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Abstract

The heterogeneous multi-scale method (HMM) is presented as a general method-
ology for the efficient numerical computation of problems with multi-scales and multi-
physics, on multi-grids. Both variational and dynamic problems are considered. The
method relies on an efficient coupling between the macroscopic and microscopic models.
In case when the macroscopic model is not explicitly available or invalid, the micro-
scopic solver is used to supply the necessary data for the macroscopic model. Scale
separation can be exploited to considerably reduce the complexity of the microscopic
solver. Besides unifying several existing multiscale methods such as the ab initio molec-
ular dynamics {11], quasi-continuum methods [66, 62, 61] and projective methods for
systems with multiscales [28, 29], HMM also provides a methodology for designing new
methods for a large variety of mmltiscale problems. A framework is presented for the
analysis of the stability and accuracy of HMM. Applications are discussed to problems
such as homogenization, molecular dynamics, kinetic models and interfacial dynamics.
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1 Introduction

Many problems in nature involve multiple active scales. For example, chemical reactions
may take seconds or hours, while the vibration of chemical bonds occurs at the time scale
of femtoseconds (107%%s). The time scales for the internal motion of proteins and nucleic
acids typically span from 107'* seconds to seconds. Vortical structures in the atmosphere
may range from meters to thousands of kilometers. If we want to understand in a reasonable
detail the dynamics of dislocations that result in plastic deformation of a material, we face the
task of studying the structure of dislocation cores at the scale of angstroms, to the collective
dynamics of entangled dislocation loops at the scale of the size of the whole material [54].

With few exceptions, the traditional approach for such problems is to obtain either ana-
lytically or empirically explicit equations for the scale of interest, eliminating other scales in
the problem. These equations are the basis for computer simulations. Indeed an impressive
array of techniques have been developed to accomplish this task, including averaging methods
in classical mechanics [4], homogenization theory [7], equilibrium statistical mechanics [41],
WKB methods, nonequilibrium thermodynamics [16], kinetic theory [41], transition state
theory [36], turbulence models, etc. This approach has been both successful, in fact it has
so far dominated much of science and engineering, and necessary because of our restricted
computational capabilities. A typical example of this approach is the Navier-Stokes equa-
tion in fluid mechanics, in which the microscopic processes are represented by an equation of
state and the linear constitutive equations. It is quite impressive that general macroscopic
conservation laws combined with empirical linear constitutive relations describe so well the
dynamics of simple liquids in almost all situations.

Despite all its success, this approach also forces us to introduce empirical closures for
other systems that are not always justified or understood. As a result, the success of such
phenomenological equations is much less spectacular for a large class of complex systems.
Typical examples of such a situation are found in complex fluids, plasticity, fracture dynam-
ics, and important regimes of turbulent flows.

A new approach, the “first principle” based approach, has emerged in recently years
and has quickly attracted a great deal of attention. The aim of this approach is to model
the theoretical input to a coarse-grained model from a more detailed microscopic model,
bypassing the necessity of empirical modeling. Examples of such an approach include
the ab initto molecular dynamies [11] in which empirical potentials in molecular dynam-
ics are replaced by “on the fly” electronic structure calculations, quasi-continuum method
in which the stored-energy functional in nonlinear elasticity theory is replaced by molecular
potentials [66], and coupled kinetic-hydrodynamic models of complex fluids in which con-
stitutive relations are replaced by kinetic models for the conformation of macromolecules
[27, 42, 73]. Such a coupled multi-scale, multi-physics approach is discussed in many papers
[1, 2, 12, 21, 22, 66, 62, 57, 56, 10, 29, 15], and is a central theme of the present paper.
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In what follows we will concentrate on two types of multi-scale problems:

A. A macroscopic description is known but cease to be valid in a localized region in space

and/or time, where the microscopic description has to be used instead.

B. A macroscopic model may not be explicitly known or too expensive to obtain, but is
known to exist, i.e. there exist a set of macroscopic variables obeying a closed macrosecopic
model.

