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ABSTRACT. What we believe images are determines how we fake actions in
image and lower-level vision analysis. In the Bayesian framework, it is manifest
in the importance of a good image prior model, This paper intends to give a
concise overview on the vision foundation, mathematical theory, computational
algorithms, and various classical as well as unexpected new applications of the
BV (bounded variation) image model, first introduced into image processing
by Rudin, Osher, and Fatemi in 1992 [Physica D, 60:259-268].

1. Introduction: Image modeling

Image modeling, namely, finding a suitable way to describe and represent im-
ages, is perhaps the most fundamental and crucial step for the whole ladder of tasks
in image and lower-level vision analysis. The underlying philosophy is, that the way
we process and analyze images is often deeply influenced by what we believe {or
model } they are.

As of February, 2002, the Google search engine returns about 50,000,000 doc-
uments containing the word “image.” But this broad usage does not mean that we
have already had a rigorous mathematical definition. In fact, even the Webster’s
Dictionary kicks the definition of “image” onto that of “picture,” and then explains
the latter vaguely as “a representation made by painting, drawing, or photography,”
which says nothing but only how “images” or “pictures” are formed. It reminds us
of the concept of weight. Mankind had blindly used it for thousands of years until
the giants Newton and Einstein first tried to decipher the meaning of gravity.

The mathematical challenge of image modeling roots in the diversity and com-
plexity of images, from the rich geometric structures to a large dynamic range of

scales. Most of us do not consider it a good idea to treat any function u(z,y)
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(equally) as an image. But it seems that no one has yet seized the right tocl to
characterize the boundary between images and non-images. Perhaps there is no
such sharp boundary at all. 'That is expressed by the well known Gibbs’ Ran-
dom Fields model of Geman and Geman [GG84]. Based on filtering and statistical
learning techniques, the model has been developed more generallty by Zhu, Wu, and
Mumford [ZWM97, ZM97]. Such stochastic approach for image modeling gets
more theoretically mature in the very recent work of Mumford and Gidas [MGO01]
based on infinitely divisible law and axiomatization.

Apart from the stochastic theory of images, there is also the exploration of
possible deterministic image models. Such transition is perhaps best described by
Yves Meyer’s very recent “u + v” notion [Mey01]. Here v{z,y) represents the
rapidly oscillatory component (noise or textures), or a stochastic sampling, while
u{z, y) captures the deterministic features.

In the very beginning of computer vision and artificial intelligence, Marr and his
colleagues [MHB80] already noticed the importance of edges for image understand-
ing and visual communication. Edges are indeed an intrinsic feature for images
since they define, segment, and correlate individual objects [NMS93]. Thus the
deterministic component u should at least allow edges, or, one dimensional singu-
larities, and cannot be 3 traditional Sobolev function. Mumford and Shah [MS89]
singled out these edge features and proposed the famous object-edge free boundary
image model. Recently Candes and Donoho [CD)], and Pennec and Mallat [PMO00]
have been developing geometric wavelets such as curvelets and bandlets to model the
component ¢ {while leaving the oscillatory component v resonant with conventional
wavelets).

Is there a simple linear functional space that legalizes edges and is easy to
work with, but is not too loose to include too many “uninteresting” images. The
answer was discovered by Rudin, Osher, and Fatemi [Rud, ROF92, RO94] in
1992. It is the Banach space of functions with bounded variations (BV), which
allows jumps (or singularities with co-dimension 1) but also has a sufficient control
over arbitrary oscillations. Fver since, the model has witnessed many applications
in image denoising, deblurring, interpolation and inpainting, super-resolution and
zooming, error concealment in wireless image transmission, medical imaging, and
various inverse problems (see, for examples, [ROF92, D896, V096, CW98,
CS01d, COS01, CS01al). Also see Meyer’s recent lectures [Mey01] detailing
the role of BV in modeling the u-component in his u -+ v notion.

