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Abstract

‘We propose a mathematical framework for active contours object de-
tection in multi-channel images using logic operations to combine object
information for the different channels. We consider methods which use one
initial contour that would evolve from the information given in each chan-
nel simultaneously. Differences between boundary based and region based
models are discussed, and specific models are derived for the geodesic[10]
and the Chan-Vese[4] models respectively. Numerical experiments show
that the methods were able to find general intersections, unions, and com-
plements of the boundaries and the regions of objects respectively.

1 Introduction

Much has been written on active contour and segmentation of multi-channel
images. There are papers that discuss methods for color images [10],{14], texture
images convolved with flters [3],[12], multispectral images with occlusion in
some channels and noise in others [2], and movie sequences [6]. Many of these
models attempt to extract parts of an object from each of the channels and
to recombine this information in a logical fashion. In most of these cases, the
right segmentation is some combination of occluded objects, or a combination
of noisy images.

An example of occluded channels is given in Figure 1. Most models for
multi-channel segmentation would find a triangle that is the union of both
channels as the “correct” segmentation.

The union is just one of several possible logical operations for multi—channel
segmentation. There are other possible segmentations like intersection or dif-
ference. For example, a sequence of the brain images of the same subject taken
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Figure 1: A synthetic example of an object (a triangle) in two different channels.
In Ai, the lower left corner is misging. In A, the upper corner is missing.

Al U A2 A1 N A2 A1 M _|A2

Figure 2: Different logical combinations for the sample image, A; U Ay is the
union of the objects in each channel, A; N A, is the intersection, 4; N A4, the
object in A; that is not in As.

over time, in order to locate possible tumor growths. These segmentations can
be described using logic terminology such as intersection, union, and negation of
the objects in the images. The derived segmentations are illustrated in Figure 2.

The most direct and obvious way of accomplishing logic segmentations is to
segment each channel independently, by the model of your choice, followed by
bitwise logic operations. However, there are some drawbacks to this approach.
First, if there are many images, it is cumbersome and costly to perform all
the segmentations separately. On a deeper level, such an approach often gives
undesirable segmentations because the information in the separate channels is
not taken together. Therefore by assuming that each image is independent of
the other, each channel is segmented separately, causing valuable information
may tc be lost. In Figure 3, such a situation is illustrated. In the two channels,
the images (a triangle) are occluded and noisy. When each one is segmented
separately, due to the noise, the segmentation has jagged boundaries. We then
do bitwise logic operations A; N Az, A; U Az and 4; N —Ay. While the first two
segmentations are done fairly well, the last one involving negation gives false
points because of the jagged boundaries.

In this paper, we would like to investigate the possibility of object detection
using a single contour for all the channels in the image set using active con-
tour models. Many active contour models for scalar images have the following
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Figure 3: In this example the segmentation is done independently on each chan-
nel. Using the active contours without edges model, the two images are com-
bined using bitwise OR and AND. In 4; M —Ay spurious points arige as a result
of noise in the channels.



variational form:
inf F(uo, C) = )\/ J+R,
c

where ug is the image, C is the evolving curve, fc J is the term related to the
image and R is the regularization term. Two examples of these models are the
geodesic model[1] and active contours without edges{4]. We will concentrate
on the term f,J. The derivation of the models is based on extending the
scalar models to the form of multi-channel models. Implementation of the logic
operations is achieved by various combinations of the channels.

We will consider two types of active contour models. Boundary based active
contour models such as geodesic and snakes [1, 7] and region based active con-
tours such as active contours without edges[4] and the Dariche-Paragios model[9]
will be considered. As specific examples, we will first consider the geodesic model
due to Caselles, Kimmel, and Sapiro [1] for the boundary based contours and
the active contours without edges for the region based method respectively.

The focus of the papers is on the models. No details of the numerical im-
plementation will be given. These are standard and can be found in {1], [4], for
example.

The outline of the paper is as follows: in section 2 we review the boundadry
based model, develop the logic model for it, and discuss some problems that
arise. In section 3, we will investigate region based models, specifically the
active contours without edges model. In Section 4, we compare the logic model
of active contours without edges to the vector valued model in [2]. Section 5 is
the conclusion which summarizes the work and discusses possible further work
on the topic.

