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In this paper we consider a conservative extension of the Euler equations for gas
dynamics to describe a two-component compressible flow in Cartesian coordinates. It
is well-known that classical shock-capturing schemes applied to conservative models are
oscillatory near the interface between the two gases. Several authors have addressed this
problem proposing either a primitive consistent algorithm (Karni, [12]) or Lagrangian
ingredients (Ghost Fluid Method by Fedkiw, Aslam, Merriman and Osher, [7]), (Abgrall
and Karni, [2]). We solve directly this conservative model by a flux-split algorithm, due to
the first author (see Donat and Marquina, [6]), together with a high order (WENOS) flux
reconstruction [15, 22]. This algorithm seems to reduce the oscillations near the interfaces
in a way that does not affect the physics of the experiments. We validate our algorithm
with the numerical simulation of the interaction of a Mach 1.22 shock wave impinging a
Helium bubble in air, under the same conditions studied by Haas and Sturtevant [9] and
stuccessfully simulated by Quirk and Karni {20],
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1. INTRODUCTION

Richtmyer-Meshkov instabilities arise when an interface between two different
gases is impulsively accelerated by acoustical waves (shock waves, large changes
in density, etc.). These instabilities may induce a compressible turbulent regime
with high Reynolds numbers. Our goal ig the numerical simulation of those insta-
bilities by means of a conservative and entropy satisfying scheme applied to the
Euler equations for multicomponent gas dynamics. We know that vanishing vis-
cosity solutions to problems involving Richtmyer-Meshkov instabilities might not
exist, but we can obtain high-order numerical approximations with a resulting nu-
merical viscosity (Reynolds number), for which the compressible turbulent regime
is completely developed and shocks, contacts and rarefaction waves propagate with
correct strength and speed.

In this paper we use a fifth order accurate conservative scheme, based on a flux
splitting due to the first author and the WENOS5 reconstruction [11}, to solve the
multispecies Euler equations with an equation of state (EOS) that allows mixing of
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the species. It has been pointed out in {12] that some conservative shock-capturing

schemes suffer from pressure and velocity oscillations near gas interfaces. However,
we have found through our numerical experiments that pressure and velocity fluctu-
ations near gas interfaces are small and do not seem to interfere with the physics of
the simulation. The explanation of this apparent contradiction to Karni’s analysis
may be found in the mixing property of the EOS, which allows a smooth tran-
sition between gases, and in the use of a scheme that has shown the property of
alleviating, if not avoiding, some pathologies, such as overheating at reflections,
“carbuncle” and “kinked” Mach stems (cf. section 3).

The organization of the paper is the following: in section 2 we show the Euler
equations for the dynamics of a mixture of two gases. In section 3 we explain
the scheme we use in our experiments. Next, in section 4 we validate our one-
dimensional algorithms, comparing their results with the exact solution of some
selected tests. In section 5 we use our two-dimensional algorithms for the simulation
of a 1.22 Mach air shock impinging a cylindrical Helium bubble, with identical setup
as the one used in [20], obtaining similar shock velocities and an interface with very
fine details where a complete turbulent regime is developed. In section 6 we use some
techniques borrowed from level set theory to analyze the growth of the instability.
Finally, in section 7 we present some issues on the parallel implementation of the
algorithms and in section 8 our conclusions.

2. MULTICOMPONENT FLOW EQUATIONS

For simplicity of exposition we assume that we aim to model the dynamics of a
mixture of two gases in two space dimensions, the extensions to more components
or more dimensions being directly deduced. Let p denote the density of the mixture,
¢, the mass fraction of the first component and, therefore, 1 — ¢, the mass fraction
of the second component.