Problems of type A include defects in crystals where atomistic descriptions have to be used
near the defects and continuum theories are valid away from the defects [66], contact line
dynamics [17, 55}, turbulent flame fronts [53], and chemical systems with localized chemical
reactions where quantum mechanics has to be used in the chemically active regions and
classical mechanics can be used elsewhere. Problems of type B are found in transport through
inhomogeneous media such as porous medium flows and effective properties of composite
materials [7], complex fluids, and plasticity. In principle there is also a class of problems, say
of type C, which combines the characteristics of types A and B, namely that the macroscopic
model is not explicitly known and cease to be valid near defects. This type of problems can
be dealt with by combining the techniques for problems of types A and B.

In this paper, we present a general framework for designing and analyzing nurnerical
methods that deal with problems of type A and type B. The main motivation behind this
framework is to make eflicient usage of both the macroscopic and microscopic formulations,
even in cases when the macroscopic equations or models are not explicitly known. Our goal
is to introduce a framework and analysis that cover many of the existing methods but also
to derive new techniques from the general formulation.

We will work with the following basic set-up. We have a microscopic process, such as
molecular dynamics or quantum mechanics, that describes the microscopic state variable
u, which is defined on a microscopic domain D. We also have a macroscopic process that
describes the macroscopic state variable U, which is defined on a macroscopic domain IJ. The
two processes and state variables are related to each other by compression and reconstruction
operators, denoted by @ and R respectively: Qu = U, RU = u, with the property QR =1
where I is the identity operator. For example if the microscopic process is described by kinetic
theory and the macroscopic process is described by hydrodynamics, then the compression
operator maps the one-particle phase-space distribution function to the conserved mass,
momentum and energy densities. The reconstruction operator does the opposite, and is
in general not unique. Our interest is to resolve the macroscale behavior. In doing so, we
sometimes have to make direct use of the microscale models. How that can be done efficiently
is precisely the issue we address here.

Our aim is to accurately approximate the macroscopic state of the system. We do so
by working with a macroscopic grid that resolves the large scale of the problem. There are
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two main components in the procedure. The first is to select a conventional macroscale
scheme. The second is to estimate the necessary data for the macroscale scheme from the
microscale model. The selection of the macroscale scheme depends on what we know about
the macroscale model, e.g. whether it is a variational problem, whether it is conservative.
When the macroscopic model is not fully known explicitly, we provide a general and efficient
procedure for supplementing the missing data from microscopic models. For example if the
macroscopic problem is variational and we use a standard finite element method, the task
reduces to approximating the effective stiffness matrix for the macroscopic problem. This
is done by solving the microscopic problem locally on a reduced computational domain.
For dynamic problems, the missing data can be the macroscopic forces or fluxes, or part of
the forces or fluxes as the eddy viscosity terms in turbulence models. We estimate them
using a generalization of the classical Godunov scheme for gas dynamics [32], namely at
each macroscopic time step, we first reconstruct the microscopic state of the system from
the known macroscopic state. We then evolve the microscopic process on a microscopic time
scale until the desired macroscopic forces or fluxes reach a quasi-steady value. We then use
this estimated value to update the macroscopic state to the next macroscopic time step.
In this way, we guarantee that the numerical results have a comparable accuracy to a full
microscopic model. This procedure also sets up an approximation to the macroscopic model
even though it is not explicitly used.

For problems of type A, we simplify this algorithm by replacing the above procedure with
a standard macroscopic solver in regions where the explicit macroscopic model is known and
is known to be valid.

We call these methods the heterogeneous multi-scale methods, abbreviated HMM, to em-
phasize the fact that different physical models and numerical techniques are used at different
scales and different grids. In contrast, standard multi-grid techniques are “homogeneous”
in the sense that they employ the same physical model on different scales and are aimed at
efficiently resolving the microscopic details {10, 34].

The key to the efficiency of such an approach is the possibility of reducing the temporal
and state-space complexity of the microscopic model, by exploiting scale separation. Such
ideas can already be found in the literature, for example for stiff ODEs in [33, 43, 5, 35, 28],
for kinetic schemes in gas dynamics in [72]. Our current work draws inspiration from the
recent work of Kevrekidis and co-workers [28, 29]. Closely related ideas are also found in
[71].