The current paper attempts to give an overview on the theory and applications
of Rudin, Osher, and Fatemi’s BV image model for image restoration, with a spe-
cial emphasis on our recent work of employing the BV image model as an image
interpolant for the inpainting problem [CS01a, CS01b, CS0lc, CS02].
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Section II briefly lays out the Bayesian foundation for variational image restora-
tion. Section Iil introduces the original Rudin-Osher-Fatemi TV restoration model
We present both its theory and computation. In section IV, we explain our recent
effort on applying the BV image model as an efficient image interpolant for the
inpainting problem, highlighted with several computational examples. The last
section discusses two extra issues related to the BV image model and then con-

cludes the paper.

2. Bayesian Framework for Image Restoration

If there indeed exists the most important principle in the entire field of computer
and human vision analysis, it has to be the Bayesian rule.

Many problems in image and vision analysis can be set up as follows. We are to
infer some feature or patten (vector or continuous field) F from a given measured
or observed data field X,. For example, for image restoration, Xy corresponds to a
given corrupted image g, which is often blended with noise, bhurred by de-focusing
or medium scattering, or has certain data missing during the transmission process;
and F' denotes the ideal image u that one would get without all those distortion
effects. For vision analysis, Xo may represent the 2-D image u, while F denotes
the 3-D configuration parameters (illuminance and reflectance, etc.) [Ker].

The ideal inference of F from X, is naturally the one that maximizes the
posterior probability Prob(F|Xo). According to the Bayes formula
Prob(Xo|F) Prob(F)

Prob(X,) ’
it suffices to maximize the product of the data model Prob(Xy|F) and the prior
model Prob{F), since the denominator is merely a normalization constant once Xp

is given. The prior model Prob(F) specifies how often a pattern F' can be observed

Prob(F|X,) =

a priori , i.e., independent of any observation made. The data model Prob(Xy|F)
then reveals the likelihood for Xy being generated from a given pattern F.

If one has the a priori evidence for the importance of geometric structures
in the pattern distribution Prob(F) (such as edges and their geometry for image
understanding), then it is more convenient to work with the “energy” form of the
Bayesian method, as Mumford did for various segmentation models [Mum94|. This
is at least formally achieved via Gibbs’ formula in statistical mechanics [Gib02]:
the likelihood for a configuration F' being observed is associated to its energy E[F]

by
Prob(F) = %exp (— %%l) :

where k and T denote the Boltzmann constant and absolute temperature, and 2

the partition function over all the permissible configurations. The meaning of the
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energy E[Xo|F] is similarly defined, though lacking a rigorous counterpart in statis-
ar k] 1 . i [ 1t T ot - Y S | P N A U U USSR SV, AP SP F-gy
LlCaE INECIAIlICs, A{CICIOTY, LHE DJdyesiall IeLiuu ].Eiiu‘d (110 blie CUCIEY LAMNUEAGLIOL
problem

min E[F] + E[X,|F).

In the literature of deterministic inverse problems, this corresponds to the cele-
brated idea of Tikhonov regularization [Tik63]. The Bayesian approach is more
general in many aspects.

In terms of image restoration ug — u, we are to minimize

(1) Eu] + Elug|u].

The data model u — ug depends on the real physical imaging process. One popular
and useful choice as in astronomic and many medical imaging processes is blurring
followed by noising [ROF92, CW98]:

ug = Ku +n,

where n denotes additive noise, and the linear operator K models the blurring

process
Ku(z) = /Q K (z, yyu(y)dy.

K is lowpass in the sense that K1 = 1. As is well known in signal processing, if
K is shift-invariant {or spatially homogeneous), then it has to be an ordinary filter
h{z)* via the convolution operator: K(z,y) = h(z —y). Although realistic blurring
factors fluctuate randomly, most often we observe that K is fixed deterministically.
We shall do so in this paper as well. Modeling the white noise by (GGaussian, we
easily obtain the energy for the data model (up to a multiplier):

(2) E[UO}U]Z.[Q(KU(m)_UD(w)) dSL',

o?(z)

where o?(z) is the noise variance at pixel z, and is constant for homogeneous noise.
Generally 1/0%(z) simply contributes as a positive weight w(z), and the energy
presents a weighted least square fitting as discussed in [GL83, Str93).