2 Logic Operations on a Boundary Based Active
Contour Model

2.1 Model

We will start with the following boundary based active contours model[1]:

MFm>ﬂ_LW%Ww+Ame%wwmwa (1)

This functional is transformed to a geodesic computation which minimizes the
energy:

1
ﬁgmnmaus

where g{s) is an edge detection function (positive decreasing and goes to 0 as
s — oc). An example of such a function is:

9(s) = 1/(1 + &),



Truth Table for 2 Channels

# iz | At UAs | AiNAx | A; A,
1 1 1 1 1
1 0 G 1 1
0 1 0 1 0
010 0 G 1

Table 1: Truth Table for Geodesic model.

We will extend the model from one image uo to n images u, where i = 1.n
by changing the functional’s boundary detection term to:

/0 Fa(ud), g(ud), .g(u2))ds. @)

We want the function f to be close to 0 when the curve C is on the prescribed
boundary and far from 0 when it’s not on the proper boundary. In this model
the initial contour surrounds the object and stops once the contour is on the
boundary of the detected object. To simplify, we first look at a two channel
system.

In keeping with the logic operations, we want to define a truth table. We
define an edge indicator logical variable z; as follows:

i _ | 0 if (z,y) is the boundary of the object in channel i
#i{ug, & y) = { 1 otherwise,

For the geodesic model described in (1), we can take 2 to be:

L = 9(V()
’ g(0y

Notice that g(0} scales z; so that 0 € 2 £ 1. Now we combine the z;s to
implement the logic operations in the variational model. For the three logic
operations done in Figure 2, the desired truth table combination shounld be:

For the union, A; U As, we want the contour C' to stop on the boundary in
either channel, so if z; is 0 in either channel, we want the output to be 0. The
only time we want the output to be 1 in the truth table is if the contour is not
on the boundary in either channel. For the intersection 4; N As, the truth value
should be 0 only if the contour is on the boundary in both of the channels. For
the logic operation A; N A, we need to take the complement of one of the
channels. This can be accomplished by defining:

4
2y =1— z9.

Now we find a smooth function f(z:,2:) which will interpolate the truth ta-
ble values above. For example, the following functions that give the desired
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Figure 4: Plots for Egns. 3- 5. These figures show that the functions are smooth,
continuous interpolations of the truth table with the minimum occuring at f =
0.

interpolations:

fawa, = Vaiam, (3)
farna, = 1-vy (Imzi)(lwzﬁ)} (4)

fanma, = 1—4/(1—2)(1 —z). (5)

‘We plot the functions in Figure 4 to show that they have smooth interpolations
between the values of the truth table. The z variables are between 0 and 1.

Next, logic operations which combine unions and intersections are consid-
ered. A simple example is A; U Az N As. This is calculated from left to right,
rewriting it ag {A; U Az) N Az. The corresponding functional:

f(AlqurlAs) =1- \/(1 Y ZIZZ)(l - 33)-

More general logical operations can be similarly derived.

These functions can be extend to n—channels and more general logic oper-
ations as follows. Consider the unions of objects or their complements in the
different channels. Denote the desired logic operations by:

Ly (Al) u L2(A2)--- U Ln(An):
where L;(4;) could be either A; or = A4;. The appropriate function for this is:

f={luEn=,

where i LA = A
zip I Ly(A;) = A;
L) = { 2 i Li(A;) = ~A;.

The % term is there to make the value of the function f the same order as the
original g(|Vuo{C{(s))|). Similarly for the intersection case:

Li(A:) N Ly(As)... 0 L (AL),



the appropriate function is:
n 1
F=1-(JJa -t
i=1

The geodesic functional in (1) can now be extended as follows to implement
the desired logical combinations:

Il

Fr (a)n.nEa(An)

1 7
[a (1- [ - kznHicds,

=1

fo qTuEn*(clas

i

Frea)u. Ln(4n)

1
F=/ fz1, 22, .., 20)|C"|ds.
0

For the curve evolution, the level set method in [8] is used. The representa-
tion of the evolution of contour C is the function ¢(t, -) at the zero level set. The
function evolves over time ¢ with the speed of mean curvature. We calculate the
Euler Lagrange formulation for a general function f(z1,..,z,). The following
partial differential equations give the solution of the above functionals at steady
state:

i

dt - -f(z11 ""Zn)’vélﬁ’ + vf(ZI, --z’ﬂ-) * VQS,

For the specific f described above the Euler Lagrange are:

d ; . )
¢L(A1)i;.t.uLn(An) = (JJu@)*1véhr + v(g Li{(z:))™ - V.

i=1
The Euclidean curvature &, is calculated by the following:

Vo
|Vl

The details of the numerical schemes are standard and can be found in [1].

