocks in the vanishing pressure limit
of the Riemann solutions of the FEuler equations for isentropic fluids.

3.1. The case u; € SS1{u_), v— > vy,pe > 0. Let u} = (p},pfv) be the
intermediate state in the sense that u_ and u? are connected by a 1-shock Si with
speed o1, and that w and 1, are connected by a 2-shock Sz with speed o2. Then

*

{p¥,v*) are determined by

v v = —\/ a7 e a IRV
and
vy 0t = _\/ el =po) ) ey s
PEP+ {p+ = p?)
We have

Lemma 3.1. For small € > (, there ezists C > 0 such that
Cle VT < pr < e M
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Proof. We define a new function ¢(s,r) = \/ L _ Wpo(r) — po(s)) for s,7 > 0.

8§ T

Thus, a combination of the jump conditions for the 1-shock and the 2-shock gives
V- =V = \/E(qa(P:sp*) + ¢(P:,p+)} >0

Letting € — 0, one must have
lim ¢(pg, p+) = o0,
e—{)

which yields lim,_,g p* = co. The boundedness of /¢ #(p}, p.) implies that € po (o),
i.e., e{(p*)” is bounded from both the below and the above. This completes the
proof.

Lemma 3.2. There exzists 0 € (vy,v_) such that

liz% vl =0
€

lim o] = lim 0§ = o5
e—0 e

lim pi{c§ — o) = olp] — [pv].

Proof. Using the Lax entropy condition for the 1-shock and the 2-shock, we have

(3.1} vl —e(ph)’ < of <vo —E(p),
and
(3.2) vy + VE(pe)! < of < vl Vel

Noting that

*® L * =
Ve(p)! =275 (pre M) = 62 (pet ),
we gsee from Lemma 3.1 that, for v > 1,

. g
lim /e (p7)" = 0.
Letting € — 0 in {3.1) and (3.2), we have

vy < liminf o5 < limsup o5 < liminf v/,
=0 e—) e—0
and

limsup ¥} < liminf of <limsup o] <v_.
e—0 e—+l e—0

The Rankine-Hugoniot condition for (2.4) for the 1-shock and the 2-shock implies

pelos = of) = i py — of p— — [pv],
which, together with the fact that lim..,p p} = oo, gives that

6115% (o5 —01) =0.

This completes the proof of Lemma 3.2,
Lemma 3.3. The limit ¢ in Lemma 8.2 is determined by

o o VP P
VN Vi

and satisfies the d-entropy condition:

vy < F < U-.
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Proof. Using the Rankine-Hugoniot condition for (2.5) for the I-shock and the
2-shock yields

—o§(prvg — pov) + (pE (W) + epo(pl) — p-(v-)°

—epolp-)) =0,
and

—o5{ptvl — pyuy) + (P + epopf) — pr(vs)® —epolps)) =0,
which give

e[po(p)] + [pv®] + (05 — of)piv} + 0 pv.. — 0 prug =0
Taking limit ¢ -~ 0 and using Lemmas 3.1 and 3.2, we have
o*[p] = 20{pv] + [pv°] = 0.

When [p] # 0, we have the two roots:

_ ool &= o p )

o N
Because of
’U~>€li;3}{1)(7;>?)+, i=12,
we must choose
a= VP-o- VPt .
N R
When [p] = 0, we obtain
_ ve + Uy
7=

3.2. The case uy € SoRi(u_)UR,S:(u), v— > vy, psy > 0. Since the right state
uy = {py,my) = (py, ppvy ) is fixed and, as € becomes small, the R;-curve and the
Sy-curve become flat, then the right state falls into the region S2.5; (u_) when the
parameter ¢ is small; and this case is reduced to the case in §3.1, when ¢ i small.