Other blurring and noising models are also possible depending on the real
imaging processes. For example, Rudin and Osher also studied the multiplicative
noise model in [RO94].

Therefore, the restoration quality by {1} crucially depends on the choice of the
image model E{u]. The BV image model of Rudin-Osher-Fatemi [ROF92] cap-
tures the edge feature of images, and is perhaps the most efficient geometric image
model in terms of theoretical accessibility, computational efficiency, and applica-

tional quality.



BV IMAGE MODEL: THEORY AND APPLICATIONS 5

3. The BV Model of Rudin, Osher, and Fatemi

3.1. Functions with bounded variation. We start with some essential
mathematical theory on functions with bounded variations. We refer to the out-
standing monograph by Giusti [Giu84] for more details.

Let O ¢ R? dencte the open image domain, which for most real applications
bears a rectangular shape. For each real function f € L} (£} (i.e., locally inte-
grable), its total variation TV{f) is defined in the distributional sense:
® W= s [ Vs,

Feck(,B) Ja
where B, denotes the unit disk in R?, and the space of test functions is

C3 (8, B2Y = {all C* maps §: 2 — Ba, which are compactly supported}.
Since f € L () and V - § € Co(§), TV(f) is well defined. TV(f) > 0 since B,

ioc
is closed under reflection ¢ = (xy,xs) —+ —=z. Suppose f is in the Sobolev space

W), then Vf € L'(Q) and
—f V-G = f(Vf) g d,
9] 0

which immediately implies that

() = [ (Viide = [ \f+ 7 donden,

It is for this reason that TV (f) is often denoted by f |Df], with the symbol D
referring to the conventional differentiation V, and the absence of the Lebesgue
area element dr indicating that |Df| is a general Radon measure.

The Rudin-Osher-Fatemi image model takes Elu] = const. x TV(u) [RO94,
ROF92], and applies to the class of images with bounded variations. The space of

functions with bounded variations is defined as
BV ={f: f € L'() and TV(f) < oo}
It can be easily shown that BV({2) is a Banach space under the BV norm
I fllsv = [ifllr + TV,

and it is continuously embedded in L1(f2).

Among all the important properties, there are three that have helped Rudin-
Osher-Fatemi’s BV image model become easily accessible in theory, and meaningful
for applications in image and low-level vision analysis: (a) lower semi-continuity,
(b) weak L' compactness, and (c) the co-area formula.

Lower semi-continuity of the TV norm in L}{)) says if f, — f weakly in L1{Q?),

then
ijf|gliminf/ |D fnl.
0 o0 Q
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In addition, the embedding BV(Q)) — LY(Q) is compact, i.e., the unit ball of
BV{R?) is compact in L'(§}). As well practiced in the direct method in Calculus
of Variations, these two key properties together often point to the existence of
minimizers for energies involving the TV norm. This is indeed the case in Chambolle
and Lions’ work on the TV restoration model [CL97], which will be outlined in the
next section.

The third property reveals the geometric nature of the TV norm, and thus
strongly supports its application in geometry motivated vision and image analysis.

It is the co-area formula. Define the perimeter Per(Q)) of a domain @) < §2 to be

Per(Q) = [g ID1g(s)] = TV(1g),

which generalizes the conventional notion of length for a regular boundary 8¢. For

any function u € BV({2), the co-area formula {Giu84] says

@) /ﬂ |Duj = [ D:o Per(u < A) A,

Here the event (u < ) denotes the domain Q) = {z € 0 : uz) < A}

To better understand the formula, imagine a simple case when v € C™ and
A is regular, i.e., Vu(z) does not vanish on the entire levet set u = A. Then the
boundary 8Q) is a regular smooth curve and Per(Q,) is exactly its Fuclidean
length. Therefore, in the conventional sense, the co-area formula states that

|TV(u) is a collective way to sum up the lengths of all level lines.

It is this property that brings the TV norm closer to meeting the requirement of
an ideal vision measure. Generally, human vision tends to represent curves and
edges as simple as possible for the purpose of efficient neuronal data compression
and visual communication [Don00]. Such representation is achieved by having the
local small ripples ignored or filtered out, just as having the curve lengths shortened.
This is the vision rationale for the minimization of the TV norm and the BV image

model.