)

& = div(

2.2 Experimental Results

We present some examples using the boundary based active contour models.
When these models are implemented on the piecewise constant example in Fig-
ure 1, the object for A1 N Az, A1 U As andA4y N —Ay are found as shown in
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Figure 5: Segmentation using the geodesic model. The objects were found
using the functions described in Equations 3- 5. The model finds 4; U Ay and
A; M Ay as expected, however when the segmentation is done for A; N—4; the
intersection of boundaries (correctly) rather than the regions is found.

Figure 5. The union of the objects in two channels is found successfully. Since
the contour is from the outside moving in, it stops when it detects the first edge
it reaches in either of the images. On the other hand, for the intersection case,
the contour reaches an edge but continues inward if the edge is not in both
channels. For A; N -4y the model finds the boundaries that are in the first
channel but not second. Thus the model wants to stop on the boundaries of
Channel 1, but to minimize the functional excludes the boundary of Channel 2.
The model will not work as well when the initial contour is inside rather than
outside the object. We give an example of this in Figure 7.

Since this model finds the boundaries rather than the regions there are im-
itations to this. Previously we had registered images, but if the images aren’t
registered, unexpected results occur. We show this in Figure 6. The union
of the objects is successful, but when we attempt to find the intersection, the
contour only finds the points of intersection on the boundary. In analyzing
what happened, we look at the function fa,na, =1 — /{1 —2:)(1 — 22). The
minimum oceurs when the model finds both of the edges. Since the images are
unregistered, the area where both edges intersect is several points. Likewise,
when A; N Ay is segmented, 4; is found since the model finds all the edges
that are not in the same location in the two channels. When noise was added
to the channels like the example in Figure 3 the model finds the contour only
after the image is de-noised. However, when the image has been de-noised the
images become unregistered.

To summarize, in this section we extended the geodesic contours model to
multi-channel form by combining the edge detector functions ¢;. This was done



Figure 6: Segmentation of unregistered images. The union of the two images is
found for the boundary based method: the initial contour is inside. But once we
attempt to find A; N Az and 4; N-As, the model attempts to find intersection
of boundaries instead, and thus finds only points of intersection for A; N A
since at best there are only a couple of boundary points that intersect. In the
case of 4; N -4y it finds most of A; since most of the boundary points do not
intersect.

Final Contour

Figure 7: For the boundary based method, the initial contour is inside the
object. The contour contracts inside but finds no boundaries, eventually it
disappears.



successfully but with some limitations characteristic of boundary based active
contours.

3 Logic Operations on Region Based Active Con-
tours

While the boundary based method gives the segmentation as predicted, we
would like to see the operations done in a way that is closer to human visual
perception. The human perception includes not just boundaries of objects but
also the regions and what 1s inside and outside the region. This is especially
important when finding logical combinations of objects, thus we will look at a
region based model. As an example of a region based model, we consider the
active contour without edges model proposed by Chan and Vese [4]. The scalar
model can be written as follows:

inf F(C, c1,¢2) = p(length(C)) + )\/

1o — €1 [Pda -|-'yf [tg — co]da.
ingide(C')

outside(C)

The first term on the right denotes the length of C and is used as a regularization
for C. The constants ¢; and ¢ are the average values of the image inside and
outside ' respectively. The object in the image is defined as the image that is
lecated inside €. The minimum of the functional occurs when the curve €' is on
the object. This model does not use the edge function as described in Section
2. The model has several advantages: it detects edges both with and without
gradient, it can be made to automatically detect interior contours; the initial
curve does not necessarily have to start around the objects to be detected and
instead can be placed anywhere in the image, and it gives in addition a partition
of the image into two regions, one formed by the set of the detected objects,
while the second cne gives the background.

We want to find an analog for the multi-channel logic operation case that
is an extension of F. As in the previous section, we define a parameter z; for
image ¢ that is 0 when the region is enclosed and 1 otherwise:

( - )= 0 if (z,y) is on the object in channel ¢
ZilM0 T =Y 1 otherwise.

Just as in the previous section we look to the scalar model for the definitions
of the parameter z. In this model how well the curve C fits the inside and outside
of the object are calculated separately. Thus our parameter should reflect this.