3.3. Weighted §-Shocks. We now show the following theorem characterizing the
vanishing pressure limit for the case v_ > vy

Theorem 3.1. Suppose that v > vy and {pf,m®),m¢ = p*v°, is a two-shock
solution of (2.4) and (2.5) with Riemann data uy, constructed in §3.1 and §3.2.
Then p¢ and m¢ converge in the sense of distributions, respectively, and the limil
functions are the sum of a step function and a §-measure with weights o[p] — jpv]
and afpv] — [pv?], respectively, which form a &-shock solution of (1.5) and {1.6)
with the same Riemann data v .

Proof. 1. Set € = z/¢t. Then the Riemann solution can be written as

p-; E<oq;
P8 =9 peE), o <E<oay;
P+ § > 35:
and
v, & <of;
v =14 vif), of <& <o

Yty ’£> 057
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satisfying the weak formulation:

63 - [0 -or v [ ruea=o

6o - [ -arv vt [ oo = e [ oty verie

for any ¥ € C}(IR) satisfying ¥(§) =0 for |{| > R > 0.
2. The first integral in (3.3) can be decomposed, for « > 0 small, into

@5 - { [ i} (v — D0 (W (),

in which the second and fourth terms are small, when « is small, since they are
bounded by O(1)a. The sum of the first and last term of (3.5) is

g R
- [ (0o — O (Ode— [ (vy — Ops'(E)de

—R oito
= —p v D05 — ) 4 s h(of +a) + p_(0f — V(o @)
gy R
- [ p_W(EVE — pol0 + (o + ) — ] prb(E)d,
R oyt

which converges, as o — 0 first and then e - 0, to

o R
v} (o) — [ -t - [ pa p(E)de = ((pv] - lp]) (o) — f xol ) BlE)dE

with
xp(€) = p— + [Pl x(£)s
where x(£) is the characteristic function that is 1 when £ > 0 and 0 when £ <0.
3. The third term of (3.5) satisfies

gy
{3.6) lin%) lim (v¢ — E)p* ' {E)dE = 0.
e—+0 - Q e to
This can be seen as follows.

i [t 0w e = [ e - ot ©3

a—) o

= (o — o) {_U:d)(a&)—w(ai) | o19lof) - o5 (o5) +cr§"1-05 / ;w(&)dg}.

£ € € __ E
Og — 07 oy — 03

which, in virtue of the smoothness of the test function {£), converges as € — 0 to

([ov] = alp{—a' (o) + o’ {a) + (o) — P(o)} =0,
where we have used the facts that lim, o v} = ¢ and lim.q o;: =g, forj=1,2.
On the other hand,

- / (- £)p° 9/ (€)dE + f P p(E)de = 0.
iR
Then we have

lim | (p° ~ xp(§ — 0))%(€)dE = (o] — [pv]) (o),

e300 R



10 GUI-QIANG CHEN HAILIANG LIU

for any function ¢ € C§°(IR).

3. We now turn to justify the limit of the momentum m* = p*v° using the weak
formulation of the momentum equation (3.4). As done previously, we can obtain
the limit for the first term on the left of (3.4) as

4 R
i [ =6 oo €1 = 0) (?lolpul= [ ool [ prvspigrat

The term on the right of (3.4), for @ > 0 small, equals to

e po(pw(@d&::e{ fR+ fJ’ / [+ L:+a}po(pf)w’(f)df,

which, for o -+ 0, converges to
e{{po(p-){0f) + po(pD)(h(03) — ¥{o1)) — Polp4)b(o5}}
= ofe) + epolp;)(¥{05) ~ ¥(of)) = 0, as €—=0,

where we used the fact that epp(p}) is bounded and lim..o ¢} = o, for j =1,2.
Returning to the weak formulation, one has

lim [ (o0 = Xpu (€ — 0))Y(E)dE = ¢(a)(olpv] = [ov]),

e-30 R
with
Xpv(£) = p-v- + [pv] x{&)-
4. Finally, we are in a position to study the limit of p¢ and m¢ by tracking the
time-dependence of the weight of the §-measure in the lmit.
Let ¢{x,t) € CZ(IRx IRT) be a smooth test function and ¢{(£,£) := ¢{£t,1). Then

we have

i | N | aptyota o = tim f (f FOHE, t)dg)

since p¢ is a self-similar solution depending only on & = z/t. Therefore, we have
i [ (€360 = [ xp(€ - 2)iE, D + (ole] = [,
=0 SR IR
= [ ol = o1)6a, e+ (o1p] ~ [ ol ).