3.2. TV restoration: Model and theory. Section 2 and 3.1 lay out the
vision and mathematical foundations for the original restoration model of Rudin,
Osher, and Fatemi [ROF92, R0O94].

As in Section 2, assume that a given image up is noisy and blurred:

ug = Ku+n,

and in addition, the ideal image u is assumed in BV({2). Then the Bayesian restora-
tion energy first proposed by Rudin, Osher, and Fatemi [ROF82, RO94] is

Elulug) = oTV(u) + Elug|u],
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where a i8 a constant and the data model Efug|u] is given as in (2). More explicitly

and cleanly, up to a constant multiplier, we are o minimize
(5) Efulug] = f Dl + f (K — uo)w(z)ds,
Q Q

with w(z) = 1/[ac?(z)]. In the original paper [ROF92], the noise is assumed to
be homogeneous, and thus w(z) = A is a constant weight, with A taking the effect
of a Lagrange multiplier.

The existence and uniqueness of the TV restoration model in BV(£2) [} L?()
were proven by Chambolle and Lions using the direct method [CL97]. The major
properties leading to the proof are the lower semi-continuity and L' compaciness
as outlined in the previous section. The basic assumptions ensuring the existence
and uniqueness are
(a) (blurring model) The linear blurring operator K : L*() — L*(f) is continu-

ous, lowpass: K1 3 1, and injective (for uniqueness).

(b) (noise model) The white noise n has mean 0 and variance o2, known a priori.
(¢) (independence of blurring and noise) Var(ug) > o2.

We should say a few more words about the tast condition. In the current data model,
we have assumed that the blurring K and noise n are independent. Therefore, from

probability,

Var(ug) = Var{Ku) + Var(n} = ¢* + Var(Ku) > ¢°.
(If both the blurring K and the ideal image » are deterministic, then equality is
indeed achieved.) But from the application point of view, most often we are only

given one single observation ug, despite that g is a random field. Therefore, the

last condition is numerically understood and inspected in the ergodic sense:

1 1 2
Var(ug) = WL (uo— ﬁfnuoda:) dx,

where |Q] denotes the Lebesgue measure of the image domain.

Recently, the T'V restoration model (5} has been extended to data that live
on general graphs (the so-called digitel TV ) [COS01], and to “non-flat” data or
image features (such as chromaticity, orientations of optical flows, and orthogonal
frames) that live on Riemannian manifolds [CS01d, TSC, TD01]. Strong and
Chan also have studied the scale dependency and edge preserving properties of the
TV model in much more details [SC].

3.3. TV restoration: Computation and approximation. To computa-
tionally realize the TV restoration model (5), as first proposed by Rudin, Osher, and
Fatemi [RO94)], one typically takes the steepest descent method (time marching;
also see the recent work [MOOO] for example) or directly solves the associated equi-
librium equation (steady solution) by iterative methods [VO96, DV97]. Here we
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discuss the latter. Other possible techniques include, for example, the primal-dual
method of Chan, Golub, and Mulet [CGMS8].

Formally, or assuming w in a finer space H'(0), we find that the eqguilibrium
state of energy (5) satisfies the Euler-Lagrange equation
(6) V- (lg—uui) —2K*w(Ku — ug) = 0,
with the Neumann adiabatic boundary condition. Here K* is the adjoint of K, and
w{z) = A corresponds to the homogeneity of the noise in the original Rudin-Osher-
Fatemi model. If indeed u € H1()), then the differential equation is understood in
the weak sense as in the classical theory of elliptic equations (i.e., in (H)" ).

For a smooth function u, the differential term V - [Vu/|Vu|] in (6) at a regular
(i.e. with non-degenerate gradient) pixel zg is exactly the curvature of the level
line 4 = u(xq), which once more reveals the geometry encoded into the model.