This paper is written in a pedagogical style. In section 2 we discuss the relations between
macroscopic and microscopic models, the compression and reconstruction operators linking
these models and we give many examples. In section 3 we discuss the overall scheme for HMM
which contains two main ingredients: An overall macroscale scheme and the estimation of
missing macroscale data from microscale models. In section 4 we discuss how the microscopic



models can be used efficiently to supplement the missing data for the macroscopic models.
Examples are given in section 5 to illustrate this overall scheme. Stability and accuracy
issues are discussed in section 6. Algorithmic improvements are discussed in section 7. Final
conclusions are made in section 8. Even though our emphasis is the overall framework,
we also present new numerical techniques as well as some numerical results and analytical
proofs.

Acknowledgement. We are grateful for many inspiring discussions with Yannis Kevrekidis
in which he has outlined his program of macroscale analysis based on microscale solvers. We
are also grateful for Eric Vanden-Eijnden and Olof Runborg for stimulating discussions. The
work of E is supported in part by an ONR grant N00014-01-1-0674.

2 The Macroscopic and Microscopic Models

2.1 The Compression and Reconstruction Operators

It is convenient to think of the macroscopic and microscopic models as being defined on differ-
ent domains with different state spaces, linked by compression and reconstruction operators,
as we discuss below.

Let {U} be the set of macroscopic state variables that we are interested in, defined on a
macroscopic computational domain (MCD) D. Denote by {u} the set of microscopic state
variables defined on the microscopic computational domain (med) D. It is convenient to
think of D as being a fiber bundle over D. We will denote by D, the fiber over x € D. We
note that to be precise, the notion of fiber bundle has to be extended in an obvious way in
order to accommodate the generality of our framework. Examples of the fibers will be given
below. We will denote by £ and w the appropriate function spaces for the macroscopic and
microscopic states respectively.

The macroscopic and microscopic state variables are related to each other by the com-
pression and reconstruction operators, denoted by ¢ and R respectively:

Gu=U, RU=u (1)
Of course ) and R should satisfy
QRU =U (2)

Even though @ and R may be nonlinear operators, in the following exposition we will treat
(2 as if it is linear. In general there is no unique way of defining K.

For the most part, we will concentrate our discussions on problems of type B, i.e. problems
for which there is a well-defined macroscopic model even though it may not be known
explicitly. In the following we will discuss how the macroscopic models are related to the
microscopic models.



2.2 Variational Problems

Consider a microscopic minimization problem:

min e{u)
uCw

Let @ be an appropriately chosen compression operator. Since

min e{u) = m(}n(mgldill] e{u))

If we define:

EU) = u:rélirI}U e(u)

on §2, then the macroscopic variational problem corresponding to (3) is given by:

vl PO

Let us consider a few examples.
Consider the variational problem

8u du
) ou
ueHD}I(ID) { _/ Z ’"7 ('9:1:z Oz; v /Df’u,da:}

(6)

where a(z,y) is smooth and periodic in y with period I = [0,1]%, f is smooth. There are
two ways to look at this problem. The first is a numerical one. Consider a regular finite
element triangulation of D, denoted by K, with mesh size Az that resolves the variations
of D and f, and the slow variables of a, but Az > e. Let Vo C H}(D) be the standard
piecewise linear finite element space, and let 2 = Va, w = HH(D). For u € H}{D) define

Qu=U € Vp,if

/Vud:n:[Vde
A A

(7)

for each A € Ka. It is easy to see that this uniquely defines ). Now for U € {2 = Vj, let

e . Bu Ju
A*(U,Uy=  min f Z ,J 89: o —dz
i 0F;

wEHL(),Qu=U

then (6) is reduced to a problem on 2 = Va:

1,
érégi{EA (U,U)—foUd:c}

(8)




The second way to think about this problem is to use homogenization theory. It is well-
known [7] that as € — 0, the solution u® of (6) converges to the solution U of the following

problem

, 8U oU
UEI’?IEI{(ID) { f E it 3 a;dm - DfU da:} (10)
where

x Bx)
oi —=— ) [ & 2} d 11
flzﬂktiﬂy(k 3)(13 By Y (11)

kil

Here for each fixed =, x;(z,y) ( =1,...,d) is the solution of the cell problem
Vy - (a(z, y)(Vyx; +¢;)) =0 (12)

with periodic boundary condition on [ and e; = (0,...1,...0).