We now redefine our parameters such that the information ingide and outside
the contour ' is calculated separately. We define two separate parameters z{™
and zPut:

s _ {0 if (z,y) inside(C),
2z (ug, 2,4, C) _{ 1 otherwise;

10



Truth Table for 2 Channels
guk AiUAs | A1NAdy | At A
1

17 171 oul
21 [% 1 &

(z,y) € C

(z,y) € \C

OHOHODDOS{

OO OO S| DO - -
O O] Ol O S| = O -
(o] New] IEE Y Hom] Naw! em] o]
Q| it | st | st | | D) D

O O| Ol =] S = = =
O o | Of = D] |

Table 2: The Truth Table for the Active Contours without Edges Model

outs. i 1 if (x,y) inside(C),
2w, 2,9, 0) ={ 0 ot}(Lerw)ise. ©

A natural way to define 2™ and 2™ is as follows:

z?”('u," z,y C) — ’u‘%)(msy) - cf’{—l_z
% (tERad R 3] ma'x(:r;,y}eué “‘6

|U‘E($}y) - C‘i;‘|2

out
)
max(ﬂ,,y) Eul g

2 (u::)’ T,y O) =

For the complement of the object in channel ¢ we define:

b N
in' _ Lin
Z = 1 Zi

zf”t' = - 20,
Now we need a way to incorporate the fit of the contour both inside the object
and outside. As an example we will discuss the intersection of the two objects
in Figure 2. To find the intersection of an object one can take the intersection
of the objects designated as the black values in Figure 8a. In our example this
is done by taking 1 — /(1 — 2i")(1 — 2i") as explained in the previous section.
But another way to look at it is to look at outside of the objects. If we take the
union of the outside of C' which is z{**2§% , we also get the intersection of the
objects Figure 8. Adding the two different sections together will give us the
intersection of the object from the prospective of inside C, as well as outside C.
The desired truth table can then be described using the zi"s and z{%/s. We
show the table for the 2 channel case.

11



Ay Ay A; U A

Figure 8: Logic Operations inside and outside the object. The upper triple of
images show that the union of the inside (black) region gives the union of the
2 objects in A; and Ap. The bottom triple shows that the intersection of the
outside (black) region gives the correct complement to the union of two objects.

Now we choose the functions to interpolate the fruth table above. There are
many functions that could fit for the parameters chosen. Two possibilities are:

Faooa(@y) = (g E + - /- 2% 0)( - %),

Fanaa(@y) = 1= /(1= zr(e,)(1 - 2@, ) + (2 (@, 0) 5 () F).

i

The square roots are taken of the products to keep them of the same order
as the original scalar models. An exarmple of a function using the negation is
A1 N=Ag U Az. The function is found the same way as in Section 2.

Farsaons = 1=~ 0= (L~ ) 4 41— 1 spygtger

Tt is straightforward to extend the two channel case to n channels. We will
use the terminology that was defined in Section 2. First consider the union case.
Let the logic operation be expressed as:

L1(A1) U Ly(Az)... U Lu (A},

where L;(A;) is either A; or —A;. The function for this is as follows:

n k13

Fratavyo.viaian = 1= [J( =ty + (T Lz )™
1

=1 =

12



where o o ‘
[ A Li(Ad) = A,
M%)—{gﬂ if Li(As) = ~As.
Similarly, for the intersection case:
Li (A1) N La(Az)... N L (An),

the function is:

Freannnzaian = LN + 1~ Q10 - L)

f=1 =1

The functionals to be minimized in the model can now be written as:

Fr(Ann.nba(dy) = (length(C))+)\[ / ) {G)(Hle(zfn))%dm+
IMNSIaE ’i:l
5 L
1- 1 = (229 % |,
/Outside((;‘)( (11:—[1( (l )) ) ]

and

Fr,(agu.ora, = (length(C)) +/\[[ (0
insiade

[ qTutrnta

utside{C) ;g

(1 - (JT -tz *)da
i=1

The functional may be written using the level set formulation as described
in the boundary based method. Thus C' is represented by the function ¢ at the
zero level set. Inside C, ¢ > 0 and outside ¢ < 0. To describe the difference
of inside and outside of €' we will introduce the Heaviside function H and the
Dirac delta function 4.