We assume that both components are in thermal equilibrium and are perfect
gases with specific heats at constant volume Cwy,C'va, specific heats at constant
pressure Cp;, Cpy and ratios of specific heats 41,7, By standard thermodynamic
arguments, the ratio of specific heats of the mixture of gases is

_Cp_Cp¢+Cp(l—9)
9) = Cv  Cunig+Cu(l—¢) (1)

The equation of state expresses the pressure P in terms of the density p, the specific
internal energy ¢ and mass fraction ¢ and it reads as

P(p,¢,¢) = (v(¢) — Lpe. (2)

We model the dynamics of this mixture by the compressible Euler equations
with an additional equation expressing conservation of the first component, which,
coupled to the conservation of mass, implies conservation of the second component
as well. In two dimensions, these equations respectively express the conservation of
mass, momentum in x and y directions, total energy and mass of the first component
and they read ag

Ui+ F(U); + G(U)y =0, {(3)



with the conserved variables U and fluxes F and & being given by

T
U=[p pu pv E pd|,
FW)=[pu pu*+P puww (E+Pu ppul (4)
GU)=[pw pw p?+P (E+Pp ppv]",
where (u,v) is the velocity field of the mixture and E is the total energy per unit

volume. The functional dependence of the fluxes F' and G on the conserved variables
can be obtained from {4), (2) and the usual relations:

u:_-&, 't}-——ﬁ (;‘:E—l(uz—{v'v2), (’b:@,

, 5
P p p 2 p ®)

System (3) is hyperbolic: the eigenvalues of F'(U} are A1 = u — ¢, A234 = 4,
Xs = u + ¢ and the corresponding right eigenvectors r; and left eigenvectors ;,
normalized so that r; - [; = J;;, are

ri=[1 u—c v H-ue ¢]%,

re=[1 w v yﬁszz ¢ 17,

rs=[0 0 1 v 0],

ra=[0 0 0 & 177,

rs=[1 ut+e v H+t+uc ¢ 17, (6)
h=[fe+E—¢fs —Pru—y —Hv B B
l=[1-28+2¢8 26w 2Bv —260 —2f3 ),

lg=][—-v 0 1 0 0],

Lb=[-¢ 0 0 0 1],
ls=[fo—E£—9ps —-Pru+tt P fi B
where
P P
cx\/P(p,eyﬁb)pﬁ'ﬁp(psﬁ:(ﬁ)e:\/% (7)
is the local sound speed, H = E%‘f = Tg;'—”l" + 1(u® +v?) is the enthalpy and
, y—1 u? 4+ v? hX
X=+e, bh="5 h=h—7F ﬂsxﬁ- (8)

The eigenstructure of G'(U) is obtained in the usual manner, by interchanging
the roles of u and v and the second and third components of each left and right
eigenvector. We point out that these linearizations only depend on four variables,
for instance, ¢, u,v, ¢. We refer to [18, 12] for further details.

3. MARQUINA’S FLUX SPLITTING FORMULA

We describe our flux splitting formulation in the two-dimensional case. We
follow Shu-Osher’s flux formulation [22] to obtain a numerical flux & (respectively
@) that approximates I (respectively G) to an order . We then use the method of
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iines to approximate the gystem (J3) Dy dpplylng the TVD third order n,uug,c—nutua.
ODE solver (see [22]) to the following system, obtained by spatial discretization:

dUs; 1,2 14 .
““‘—d;'y + g Wi — B ) T Ay (Gijrg —Gig-g) =0 (9)

where U,;,j is the vector formed by the cell averages of the conserved quantities in
the ceil Cy;

Ui m[G“U(ﬂ:,y,t) dedy, Cy=l[zi 3 2ipt] X [Wj-5:9544,  (10)

and £, & are the numerical fluxes, that should approximate the fluxes in the fol-
lowing sense:

F(U)a(a1,35) = K‘ﬁ—(ﬁ* By ) +OW)

G(U)y(mi;yj) = W—(G Lty T F’i,_g ) + O(hr)’

2!