Now we can view (10) as our macroscopic problem with state space §8 = Hg(D). The
macroscopic domain is D). The connection to the microscopic problem is via (11) where the
microscopic state space w = HI(D x I), and the microscopic domain is P = D x I with
D,=1 forze D

It is important to note that macroscopic variational problems may also result from other
types of microscopic models such as the ensembles averages in statistical physics:

L g(u)e P dy
<g> - fw B dyy

(13)
This is an important line of research that we will pursue in the future.

2.3 Dynamic Problems

We will assume that the macroscopic model gives rise to a well-defined evolutionary process
characterized by the solution operators {S(¢)}} which form a semigroup: U(t) = S(t)U(0),
where ¢ € I and I is an index set, I = an interval for continuous processes and I = AtZ
for discrete processes. Here Z is the set of integers. The semigroup might be generated by
a differential equation

Uy = F(U) (14)
where F'(U) is in general a nonlinear operator on U, or a discrete evolutionary equation

Ut = gt At F(UM) (15)




or a set of transition rules
Prob (U — U") = P(U,U") (16)

as in a kinetic Monte Carlo scheme. Likewise the microscopic model is also assumed to give
rise to a semigroup of solution operators denoted by {s(t)}, which might be generated by a
differential equation

u = f(u) (17)
where f{u) is in general a nonlinear operator on u, or a discrete evolutionary equation
w =" 4 6t f(u") (18)
or a set of transition rules
Prob (u — v’} = p(u,u) (19)

We emphasize that the microscopic model is always assumed to be explicitly known.

There are two basic time scales of interest, a macroscopic time scale £y, and a relax-
ation time scale for the microscopic process ty. Assuming tp << tps, our basic idea is to
approximate S(t) for tg <<t << 3 by

SOU = Qs(t)RU

for suitable reconstructions R. Knowing S(t), we may find the effective macroscopic model

through
1
= —(S(AD —
F(U) = (S(A)U - U)
for suitably chosen Af such that tg << At << {p. Next we give a few examples to illustrate
these concepts.

1. Stiff ODEs. Consider the system

w = f(uv) (20)

1
w o= (o) —v)

where ¢ is small. In this case the macroscopic (slow) variableisu: U =u, Q(u,v) =u=U.
The macroscopic equation is explicitly known in this case: U; = f(U, g(U)).

~In the general case when the slow and fast variables are not explicitly separated, we then
have a slow manifold £} in the state space w. In this case, the macroscopic equation may not
be explicitly known.



2. Kinetic equations. We will use the classical Boltzmann eqguation as an example for
illustration. But the ideas apply equally well to other kinetic models.
Consider the Boltzmann equation

af 1
S+ (v-Va)f = ZB(S, ) 1)

where f = f(x,v,1) is the phase-space one-particle distribution functions, ¢ is the Knudsen
number which is proportional to the mean free path between collisions. The collision operator
at the right hand side of (21) describes binary collisions between particles. The detailed form
of B is not important. What is crucial is the following properties satisfied by B5:

[ B Do)t =0, o) =1L, v. v (22)
and
[ BN og s <o (23)

Consequently, (21) admits a five-parameter family of equilibrium states,

M(p,u,T)(v) = (27;)5/3 exp (_!v ;THIQ) (24)

where p,u,T are the density, mean velocity and temperature of the system, given by

1 1

p= | fWdv,u=={ f¥)vdv, T=— [ f(¥v)|v—ul’dv (25)
RS P J g 3p Jgs

In the hydrodynamic limit as £ — 0, one obtains the following compressible Fuler’s equation

for the conserved densities:

dp _
n + V-(pu)=0

0
5;(,011) + V.(pu®@u)+Vp=0 (26)

7,
EE + V- (E+phu)=20

where p = T, E = Lp|u|? + 3,T.