1 230
H(z)z{ 0 2<0,

and
d

Now we can rewrite the functional F' for a general f(z{", 20", .)) using the
tevel set function ¢. The function f is in the form

f(zinazfuts ) = fin(zi‘ﬂ: z;:na ) + fout(zfutszzout")'

F(¢,ct,c7) = plength(¢ = 0) + /ﬂ Finl#, 2 VH () + four (2%, ., 22 )(1 — H())dz.

13



Derivation of the Euler-Lagrange equation are similar to that of the scalar
model and yield the following differential equation {which at steady state gives
the solution):

9¢

= 60 i) AUl o 280) = oo, )]

with the boundary condition:

5(¢) 69 _
Vgl o7 —

on 011, where # denotes the unit normal at the boundary of . For example,
for the two logic models presented earlier, the corresponding Euler-Lagrange
equations are:

AT AD ae(gﬁ)[mv(jg )- (Hl M) +1-( H(l-l(z“‘* "],

3¢L1(A1)gt:.nLn(An) = 59 [#dm(;qﬁl) —A(1- (E(l ~ LM + (,.131 l.;(zi?ut))%).}.

Even though the form is complicated, the implementation is very similar to
that of the scalar model. The details for this scheme can be found in [4].

3.1 Experimental Results

In this section, we show some examples of the performance of the logical active
cortours models described in Section 3.

Figure 9 shows two different occlusions of a triangle. The logic operations
are done successfully using our new model. We are able o recover the union,
intersection and negation of the objects in the channels using the functionals
described above. The constant ) is on the order of the (maxu}(z,y))? except
when there is noise in the image, in which case it is smaller so that the noise
is not included in the segmentation. The models converged to the minimum
quickly for all the cases.

In Figure 10, a 3 channel example is shown. We ran the model for four cases.
The first two are Ay N As N Az which have

3

3

=]z +1-(JIa-4"s,
i | i=1

and A; U A; U A3 with the corresponding function:

Hzaﬂ3+1_(H out)%

=1

14



The other two cases have examples with negation and mixing of unions and
intersections. They are Ay N—As N Az and Ay U Ay U Az. Their functions are

F= (- AN +1— (1228 (1 - 284)%

and
F= (a2 1 (1 20 (L ~ 28")(1 — 2§¥%))%.

The contour converged quickly to the proper object.

The initial contour does not have to surround the object in order to find the
object desired, as was the case for boundary-based active contours. An example
of this can be found in Figure 11. Likewise the model finds an unregistered
image segmentation as can be seen from Figure 12. All the examples so far are
piecewise constant the model converges quickly in this case because they are
piecewise constant images the parameters z{™ and 2{* will have two possible
values each, a larger and smaller value. Thus it mimics the truth table values.

In the next two examples the models are not piecewise constant. In Fig-
ure 13, we show that unlike the channel by channel segmentation which had
spurious data points when it had to segment A; N —~4y using a single contour,
our model gives the correct solution. In this case, the X is smaller, thus the
regularization term has a greater weight so that the noise is not included.

Finally, in Figure 14, we have a two channel image of the brain. In one we
have a “tumor” with some noise, while the other is clear. The images are not
registered. We want to find A; N —A4; so that the tumor can be observed. This
happens to be a very complicated example as there are a lot of features and
textures, However the model finds the tumor successfully.

4 Comparison of Logic Active Contour Model
with the Vector Valued Active Contour Model

The objective of this paper is related to that of vector valued active contours
model in [2], both papers try to combine information from different channels of
a vector-valued image in order to derive an active contour segmentation. The
vector based model in {2} is as follows:

T
inf F(C,e1,e2) = pllength(C)) + A Z lug — ¢t Pdz+  (T7)
inside(C) ;71
n . .
7[ ud — ¢t |2dz. 8
outside{C) ;i 0 | ( )

Empiraclly, it appears to give the union of several channels. In this section,
we will try to compare the two different approaches. While the model in 8
may seem very different from the model presented in Section 3, with a little
calculation we will see that it does follow a logic based format. Taking a Taylor

15
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Figure 9: Region based logic model. This is the time evolution from left to right
for the contour €' evolving until it converges to the desired object.

16



Figure 10: An example for the 3 channel case of the region based logic model.
The model found the desired images quickly and correctly.

Final Contour

Figure 11: Region based logic model with initial contour inside the object. Even
though the initial contour is inside the object, Ay U As is found.