(11)

for smooth U,
A reconstruction procedure R, defined in the interval [z;_, 1, %y, %] from cell

averages a; {{ =1 —s,...,1+8), is required to satisfy:

1. f:”“l% R(@img, o QGip; Ty dT =3 1 G, J=4—5,...,i+s
T
2. For smmooth a, R(@i_g,...,8i15;2) = a(z) + O(h7"), T € [Bi_s, Tits], With
a; = [ "? a(z) dz. The positive integer r is the order of the reconstruction.
.?._

3. The total variation of R(@i—s,...,8i+s; ) is essentially bounded by the total
variation of a.

Popular reconstructions are based on polynomials (ENO [10], PPM [25]) or
hyperbolas (PHM {16]). We have used the WENOS5 [11] reconstruction, which
achieves fifth order accuracy using the same five points stencil (s = 2) as the ENO3
reconstruction. The WENOQS5 reconstruction is a nonlinear convex combination of
the three interpolating parabolas based on the stencils m;_24j, Zi_ 145, Tivs, J =
0,1,2, that appear in the ENO3 reconstruction. The nonlinear weights are based
on smoothness indicators, judiciously designed so as to attain fifth order accuracy
at stnooth regions while degenerating to “digital” ENO3 at discontinuities.

Marquina’s flux splitting 6] alleviates certain pathologies that other solvers ex-
hibit in some experiments, such as overheating at shock reflections, kinked Mach
stem (cf. [6]) and carbuncle (cf. [5]). It has been used very successfully in as-
trophysical simulations at high relativistic regimes {cf. [5, 14]). Although, as we
will see below, this formulation requires the use of two linearizations for each cell
interface, instead of one, as Roe solver does, this increase of computational cost
in our implementation is only about 11%, for the time spent in the solver is much
lower than the time for the reconstructions.

When applied to the one dimensional Helium bubble simulation (cf. section
4), our implementation of Shu-Osher’s scheme based on Roe’s linearization and
WENOS reconstruction works fine for coarse grids, but crashes on medium grids
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kouu puumb), when giv’e:: ucgamvc PLessure vmuca, due to dramatic PIE3sUIE SPikTs.
On the other hand, Marquina’s flux splitting seems to naturally prescribe enough
viscosity to dissipate spurious oscillations but not so much to smear excessively
shocks and contacts. Our implementation is extremely robust and works perfectly
in very fine grids with CFL conditions near the absolute theoretical maximum.
We now describe the construction of the numerical flux Fj, +1,43 obtaining G is

similar. We denote by u;; an approximation to Uy ;.

We choose ¢, u,v,¢ as the four variables the eigenstructure of the Jacobian
F'(U) depends on. We then perform two-sided reconstructions of each of these
quantities at the interface to obtain quantities

+ + +
Gipa Yerns Ynbe % (12)
where 4
ZH. i = R(Zi-s,j5 1 Dits,j> mi«i-%)
(13)

Zi_-—i-—l- , == R(Zimsu.l.l’j, ey Z’i+s+1,j;$i+l),

and Z stands for ¢, u, v or ¢. These quantities define two local lmea:rlzations at the
point (x4 1,¥;), w1th corresponding left and right eigenvectors [ i rk (we obviate

the dependence of these eigenvectors on 1, j). We denote
Fog = Flumy) B, Wiy =tum I (14)

the characteristic fluxes and variables, according to each local linearization and
then define the high order upwind characteristic fluzes z/;jf {k=1,...,5) by the
following algorithm:

if Ag(u; ;) > 0and ,\k(u,;ﬂ,j) >0

le;:_ (f't skyc ii—s,k;xj+%)
Y =0
else if Ap(u; ;) < 0 and Ap(uig,;) <0
¥ =0
Y = R(fi“:wsw!wl,k’ R i:-a-l—l,k;wj"i“%)
else

a= m&x(llA(ui,j)l, I/\(ui+1,,-)|) 1
= R(E(fita,k +awl, e), - 2(f!-€-s k1 a“ztts,k); 3"3‘+%)

2
- __ 1 —_— —_ — .
Ve = R(“é‘(fi——s+i,k - "“’-’i—s+1,k)v " 2(ft+.9+1,k - awi+s+1.k)s $j+%)
end

Then the numerical flux is defined by the flux-split formula

5
Y Z TR Ty (15)

Note that, as usual, this splitting is defined according to the characteristic speeds,
but with two “upwind linearizations”. At sonic points a local Lax-Friedrichs split-
ting is used.