Combining the above two relations, we have

lim / ” fm o (/b ¢ ddt

e—0 0
= [ [ ot = otg(a ot + [ el - ololtot,
o JIR 0
The last term, by definition, equals to

< wy(t)ds, ¢z, t) >
with

W {IL) =
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Similarly, we can show that

lim /000 fIR(pev‘)(m/t)qﬁ(z,t)dmdt

e—0

_ / " / Yoo (5 — ot)b(a, B)dadt + < wa(t)ds, blz,?) >
0 IR

with
wa(t) = \/—m«( olp] — [pv®]).

This completes the proof of Theorem 3.1.

4. FORMATION OF VACUUM STATES IN THE VANISHING PRESSURE LIMIT

In this section, we show the formation of vacuum states in the vanishing pressure
limit of the Riemann solutions of (2.4) and (2.5), even when the Riemann solutions
may stay away from the vacuum.

4.1. The case uy € RaRy(u.),v- < vy,psr > 0. As recalled previously, for the
rarefaction case, the solution is either a constant or satisfies

(4.1) £ =g/t ="+ Jepj(p).

More precisely, we have
£=v" —fepp(pe),

for
—yJephlp-) < £ <vi — (fepplpl);
and
&= v+ /epp(p),
for

v+ Jeph(pr) < € <y +yfepylps)-

In the phase plane, the right state is in the region RyR;(u_). The point on the
Rj-curve satisfies

28 Jephis P~ e 1
v o=t pﬂ( Ame———ds < w +/ pg ds =v_ + flpi = A
P
Then it is easy to see that the R;-curve ends at (0, A). For any point (py,pv4.)
with vy > A, it can be connected only with a 2-rarefaction wave on the left by a

vacuum state. Then there are two subcases:

Subcase 1: v.. < vy < A. In this case, there is no vacuum in the solution. The
intermediate state (pf,m]) satisfies
N o [T Ver(s)
me = P v—“pﬁf —;——dsﬁ p:’: <P
P

and

m* pe le ’
+ P+ dS,
e o

Due to the boundedness of the integrat term, when € — 0, we have

My = Py pe > P

Bmm] = v_ hm ,r;»E
e—0



iz GUI-QIANG CHEN HAILIANG LIU

and
_ . * {12 *
my = py limmg/ lin pc.
One must have lim,_,g p* = 0 and lim.,om; = 0, since, otherwise vy = v.. which
is a contradiction with the assumption vy > v...
To figure out the limit of the speed, we let ¢ — 0 in the relation (4.1), which
gives
s € — 1' ! '3
lim v*(£) = £ F lim 4/epy(p?),
for v. < € < limeo A (pt,m?) or limeo Az(pl,m;) < & < vy The uniform
boundedness of p* with respect to ¢ leads to
lim (A2 (pg, m7) — Mlpl,mg)) =0,
0

and hence
lim v°(¢) = &, v.. < & < vy

¢

To summarize, the limit solution for (p,v) in this case is

(p—sv-), ~o0 <§ <u-,
(pi ’U}(&) = (Osf}s v S 5 i: Vs
(P+,v4)y vy SE <00

Subcase 2: v, > A. In this case, there is a vacuum state in the Riemann solution
itsetf. 'The intermediate state (p?,m?) = (0,0) is a vacuum state. When passing to
the limit, the limit solution coincides with the one in Case 1.

4.2. Case uq € SeRy(u_)U R2S1{u-), v— < vg,pe > 0. Since the right state
ug = (py, pevs) is fixed and, as e becomes small, the R,-curve becomes flat, then
the right state falls into the region Ry H;(u—) when the parameter ¢ is small; and
then this case is reduced to the case in §4.1 when ¢ is small.