In this example (p,u,T) are the macroscopic variables that we are interested in and f
is the microscopic state variable. @f = (p,u,T'). The macroscopic domain is the physical
domain, denoted by D, and the microscopic domain is D = D x R} D, = {x} x R?, the

momentunm space.
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3. Diffusion via random walks. Consider an ensemble of independent random
walkers on a domain D. Let U be the ensemble averaged density of the random walkers,
{u{t,y,w)} be the position of the random walkers where y € D is the initial position of
the random walkers and w € €2, the probability space of ensembles. U = Qu =< u >=
Ja u(t,y, w)dP{w). For this problem D = D x Q,D, = .

4. Langevin equations and the kinetic Monte Carlo method. Consider a system
of stochastic differential equations

%x—%V—I—ij(t), j=1,...,N 27)
where V(z1,... ,zy) is the potential energy associated with the system, the B;(t)’s are
independent Gaussian white noise. For small ¢, the system spends most of its time near
local minima of V', with rare and sudden transitions between different local minima. In such
a situation, one can effectively approximate the dynamics of the full system by a Markov
process whose state space is the set of local minima of V. The fransition rates between
different local minima can be obtained from the microscopic process (27) using the transition
state theory [36]. An efficient numerical method for implementing this is discussed in {23].

In this example, the microscopic process is a set of ODEs and the macroscopic process
is a discrete Markov process. For x € RN, Qz = z* if z is in the domain of attraction of the
local minimum z*.

5. Molecular dynamics for fluids and solids. Consider a system of identical particles
interacting via a short ranged potential U. Their dynamics is described by Newton’s law

d
Sast) = ps(t)
d
Pilt) = - > " VU(q;(t) — ailt))
it
4 =1,---N. The corresponding Hamiltonian is
Y1, 01
— 2 amm . — .
H= ) g g LU a) (28)

Such a model is now used to simulate a very wide range of problems, from protein folding
pathways, to crystal growth, defect dynamics in solids, complex fluids, etc. We will discuss
the situation when molecular dynamics is used to model the macroscopic behavior of a
system. We will first discuss the example of fluid flow.

In continuum theory, the state of a fluid is described by its density, velocity and temper-
ature fields, denoted by p,u, and T respectively. In most situations, neglecting dissipative
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effects, (p,u, T’} obey the compressible Euler’s equation (26), where p = p(p, T} is the pres-
sure, e = e(p, T') is the internal energy density and F = %}:pu2 + e is the total energy density.

The microscopic and macroscopic state variables are related in the following way. Given
the microscopic state of the system {q;(t), p;(t)};=1,. v, we define the following empirical
distributions.

px,t) = Za (t) — %)

m(x,t) = ij (a;(t) —x) (29)
Ex,t) = Z{zpj QZU ai{t) — q i))} 6(q;(t) — x)
J 17

(9, E‘) are the empirical density, momentum and total energy fields from the microscopic
model. They obey the equations

o}
tp + V-jp(x1) =0

)

O% + Verlot) =0 (30)
ot s

—a—E + V-jelx,t)=0

ot JE

where the current densities are given by

jo(x,1) = ij (q;(t) —x)
Tap(X ij‘a pjﬁ (t) x)

+3 ZF ai{£)) (9, (8) — a:(t))s f 5(Aq;(t) + (1 — Mau(t) — x)dA

ZPJ {“”PJ (t)? + Z Ula;(t) — il )} 6(q;(t) —x)

t#:.'