We point out that, for general systems, the conditions that “A{u; ;) and My ;)
have the same sign” and “a = max(|A{a; )], |Mui+1,5)])” should be replaced by “if



Alu) does not change sign in a path piecewise parallel to the characteristic fieids
joining u; and u;41” and “e = max{|A(u)|}, v in a path piecewise parallel to the
characteristic fields joining u; and u;y;”. This simplification is permitted by the
fact that the characteristic fields for system (3)-(4) are either genuinely nonlinear
or linearly degenerate.

4. ONE-DIMENSIONAL NUMERICAL EXPERIMENTS

We consider the two component Riemann problem for the 1D Euler equations
corresponding to the Sod tube test with a change in the adiabatic exponent:

plzl,UIZO,RF1,71=1.4,C'Ug=1 16)

pr=0125 1, =0,P. =0.1,v =12,Cv, =1, (
where the first set of state variables initially apply to # € [0,0.5] and the second to
# € (0.5,1}]. This problem has been studied before by several authors [13, 1, 12]. We
compute the approximate solution of this problem with a grid of 400 points and time
0.2, using our fifth order aceurate one-dimensional algorithm. In Fig. 1 we compare
the density, pressure, Mach number and acoustic impedance (pc) obtained in this
experiment versus the exact solution (which can be obtained via Rankine-Hugoniot
relations, cf [24]). We observe good agreement and accurate location of the waves.
We also notice a slight overheating downstream the contact discontinuity.

Our second test is the one-dimensional version of the shock-bubble interaction
computed in our main applications, studied in the next section. We display in
Fig 2 the density, pressure, Mach number and acoustic impedance obtained by our
algorithm using 400 points versus those quantities obtained by our algorithm with
a grid of 3200 points. We observe that the refracted shock wave inside the bubble
is travelling faster due to the fact that Helium has a lower acoustic impedance than
air. This also implies that the first reflected wave is a rarefaction wave {cf. [26] for
a complete study of one-dimensional shock-contact Riemann problems), We depict
in 3 the details of the pressure profile. We can see very mild oscillations at the edges
of the bubble corresponding to the low resolution simulation (400 points) and that
these oscillations are hard to discern in the high resolution plot (3200 points).

5. APPLICATION: SHOCK-BUBBLE INTERACTION

We study the shock-bubble interaction of a 1.22 Mach shock wave with a He-
lium cylindrical bubble in air, originally studied by Haas and Sturtevant in [9] and
addressed by Quirk and Karni in [20], from the computational point of view by
using a primitive consistent second order algorithm.

The computational domain is sketched in figure 4. We point out that the di-
mension of the bubble is the same as in [20] and the longitude of the domain is
shorter, but this does not affect the simulation. We label the interior of the bubble
as region I, the pre-shock region outside the bubble as region II, the post-shock re-
gion as region I1T and we use these labels for identifying quantities in corresponding
regions.

As in {20], we assume the bubble to be filled with Helium contaminated with 28%
of air and in thermodynamical and mechanical equilibrium with the surrounding
air. We take the density of air at pressure pr; = 101325Pa to be py; = 1225¢ [m3,
so that its sound speed is 340.294m/s. By using the relationship p = RpT in
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FIG. 1 Comparison of the results of our algorithm (400 points) versus the exact
solution of the Sod tube problem with change of adiabatic exponents, ¢ = 0.2. (a)
density, (b) pressure, (¢) Mach number, (d) acoustic impedance

regions I and II, p; = prr and Ty = Trr, we deduce that pr = prr(Ryr/Rr) and
obtain from this and table 1(a) that py = 222.8¢/m® A 1.22 Mach left traveling
vertical shock separates regions Il and III. From its Mach number and standard
shock relationships {(cf. {23, pg. 100-102]} we deduce the state variables in region
III. In table 1 (b) we collect the constant state variables in each region.

We have used & computational grid of 8000 x 800 cells to discretise the upper
half part of the domain, the lower have been obtained by symmetry with artificial
reflecting boundary conditions. This results in a spatial resolution of 0.056mm, the
same used for the simulation in [20]. We impose reflecting boundary conditions on
the top and bottom of the grid and outflow boundary conditions on the left and
right sides of the grid.