On regions where the image is very smooth or near constant, the denominator
|Vu| blows up the diffusivity coefficient in (6). Therefore, most of the existing
numerical algorithms have depended on the relaxation of the TV norm. That is,

to replace f|Du| by f¢f(|Vu|)da:.
o Q

Here ¢.(p) : R = R, with ¢.(p) > 0, for p > 0 is a C? convex even function that
mollifies that original |pi, and ¢ is a small relaxation parameter that often models

the sensitivity of a vision system. Popular choices include

de(p) = VP + €2 = p|.,

and the integral ¢ of f.(p) = p(e Vp~! Ae™ 1) with ¢.(0) = 0. (Here the wedges
represent the ceiling and flooring operators [CL97]) Consequently, the equilibrium
equation for such a relaxation is modified to

(7 V. (%—Q Vu) — K*w(Ku —ug) =0.

It can be shown that the solutions to these two relaxed problems are all in H(£2).
Computationally, the nonlinear equation (6) is often solved iteratively by the

freezing-coefficient technique. That is, at each step n, the next update w("+1) solves

the linearized Poisson equation with blurring and fitting:

(8) V- (z(”} Vu) — K*w(Ku —ug) =0,

where z = ¢,(|Vul|)/IVu| > 0 is the diffusivity coefficient, and is freezed at the
current step (see Acar and Vogel [AV94]). Therefore, from the energy point of
view, the update is the unique minimizer to the elliptic energy

/z(”)|Vu|2da:+/(Ku—u“)zw(m)dm
Q 0
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in H1{?). The convergence of such algorithms has been confirmed in [AV94,
CL97, CM, DVST]. Furihermwore, it is even possible o endow an energy meaning
to the updating of z itself: 2("+1D = ¢ (|Vul*+1)|)/|Vu(+1)]. For instance, for the

choice of ¢(p) = |pl., it is easy to show that z("+1) is the minimizer of

f [z|Vu(“+1)§§+1J dz.
0 zZ

(For the other example, see Chambolle and Lions [CL97].) Therefore, in this case,
the iterative algorithm based on the freezing-coefficient technique is essentially to

minimize
Eu, z|ug] = / {z(%VuP + ) + -:lz-] dz + / (Ku — up)? w(z)dz.
Q o

Unlike the original Rudin-Osher-Fatemi model [ROF92, R0O94], it now contains
a new feature z, which is often called the euziliary variable in the vision commu-
nity [GR92]). We also call z the edge signature since if z is plotted as an image,
then the dark (i.e., small z) and thin (depending on €) stripes clearly outline the

edges in the image.

4. BV as an Interpolant: Image Inpainting

. 4.1. The problem of inpainting. The word “inpainting” is an artistic syn-
onym for “image interpolation,” as initially circulated among museum restoration
artists, who manually recover the cracks of degraded ancient paintings by follow-
ing as faithfully as possible the intention of their original creators. The concept
of “digital inpainting” was first introduced into image processing in the paper by
Bertahmio, Saprio, Caselles, and Ballester [BSCBO00], where a third order transport
type nonlinear PDE was invented for the inpainting problem.

Recently, the concept of inpainting has been connected to many major problems
in image processing and low-level vision, such as perceptual image coding and
compression, and error concealment for wireless image transmission [CS01a]. We
refer to our recent survey paper [CS02] for much more details on the status of the
inpainting problem.

Traditionally, image interpolation is often restricted to problems with scattered
small-scale missing data. Thus the approaches and algorithms have been mostly
developed from the viewpoints of the spectral method, filtering method, wavelets,
and radially symmetric bases, etc [AG01, BTUO1, IP97, LO01]. But for large-
seale interpolation, or “inpainting,” these conventional approaches do not seem to
work well due to the fundamental challenge: how to faithfully (at least visually
meaningfully) recover the missing edges, i.e., the 1-dimensional singular feature of

images.
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In a different direction, Bertalmio et al. [BSCBO00] have recently introduced
the idea of applying transport type high order PDEs to complete the broken evel
lines. The authors of the present paper then tock a different approach by having
the inpainting problem embedded into the general category of image restoration.
As a result, our inpainting models have been based on the Bayesian framework of
Section 2. The first image model catching our attention was the BV image model of
Rudin, Osher, and Fatemi. This is the TV inpainting model that we first proposed
and studied in [CS01a].