17



A;N-As

Figure 12: Region based logic model for unregistered images. The unregistered
images still find A; U Az and A; N A successfully, since the model is looking at
the regions of union and intersection. Notice that when A; N —A4g is found, it
contains a part of the object that is due to the images being unregistered rather
than the intrinsic object difference.

Figure 13: Region based logic model for noisy images. This is the same example
as that for the channel-by—channel case (Fig. 3). While the union of the two
channels is of comparable quality, the intersection is better when done using the
logic operations method.

18



Figure 14: Region based logic model on a medical image. In the first channel
Aj, the noisy image has a “brain tumor”, while channel A; does not have a
tumor. The images are not registered. We want to find the tumor that is in
channel Ay, but not in A,, thus we take the intersection of A4y N ~A,. In the
last two rows, we observe the time evolution (from left to right) as the contour
deforms to find the “tumor”.

19



Figure 15: This a 1-D exarnple where channel Ay and Ay both start from the
same point. a is the length of Ay, b is the length of As, T' is total length of the
channels. The intensity inside the image is ¢ and outside is d. A; N A4y = Ay,
while A1 U Az = Az.

expansion of 1 — /{1 — z1)}(1 ~ 2)

1= V=)A= 2) = 222 + 0(12).

The leading order term z; + 23 corresponds to the vector based model. Thus
the vector model is similar to taking the intersection of the inside of the contour
and the intersection of the outside of the contour. Thus there is a conflicting
objective in the vector model. Unlike the logic models, the error term inside
the contour is not minimized at the contour as the error term for the outside of
the ohject. The result is that the vector model has multiple minima.

We want to illustrate the difference between the vector model and the logic
models. This is done in two ways: first as a 1-D analysis in which we can work
the functional out analytically, second, a carefully chosen example to illustrate
the differences.

Let us consider a 1-D example in Figure 15. In this example, o is the length
of the object in Channel Ay, b is the length of the object in Ap, T is the total
length of the channels. We will calculate the functionals for the vector valued,
and logic models. In this example, ¢ is the position at which the contour is
located. The intensity values are c inside the object, and d outside.

For this example we can find the exact solution for the functionals in terms
of a,b,e,d,t, and T. For this simple example the exact form of the variational
formulations can be derived for both the vector model and the logic models. We
will just compare the fitting terms so we set g = 0 for the functions in Eqns. 6
and 8. Three segments need to be considered to calculate the functional.

For t < a, we have:

Ci =g, Cl — e(a—t)4d(T—a) C?;- =e, cz __ e(b—1)+d(T—d)

- = Tt )

20
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Faind, (t) =

(c—d)?
7 V(T —a)(e - (T —b)(b- ).

For a < t < b, we have:

— catd(t—a) Ci Id, C—zf- =, 02 - c{b—t}-+d(T—b)

1
Ct : 0 & - Tt ’

a(t—a) (T -b)(b—1t)

Fvec(t) = (C_d)z( n + (T—t) )7
o - d)2 c—d)?
Faua,(t) = (T _dz T— (T _dg VTT = (T = b)(b - 1)),
Funm®) = =D LoD mr—agay),
For b < t < T, wehave :
‘3}|~ - ca+dtgt—a!’ C£ :d, 6_2{_ — cb+dt!t—-b1, C2_ =d,
Fuet) = a0y 1o 1),
Faont = CPr o J@ETaem,
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When we graph the functionals, we find that F,., has two minima: one
at t = a the other at ¢t = b. One of the minima is global the other is local
depending on a,b and T'. So if the contour €' starts inside the smaller cbject,
the functional will go to the minimum that corresponds to is the intersection of
the objects while if the contour starts outside the smaller object, it converges
to t = b which corresponds to the union of the two objects. If the contour is in
between, it will go to the edge it’s closest to. See Figure 16.

Graphing Fa,na4,, we see that the only minimum occurs at the intersection
of the two objects, in our case it is at t = a. Likewise, the minimum for F4,u4,
occurs at the union of the two channels, which is at ¢ = 6. See Figures 16b and
¢. The above observations are verified in Figure 17, which shows the actual
results of segmentation using the vector model and the two logic models.
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Figure 16: {a)This is the graph of the objective function for the vector valued
model. The t-axis denotes the position of the contour in the model. It has 2
local minima, one at the intersection of the two objects located at (a, F{a)),
and the other is located at (b, F'(b)) which corresponds the union of the objects.
The minima depends on where the initial contour is. If it is inside the smaller
object the model converges to the intersection, otherwise it converges to the
union. (b)This graph is the region logic model that finds the Ay N Ay of the
two objects. Its global and only minimum occurs at (a, F(a)). (c} This graph
is the region logic model that finds A; U Ay of the two objects. Its global and
only minitnum occurs at (b, F'(b)).