In Figure 5(a) we show an z — ¢ diagram of the position of the key features
explained in Figure 5(b). We obtain the position of these features by computing the
zero crossings of the second difference (i.e. inflection points) of horizontal sections
of the density at different times. We use sections taken at the axis of symmetry,
except for the upstream bubble interface (for times > 120us, we get a section at a
height of 20mm from the axis) and the incident shock (we use a section at Smm
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FIG. 2 Comparison of the results of our algorithm with 400 points versus 3200
points when applied to the one-dimensional Helium bubble problem, ¢ = 290us.
(a) density, (b) pressure, (c) Mach number, (d) acoustic impedance

from the top wall}. We compute the mean velocities of these features by using
minimum squares line adjustment to approximate the (visually) straight segrents
of their trajectories displayed in Fig. 5.

In table 2 we display these velocities, together with the time intervals involved
in their computation, and compare them to those obtained by Haas and Sturtevant
[9] and Quirk and Karni [20]. We note the good agreement with Quirk and Karni’s
results and with Haas and Sturtevant’s experimental results within the estimated
error bounds. The discrepancy of —5% in the velocity of the downstream interface
(Vdi in the table) is the most notable. To explain it, we notice in Fig. 5 (a) the cur-
vature of the trajectory of the downstream bubble interface, just when the refracted
shock hits it. This curvature suggests a positive acceleration of this interface, with
an early stage velocity of about 90m/s at 55us and a constant steady state velocity
of 158m/s in the time interval [140,240]. Therefore, we could have obtained any
mean velocity of this interface, in the range [90m/s, 153m/s] when averaging; e.g.,
in the time interval [100,240] we obtain a mean velocity of 145m/s, thus matching
the experiment. We have nevertheless preferred to obtain the mean velocities at
the straight segments of the trajectories, whenever possible.

04



VTR

o 61 941 6z A1z 214 OiE 048 047 BB

FIG. 3 Comparison of zoom of pressure for the results of our algorithm with
400 points versus 3200 points when applied to the one-dimensional Helium bubble
problem, § = 290us.
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FIG. 4 Sketch of the computational domain (not to scale). Lengths in milimeters.

Regarding the comparison of the velocities obtained in our numerical experi-
ments to those obtained in [20], we point out the very close agreement of the mean
velocities displayed in table 2, above all the one for the refracted shock (exact
match) and for the transmitted shock (1.1 % of error).

We borrow from [20} a schlieren-type technique for the visualization of weak flow
features. Namely, we consider an idealized schlieren function on grid data {(p, ¢) as

o ) Vi 51 v ] ke if gy > 025
84,5 = ©XP (“k(@ba,j)ma,xi’j |vPi,j|) ) k(¢1,3) = { bre  if ¢ ; <0.25 , (A7)
and notice that s;; ~ 1 when p;; = 0 and, for large enough k, s;; ~ 0 for
large p; ;. When displayed on a screen with, for instance, MATLAB’s commands
colormap gray(266); imagesc(s), the larger the density fluctuation the darker
the corresponding pixel value.

We display in Fig 6 our schlieren images that most closely resemble the shad-
owgraphs displayed in [9} at times 32, 52, 62, 72, 82, 102, 245, 427, 674, 983 ps.
A close agreement between our images and the experimental shadowgraphs is ob-
tained, but we warn the reader that the times at which these images have been
obtained in our simulation are 23, 43, 53, 67, 75, 102, 260, 445, 674, 983 ps, which
are slightly different from those above. This comes as no surprise, for the key fea-
tures used to match our schlieren images with the shadowgraphs are the relative



~ Cv R i) {7 Y P
Alr 1.4 | (.72 | 0.287 I | 222.8 0 0 | 101325
He+28% air | 1.648 ; 2.44 | 1.578 I | 1225 0 0 | 101325
III | 1686.1 | -156.26 | O | 250638
(a) (b)
TABLE 1

(a) Specific heats and R constant for air and Helivin contaminated with 28 % of
air. The units for Cv and R are QLK. (b) State variables for regions I, II, III. The

units are g/m? for the density, m/s for the velocities and Pascals for the pressure.