As one shall see in the next section, TV inpainting is almost identical to the
original TV restoration model (5). The beauty lies in that the slight modification
dramatically extends its scope of applicability, and reveals many unexpected con-
nections to other important problems in image and low-level vision analysis, such
as perceptual image coding and super-resolution [CS01al.

After the TV inpainting was first introduced, our further recent works have
demonstrated that as a special restoration problem, inpainting does carry its own
identity and important differences from the more familiar types such as denoising
and deblurring. In {CS0lc, CKS01, ES02], we have shown that the BV image
model is insufficient for large scale inpainting problems, and high order geometric
image models based on curvatures are necessary for more faithful reconstruction of
partially missing edges. The key reason for this is that TV only involves the first
order geometric information (i.e. the length) of level-lines, but curvature also plays
a crucial role in human visual interpolation [KanT79].

Nevertheless, the BV image model still remains one of the simplest and most
effective image interpolants, and TV inpainting is among the very few inpainting
models that are readily open to both theoretical analysis and efficient computational
implementation. And even for realistic applications, it always provides a valuable
lower order initial guess for computationally more expensive high order models.
We now explain TV inpainting and some of its major applications in digital image

processing.

4.2. The TV inpainting model by Chan and Shen. Let D C {} denote
the compact inpainting domain, on which the observation u0| p is missing. The
goal of inpainting is to recover the ideal image © on the entire domain  based on
the available portion u0|ﬂ\ D

It is quite obvious that generally the inpainting problem is ill-posed: without
the input from high-level vision operators, such as symmetry detection or more gen-
eral pattern learning, it is impossible to inpaint an object that is completely missing.
However, the stroke of luck does shine in many major digital applications [CS01a]
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(e.g., random packet loss in wireless image transmission, image zooming and super-
resolution, etc.] In that uoi oD indeed retains crucial information about 'u()i e
The generative data model for inpainting is
u0|D = (Ku+n)|D.

Under the assumptions in Section 2, it leads to the energy form

Epluplu] = /Q\D (Ku — up)*w(z)dz,

with the weight w(z) = const./oc?(z). Let w”(z) denote the zero extension of
w(:r:}|g\ p onto the whole domain 2, ie.,
w®(z) = (1~ 1p(z))w(z).

Then the energy for the data model can also be written as
() Epluclul = f (K — o) wP (z)dz,
0

where u°|ﬂ\ D is extended to ug = ug|n in any manner since it is wiped out by
w?(z) anyway.
Then Bayesian inpainting based on the BV image model is to minimize

(10) Ep[ufuo] = fn \Dul + fn (Ku — uo)?uP (z) de,

which is almost identical to the original TV restoration model, only with an ad-
justment on the weight function. Consequently, they share the same form of the
Euler-Lagrange PDE:

Vu .
(11) V- (W) — K*w? (Ku —ug) = 0,
or for the sake of the freezing-coefficient algorithm mentioned above, L.u = f with
1
(12) f=KwPuy, L,=-V-2V+KuwPK, z= Nk

The associated boundary condition along 852 is again Neumann adiabatic.

What is the mathematical difference between the TV restoration models (5,
6) and the TV inpainting models, caused by the almost trivial modification of the
weight function? Unlike the situation when the weight function w(z) > A/2 > 0
for all pixels, the inpainting energy (10) is no longer strictly convex. Therefore,
as shown by Chan, Kang, and Shen [CKS01], the existence of TV inpainting in
BV(Q?) is guaranteed, but generally uniqueness is not. In terms of the iterative
algorithm based on the freezing-coefficient technique, the non-uniqueness is caused
by the fact that the linearized operator L, is only semi-positive definite.

As explained in our paper {CKS01}, the non-uniqueness of TV inpainting may
not be necessarily a defect of the model, but instead, an intrinsic part of the in-
painting problem itself. To a certain degree, it models the uncertain situation of
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human decision making when the given information is generated by two or more
equally possible patterns.

All the computational methods discussed in Section 3.3 apply here too. In
addition, to increase the sparsity of the linear system for general blurring kernel K,
we have modified the freezing-coefficient iterative scheme at each step n to

(L + WP — K*wP K)ju®t) = (wP - K*wP K™ + 7.