5. FORMATION PROCESS OF DELTA-SHOCK AND VACUUM STATES: NUMERICAL
SIMULATIONS

To see the formation process of d-shocks and vacuum states in the vanishing
pressure limit of the Riemann solutions of the Euler equations (2.4) and (2.5), we
present a selected group of representative numerical results. We have performed
many more numerical tests to make sure what we present are not numerical arti-
facts.

To discretize the system, we use the higher order ENO scheme to obtain a
method-of-line ODE in time, and then discretize the ODE by the classical higher
order explicit Runge-Kutta method, see [20, 21]. We will use the algorithms sug-
gested in [21}]

To see the concentrate phenomenon, we solve the Riemann problem for (1.1)-
(1.3) with p = p7 /v and vy == 1.4 for an ideal gas. The initial data are

Cf (L0,15), if =<0,
(p,v)(2,0) = { (0.2,0.0), if z>0.
We compute by the third-order ENO scheme, [21], up to ¢ = 0.2 with mesh 100.

The numerical simulations for different choices of € are presented in Figures 5.1-5.6.
These figures show the formation process of a d-shock in the vanishing pressure
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limit, of the two-shock Riemann solutions in isentropic Euler flow. We start with
¢/v = 1.0 and then €/ = 0.50,0.10,0.05,0.01 decrease up to e/ = 0.001. Figs.
5.1a—5.6a show the concentration of the density yielding a weighted -measure in the
limit, in which the horizontal axis stands for the space variable x and the verticai
axis stands for the density. Figs. 5.1b—5.6b show the change of the velocity as ¢
decreases yielding a step function in the limit, in which the horizontal axis stands
for the space variable x and the vertical axis stands for the velocity.

We can see clearly from these numerical results that, when e decreases, the
locations of the two shocks become closer, and the density of the intermediate state
increases dramatically, while the velocity is closer to a step function; in the vanishing
pressure limit, the two shocks coincide to form, along with the intermediate state,
a d-shock of the transport equations (1.5) and (1.6), while the velocity is a step
function.

The cavitation phenomenon is simulated for the Riemann problem (1.1)-(1.3)
with initial data
60, i z<0
(g, 0) (2, 0) *{ (0.2,1.5), if z>0.

In the rarefaction wave cases, we employ the first-order ENO scheme to compute
the solution up to £ = 0.2. Numerical simulations are presented in Figures 5.7
5.12. These figures show the formation process of a vacuum state in the vanish-
ing pressure limit of the two-rarefaction-wave Riemann solutions, starting away
from the vacuum, in isentropic Euler flow. We start with ¢/ = 1.0 and then
e/ = 0.50,0.10,0.05,0.01 decrease up to e/ = 0.001. Figs. 5.7a-5.12a show the
cavitation of the density yielding a vacuum state between the left boundary of the
t-rarefaction wave and the right boundary of the 2-rarefaction wave in the limit,
in which the horizontal axis stands for the space variable z and the vertical axis is
stands for the density. Figs. 5.7b—5.12b show the change of the momentum as €
decreases yielding a linear function between the left boundary of the 1-rarefaction
wave and the right boundary of the 2-rarefaction wave in the limit, in which the
horizontal axis stands for the space variable z and the vertical axis stands for the
momentum.

We can see clearly from these numerical results that, when e decreases, the leit
boundary of the l-rarefaction wave and the right boundary of the 2-rarefaction
wave are fixed; the right boundary of the 1-rarefaction wave and the left boundary
of the 2-rarefaction wave become closer and closer, while the siates between the
left boundary of the 1-rarefaction wave and the right boundary of the 2-rarefaction
wave in the Riemann solution tends to a vacuum state; and, in the limit, the left
boundary of the 1-rarefaction wave and the right boundary of the 2-rarefaction
wave become two contact discontinuities of the transport equation (1.5) and (1.6).
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