FIG. 5 (a) x — ¢ diagram of the key features explained in (b); (b) VS: incident
shock, VR: refracted shock VT: transmitted shock, Vui: upstream border of the
bubble, Vdi: downstream border of the bubble, Vj: air jet head

positions of some shocks (refracted, transmitted or reflected) with respect salient
features of the interface, and those shocks in Haas & Sturtevant’s experiment move
at different velocities than in our simulation. In the following we expound plausible
explanations for these time mismatches.

In [9], one clearly sees that the refracted shock, moving at an estimated velocity
of 900m/s, should be located at 900m/s x 32us = 28mm to the left of the original
upstream (right) bubble edge at 32us, that is, it should have passed the center of
the 50mm diameter bubble. But it can be seen that the shock in the corresponding
shadowgraph ([9, Fig. 7(a)]) has barely traveled one third of the original bubble
diameter.

From high resolution digitalization of the shadowgraphs corresponding to 32us
and 52us, we measure that the distances traveled by the refracted shock from the
initial upstream bubble position are 19.8 mm for 32us and 37.1 mm for 52us.
These measurements give estimates for the mean velocities in the intervals [0, 32us]
and [32us, 52us} of 619m/s and 865m/s, respectively. This second velocity nearly

10



VS P VR | VT | Vuil | Vui2 | Vai | V]
Marquina & Mulet | 414 | 943 | 373 | 176 | 111 | 153 | 229
Haas & Sturtevant | 410 | 900 | 393 | 170 | 113 | 1456 | 230

% error ;10|46 | b4 | -34 1.8 | -521 04

Quirk & Karni 422 | 943 | 377 | 178 146 | 227

% error 1.9 0 1.1 ] 1.1 -4.6 | -0.9
TABLE 2

Velocities of the features explained in Fig 5. The time intervals for computing
each velocity are: VS [0,60], VR [0,52], VT [52, 240}, Vuil {10,52], Vui2 {140, 240],
Vdi [140, 240], Vj [140, 240]

agrees with the refracted shock velocity estimated in [9] (900m/s), but the first one
is much lower than expected.

If we assume a uniform contamination with air inside the bubble, the refracted -
shock cannot accelerate once it has penetrated into it. Therefore, we conjecture a
formula s = v(t — ty) for the distance s traveled by the shock inside the bubble
gsince time ¢, where v is the velocity and g is a delay. PFrom the measurements
above we can estimate fo &~ 9ps. This delay is crucial in the early stages of the
simulation, since the refracted shock travels so fast that crosses the 50mm bubble
in 50mm/943m/s = 53us (see table 2), so a discrepancy of 9 us may account for a
discrepancy in the shock location of 17% of the bubble diameter.

This delay explains the time mismatch in the pictures corresponding to 32, 52,
62 ps. After this, the gap between the times in the experiment and the simulations
gets narrower, until it gets its sign reversed by 102 ps. Now, the match between
the experiment and the simulations is basically governed by the transmitted shock,
whose velocities in the experiment {393 m/s)} and in our simulation (373 m/s) suffer
a mismatch of 5.4% (and 4.2% with respect to the results in [20]). This velocity
mismatch may cause proportional time mismatches in the simulation, from the
time when the shock is transmitted outside the bubble {52us) to 260 (respectively,
445u8), when we record our image displayed in Fig 6 (g) (respectively, (h)). This
can be confirmed by the following calculations: (260 — 52}/(245 — 52) = 1.077 =~
1.054 = 393/373, (445 — 52)/(427 — 52) = 1.048 ~ 1.054 = 393/373.

In Figure 6(a) we display the bubble 23 ps {this corresponds to 32us in the
experiment) after it is first hit by the shock. We can see the divergence of the
refracted shock, which travels faster inside the bubble, due to the higher sound
speed inside the bubble. The reflected wave is an expansion wave, because the
acoustic impedance inside the bubble is lower than outside.

In Figure 6(b) we display the bubble at 42 us (this corresponds to 52us in the
experiment). We observe that the incident shock and the transmitted shock form
a quadruple shock configuration, visible at the top; the refracted shock advances
fast towards the left bubble interface; the internal reflection of the refracted shock
appears as two little cusps behind the crossing of the refracted shock with the
interface.