Figures 1 and 2 display the computational outputs for two images with simu-
lated digital blurring, noising, and random packet loss with:

LA +8 L f1 o3 1 *30
(13) Ky =— |2 4 2 and Kp=zo= |20 20 20
16° 4y 9 4 (Ol FEE S

Here the asterisks indicate that the powers are in the convolutional sense. K
and K5 simulate the continuous isotropic blurring and horizontal motion blurring.
These simulated results clearly demonstrate the power of TV inpainting for the
potential market of noisy transmission of blurred images with randomly lost packets,
images from the Hubble telescope, for example [VO96, CW98].

A biurred image with 80 lost packets Deblurring and error concealment by TV Inpainting

FigurE 1. TV Inpainting of a blurred image (by K; in (13 ) )
with simulated random loss of 80 packets.

There are also some important applications that cannot be covered by the
continuous language, yet made possible by the extension of the TV norm onto
general graphs by Chan, Osher, and Shen [COSO01]. Zooming and perceptual
image coding are such examples that we first studied in [CS01a].

Let us discuss a simplified version of the digital zoom-in problem and its TV
inpainting approach. The goal of zoom-in is to create a 2N x 2N digital image
[us4] (1 <4,§ < 2N) from its possibly noisy coarse sampling [u3; ,;](1 < 1,5 < N).
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Noisy moticn-blurred image with missing data TV restoration and inpainting

Figure 2. TV inpainting of a noisy blurred image (by the severe
motion blurring K> in (13)) with simulated random packet loss.

Thus the weight function in this digital setting is given by

wP =1, 2 &2|j; 0, otherwise.

=

In the paper [CS01a], we proposed the following zoom-in model based on TV
inpainting:
(14) TVo(uig]) + Y (wi; —ud;)wl,

1<i,j<2N
where TV, denotes the digital TV norm on graphs (a model for digital domains),
as introduced in [COS01]. Figure 3 shows the computational output of the model
when applied to a test image from Caltech’s computational vision group. The com-
parison has been made between the BV image model and the Sobolev one (i.e.,
Elu] = [, |Vu|?). One can clearly observe that BV yields much better reconstruc-
tion in terms of the sharpness of boundaries.

The second non-trivial application connects inpainting to perceptual image
coding, compression, and reconstruction [CS01a]. An example based on digital
TV inpainting (14) (with a different weight w?) is presented in Figure 4. We refer
to our paper [CS01a] for more details.

These examples clearly demonstrate the beauty of a good image model - it
facilitates all processing tasks, as a lighthouse does for successful navigation.

5. Beyond BV and Conclusion

5.1. The Mumford-Shah image model. A sibling to BV images is the
celebrated object-edge model of Mumford and Shah [MS89):

Enisu, I = f Vul?ds + o),
o\r
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The originai image Zoom-out by a subsampling of factor 4
~ 7

The harmonic zoom-in The TV zoom-in

FIGURE 3. Bayesian zoom-in’s based on the BV and Sobolev image
models: TV inpainting yields much sharper boundaries {CS01a]
(test image from Caltech’s computational vision group).

where H'(T) is the one-dimensional Hausdorff measure of the “edge” set I', and
a > 0 is a fixed weight. It is easy to see that for near-cartoon images (i.e., the
jump set T is ptecewise smooth, and |[Vu] < 1 on 2\ T'), the Mumford-Shah image
model Eyslu,T] is equivalent to TV{u], since the latter as a Radon measure is
concentrated along the jump set as well. In this case, the only major difference lies
in that TV weights H'(I") adaptively along [ based on the jump amplitude, while
in Eps the weight is uniformly fixed to be a.

The kinship between the two image models can also be seen from a unified
viewpoint based on the edge signature function z introduced in Section 3.3. Such
an approach has been well known in the vision community [GR92]. In Section 3.3,
it has been established that the BV image model is approximately (controlled by
€ < 1) equivalent to

1
ESylu, 2] = / (;:2|Vu|2 + ez® + z—z) dz.
Q



BV IMAGE MODEL: THEORY AND APPLICATIONS 15

The original image Edge tube from Canny’s detecior

The initiat guess The TV inpainting

FiGURE 4. Perceptual image coding and decoding by the TV in-
painting model [CS01a](test image from Caltech’s computational
vision group).