This 1-D example gives some insight into the differences between the vector
and logic models. We now see that the vector model segments the image de-
pending on the initial contour, rather than according to a global logic criteria.
The logic models do not depend on the initial contour to find the global results,
in a plecewise constant image.

However, to use the logic models properly, one needs to know which logic
operator to use ahead of time. If the initial contour is chosen carefully, the
vectore model can do a good job in choosing a desirable solution. An example
of such a situation is given in Figures 18, 18. This is an example of the Kanisza
face/vase image. Looking at the dark inside object one can see that it is a vase,
but looking at the outside object it is two faces. So here we have information
we want to preserve that is outside the object, as well as inside the object. The
occlugion can be of the “inside” object, which we will define ag the vase, when
we would want the intersection of the outside object (i.e. faces). However, the
occlusion can also be of the “outside” {faces) object, in which case we want the
intersection of the inside. We can make the vector modet act as the intersection
of the vase (i.e. A1 Ay) if the initial contour is small and inside both channels.
If the initial contour surrounds the objects in both channels it will act as the
logic model for the union of the vase (A; U Ag), or intersection of the faces, see
Figure 19. Since the vector model depends on the initial contour, we can choose
an initial contour close to the boundary of the inside object (vase) or the outside
object face to get the desired affect. The vector model always tries to compute
the logical “AND” (i.e. intersection) of the objects in the two channels. it will
go to the intersection of the two faces, in one set of images, and the intersection
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Figure 17: This is a simple example that shows the object found for the vector
model depends on the initial contour for the segmentation, if the contour begins
inside the object, it will find 4; N A3 of the images, otherwise it will find 4; U A,
of the images. Calculating the logic model using A; N Ay, the same segmentation
is found for the initial contour inside or outside the object. Likewise Ay U A, is
found for the initial contour inside and outside the object.

of the vase in the other.

Rather than choosing which logic operation, a careful choice of the initial
contour for the vector model can give the desired result, which can correspond
to either the union or the intersection of the inside object.

The logic models will give a robust segmentation. If for example, the in-
tersection of the objects is desired, one only needs to choose the model that
calculates the intersection. However in situations when one doesn’t know ahead
of time which model is preferable, a careful guess of the initial contour using
the vector model may give the best compromise.

5 Conclusion

A peneralized model for multi-channel images has been presented. It allows
the user to choose the information that is extracted from the set of images
using general logic combinations of union, intersection and negation. This was
presented for both boundary based and region—based models. We found that the
region—based models using the particular example of the Chan-Vese [4] active
contours without edges model, was able to find the unions and intersections of
regions, rather than boundaries, and hence is closer to human perception. The
boundary based method found boundaries where there were no regions.

Experiments on two channel and three channel systems were presented. They
demonstrated the ability of the models to detect the objects as described by the
logic operations accurately and quickly.

We compared the logic models to the vector model derived previously. This
showed some interesting elements to the concept of a global minimum versus
multiple minima. An example was made that shows that perhaps sometimes a
local minimum, i.e. a vector model is preferable.

Tt would be inferesting and straightforward to apply this model to object
tracking in movie sequences, and in registration of multi—channel images.
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Figure 18: In this example, we show when the vector model might be more
appropriate than the logic model. In the first set of images, we need to take
Ay U As to recover the Kanizsa face vase image, while in the second we need to
take Ay N Ay to get the same image back. This requires a priori knowledge at
the time the image is being segmented, while the vector model finds the desired
object using the same initial contours in both cases. '
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Figure 19: In this example we show how using the vector model one can get
different logic models through the manipulation of the initial contours. For
(a) the inifial contour is inside the object in both cases, and the vector model
computes the intersection of the inside objects which ig the logic equivalent of
A1 M A, For (b} the initial contour is outside the object in both cases and the
vector model computeses the the intersection of the outside objects which is the
logic model equivalent to A4; U As.
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