In Figure 6(c) we display the bubble at 53 ps (this corresponds to 62us in the
experiment). The refracted shock hits the downstream interface; the internally
reflected wave is clearly seen as two cusps moving towards the axis of symmetry.

11



Meanwhile, the upstream bubble interface is flattening.

In Figure 6{(d) we display the bubble at 66 us (this corresponds to 72us in the
experiment). We can see that the internally reflected wave has emerged from the
downstream interface and its two branches appear clearly.

In Figure 6(e) we display the bubble at 75 us (this corresponds to 82ps in the
experiment). Now the internally reflected waves have crossed and look like a small
oval inside the bubble; the two branches of the transmitted shock have crossed near
the downstream bubble edge.

In Figure 6(f) we display the bubble at 102 ps (this corresponds to 102us in
the experiment). At this point, we observe that the internally reflected wave hits
the upstream interface, resulting in two very weak waves: the transmitted wave,
that is noticed as a back-scatiered wave, and a secondary internally reflected wave,
that appears very faintly in the picture, but not in the experiment. The interface
commences to appear slightly perturbed by the successive accelerations caused by
the waves and almost flattened in its right side.

In Figure 6(g) we display the bubble at 260 ps (this corresponds to 245us in
the experiment). Now we clearly observe many shocks resulting from reflections of
transmitted shocks with the top and bottom walls. There is considerable vorticity
generation at the interface and a jet is forming at the upstream edge of the bubble,
which begins to adopt a kidney shape.

In Figure 6(h) we display the bubble at 445 us (this corresponds to 427us in
the experiment). At this point, the jet is more clearly visible and the vorticity has
increased considerably.

In Figure 6(i) we display the bubble at 674 us; we see the bubble spreading out
laterally and forming two vortical structures, due to the impact of the jet head on
the downstream interface.

In Figure 6(j) we display the bubble at 983 ps; we observe that the two vortical
structures are practically separated by a string of little bubbles.

In Figure 7 we depict a high resolution schlieren picture of the bubble 5465 after
its interaction with the shock. We notice the vorticity generated at the interface
and the jet structure.

In Fig 8 we show the pressure profile ({ — P diagrams) at 3mm downstream the
initial bubble position. These compare qualitatively well with the corresponding
pressure profile [9, fig. 17 (d), pg. 61].

As a final remark in this section, we point out that the small discrepancies
observed between the experimental data and our numerical simulation might come
from the assumption of a uniform contamination of air inside the Helium bubble
(28% in our case). We therefore conjecture a nonuniform contamination profile,
with a high concentration of air near the membrane that rapidly decreases towards
the center.

We suggest a cost-effective procedure to adjust the initial data so that the speed
and strength of the waves in the numerical simulation better match those in the
experiment. Since the speed of propagation of shock waves depends on the acoustic
impedance, it is enough to use a coarse grid to fit the initial contamination profile
to get a satisfactory match for the velocity of the main waves. We can afford many
trials on this coarse grid, for the computation of the simulation on it is cheap.
Once we have adjusted the initial contamination profile, we can proceed to get a
high resolution computation in a fine grid to get the compressible turbulent regime
completely developed.
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The method described in this paper evolves two fluids, allowing some region
of mixture, for which the conservation of partial masses is ensured by the conser-
vative formulation. In general, for stable interfaces, we expect our algorithm to
achieve convergence and conservation, since we use the inviscid Euler equations as
model. However, if the interface is unstable, due to either Kelvin-Helmholtz [8} or
Richtmyer-Meshkov [21] instabilities, the vanishing viscosity solution does not ex-
ist, thus we try to approximate a viscous solution depending on the grid resolution
and degree of accuracy that represents the physical experiment with a resulting
Reynolds number,

Omne way to measure the degree of instability of the interface consists in exploring
the dependence of the length of the instability L¢(h), for a fixed time ¢, on the spatial
resolution h. If the interface is stable we expect the limit

lﬁth(h) = Ly (18)
to exists and to be finite.