Here we have replaced the original z by z? since it is positive as seen from the
freezing-coefficient algorithm in Section 3.3. On the other hand, under the I'-
convergence approximation theory {Ambrosio and Tortorelli [AT90, AT92]), the
edge set 1" in the Mumford-Shah can also be replaced by an edge “signature” func-
tion z, and the image model is approximately equivalent to
1 2
Bisiu, 2] = [ (22|Vu§2 + ae|Vz® + -(——:1:—))) dr.
o

Therefore, by introducing the edge signature z, both the BV image model of Rudin-
Osher-Fatemi and the object-edge image model of Mumford and Shah belong to
the same class of coupled energies:

Buu, 2] = f (2l + g.(7, V2,V ® Vz) de,
Q

where g. is a suitable function controlled by a small parameter €, and V ® Vz
denotes the Hessian.

The Mumford-Shah image model, once computationally realized (such as by
the region growing method of Morel and Solimini [MS95], and by the level-set
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method of Qsher and Sethian [OS88)], as recently studied by Tsai, Yezzi, and Will-
sky [TAYW01], and Chan and Vese [CVG1]), is very powerful for image denoising
and segmentation. Novel applications to the inpainting problem have been studied
recently by Chan and Shen [CSO01la], Tsai, Yezzi, and Willsky [TAYWO01], and

Fsedoglu and Shen {(ES02].

5.2. Gousseau and Morel: Natural images are NOT BV. This remark-
able recent result of Gousseau and Morel [GMO01] is the froit of a successful com-
bination of statistical image study and mathematical analysis of image models.

The key is the following lower bound for the TV norm by the so called sectional
density fu(h, s):

(52|
TV(u) > xt f 8% fu(h, 8)ds,
0

where {{2| denotes the Lebesgue measure (or area) of the image domain, s an “area”
parameter, and A a quantization level of the image. Roughly speaking, for a given
image u and a quantization level h, f,(h, s)ds denotes the number of disjoint A-
“blobs” (or h-sections) whose areas fall within [s,s + ds] (see [GMO1] for more
details). The empirical statistics based on many natural images, obtained by the
same school of authors [AGM99], reveals the following power law:

t.
fu(h,s)zco:; . with a2,

for any generic and homogeneous natural image u. Therefore,

1

ge—1/2 ds,

fal
TV(u) > const. /
0

which diverges at s = 0 for all & > 3/2.

In Meyer’s u+v language [Mey01], the result reveals that the v-component for
generic natural images containg foo many small scale “blobs” (clustering controlled
by a quantization level &), which makes generally u +v ¢ BV(Q).

Therefore, this negative assertion does not diminish the positive role of Rudin-
Osher-Fatemi’s BV images in the successful modeling of the v component.

5.3. Conclusion of the paper. A generic image seems to be the compo-
sition of two components: u -+ v, as Meyer [Mey01] puts it recently. Roughly
speaking, u is the deterministic component, and v is the “texture” or “clutter”
component [MG01], characterized by rapid oscillations but still away from being
white noise. The v-component carries a delicate correlation between space and spa-
tial frequencies, and as a result, statistical, spectral, and wavelets tools are ideal.
The w-component is more geometric, and embedded with the crucial information
of deterministic and large-scale features such as edges, corners, and T-junctions.
The BV image model of Rudin, Osher and Faterni is one of the very few successful
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models for the u-component, which are both theoretically accessible and computa-

s 11 s N ™ * v "1 1 F] s T oo UL M, L L N [ (PR Sy, 5
tionally emclent. IoT images witl IOW Lexiures (Le., Wil negngiole 10car ergoaic

variances), such as many indoor scenes capturing large objects, the BV image model
by itself is often sufficient for the tasks like denoising, deblurring, and inpainting.
This viewpoint has been strongly supported by various computational results.
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