However, if the interface is unstable, we conjecture a rate of growth of Ly(h),
namely, the existence of an exponent (0 < p < 1 such that

Li(h) = O(R™P). (19)
Following [27], we denote by I" the zero level set of a function 9
L= {(z,y): ¥(z,y) = 0}, (20)

and by H(z) the Heaviside function (H(2) = 1 for z 2 0, H(z) = 0 for 2 < 0),
Then H'(z) is the Dirac delta distribution and we have the following formula for
the length of I":

L(r) = [g VH (e, y))| de dy = fg 5(ap(, )|V d dy (21)

We implement this formula by numerical integration, using a smooth approximation
of the Dirac delta:

A= (ﬁ—ﬁ + 1) ~ H(2) (22)
0= 110 = 3 (y ) =50 (23

where £ = h. That is, we approximate

L(T) m LT) = 123" 8(api )/ (V5,92 + (V2,9
i

1

Vijp= Emm(tbm,j = Wiis Wiy — Wie1,5) (24)
1

Vigh = pmm(i e — i, i - Pii-1),

where mm is the minmod function.
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We apply (24) to the function 1 = Z¢—1, where ¢ is the mass fraction {ef. section
2) of the simulation at { = 546us (a schlieren-type image of this simulation for the
finest resolution is displayed in figure 7). The zero level set of ¢ corresponds to
the % level set of ¢, i.e., the points with a 50% of concentration of each species.
The approximated lengths of this level set obtained from spatial resolutions of
hy = 221074, hy = 8901075, hy = 5.6 - 107° are [y = 0.2732, I, = 0.4047,
I3 = 0.6573, respectively. Regarding (19), we try to adjust these data to the
formula:
L= (1+e)Kh™®, (25)

where ¢; 18 some error that arises from errors in the simulation, in the approximation
of the interface length and, above all, the chaotic nature of the instability. By taking
logarithms, the formula (25) can be cast to a linear system, to be solved by least
squares:

logl; = log K — plogh;. (26)

From the least squares fitting, we obtain p = 0.61 as an estimate for the exponent
that governs the interface growth length.

7. COMPUTATIONAL ISSUES: MPI

We have used the MPI standard for message passing (as implemented in the
MPICH library {17]) for our two dimensional simulations. We have run our im-
plementations on a Linux Beowulf cluster ({3}, consisting of ten i386-compatible
processors, each capable of performing floating point operations at a rate of about
600 MFlops/sec and connected by a fast ethernet switch, with a bisection band-
width of about 50Mbytes/sec. These processors are arranged as a logical linear
computing array and global communications is seldom needed.

The relatively large communication latency is hidden by our coarse grain parallel
implementation, that agsigns patches of 800 x 800 cells to each of the ten processors
and only needs to interchange a narrow vertical band (3 x 800 for our WENObS
implementation) with each of its two neighbours, to keep the “ghost cells” (those
adjacent to the boundary of the “local” computational domain) updated. The load
balance is very satisfactory. We have measured a parallel efficiency of 89%, i.e.

Time(1 proc)
10Time(10 proc)

= 0.89

Qur brute force effort employs 378 wall-clock hours (or 3780 cpu hours for the
ten CPUs) for the simulation of the shock-bubble interaction. We plan to implement
our algorithms using the AMR technique {4, 19, 20].

8. CONCLUSIONS

We have proposed in this paper a flux-split algorithm that resolves a fully con-
servative model based on the inviscid Euler equations for a fluid flow that consists
of a mixture of ideal gases in thermal equilibrium. This algorithm uses the WENOS
spatial reconstruction to achieve fifth order spatial accuracy. We have shown the
robustness, numerical accuracy and essential lack of important oscillations near in-
terfaces through the simulation of an air-Helium shock-bubble interaction. We have
found very good agreement with Haas & Sturtevant’s experimental data as well.

14
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FIG. 6 Schlieren image of the bubble at times (a) 23pus (32ps), (b) 42us (52us,
(c) 53us (62us), (d) 66us (T2us), {c) Tous (82us), (f) 102us (102us), (g) 260us
(245us), (h) 445 ps (42Tus), (1) 674 ps, (j) 983 us (following each time we display
in parentheses the corresponding times in the experiment).
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FIG. 7 Color Schlieren image at time 546us.
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FIG. 8 Pressure profile at 3mm downstream the initial bubble position.
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