+5 Z [(pi(£) + pi(?)) - Fla;(t) — aa(t))](q; (1) — Qi(t))/ 6(Ag;() + (L — A)qu(t) — x)dA
z;t':g 0
(31)

where F = —VU. Ensemble or local time averages of the empirical conserved densities and
currents give macroscopic fields and fluxes in the compressible Euler’s equation.
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For this problem Q{q;,p;} = ((p), (1), (E)) where (5,1, E) are defined in (29), and
{ ) denotes ensemble or spatial/temporal averaging. The fibers are either the probability
space or the local spatial/temporal domains over which averaging is taken.

For solids it is customary to work with the Lagrangian coordinates. Let y(x,t) be the
deformed position of a material point whose undeformed position is x, and 7T be the Piola-
Kirchoff stress tensor, and let pp(x) be the density of the material before deformation, gy be
the heat flux. The macroscopic state variables are the displacement field y, and the total
energy density B = $poly|*> + e where e is the internal energy density. The macroscopic
equations take the form

py = V-1

E = v'(To.'}")"V‘Qo

For simplicity of notations, we will work with the one-dimensional situation. Generaliza-
tion to higher dimensions is straightforward. Take an arbitrary interval of macroscopic size

(A, B], we have
d
P Z 4;(1) Z ZVU P~ k)

A<z;<B A<z;<B &
Here we have used z; to denote the initial position of the j-th particle. Notice that there
are some cancellations in the last expression, which actually is equal to

> VUG — a).

A<z; <B
mkE(A B]

Define the empirical stress T by

= VU(g ~a)

m]<w
LT

we then have

dit S 4 = —(Ta(B, 1) — Tol(A,1)).

A<z <B

In the same fashion, let

EA,B = Z %pj Z U Q'j - q/ﬂ( )),

A<z <B A<a:, <B.k
we then have
d 1 ) .
EEEA,B = -3 AZ (4; + Gx)VU(g; — qi)
<IjSB
w3, &(A,B]

= —(Jp(B,t) — Jz(A,1))

13




where )
Tz, t) = (¢ + &) VU(g; — ax)

z_.i{::
>

Let g{z,1) be the position of the particle whose initial position is nearest to . We can write
j E as

Jo(z,t) = (=, t)To(z,t) + Z (d; + dx ~ 4(z, 1)) VU (g5 — ax)

a:j<m
oy >w

= g(z, t)To(a:, t) — glx, t)

The last equation defines ¢ which is the discrete analog of heat flux.
Define the empirical distributions Y, £ through

/ e i = S 4)

A A<z;<B

[ Beni = X Ga@re; Y U -wl)

A A<z;<B A<z <Bk
Then we have
Vi+V-Ty = 0
B4V -Jg = 0

where Ty and Jg are the microscopic currents defined above. The macroscopic conserved
densities and fluxes are related to the microscopic densities and currents through ensemble
or spatial/temporal averaging. Q{g;,p;} = ((¥), (E)).

6. Interfacial Dynamics. For simplicity, we will concentrate on the Ginzburg-Landau
equation

1
uy = Auf + Egug(l — (uf)?) (32)

with € € 1. One can think of this as a reaction-diffusion equation with fast reaction.
Solutions to (32) are closely approximated by the constant equilibrium values v = %1, except
at the interfacial region of thickness O(e) where transition between the two equilibrium
values takes place. The small scale in this problem corresponds to the internal structure of
the interfacial region. The large scale corresponds to the overall shape of the interface.

14




The fast process in this problem is the reaction term, which vanishes at three points
u = —1,0,1. These three points define the slow manifold: Given a function u{z), the slow
component of u is the level set of u at values u = —1, 1, and 0. Of particular interest is the
level set {u = 0}. Therefore given u, we define

1 ifu>0
Qu = 0 fu=0 (33)
-1 if u < 0.

The dynamics of the macroscopic component of u® then reduces to the dynamics of its level
set {u® = 0}, denoted by I

7. Carleman Equations. Our next example is the Carleman equation which is a simple
kinetic model. Later on we will use this example to present variations and limitations of
HMM and to illustrate the importance of different scales.

ou  Ou 5
te, =V (34)
v dv 4,
E - % = U v

The initial values are assumed to be oscillatory,
uw(z,0) = a(x, z/e)
v(z,0) = blz,z/e)

with a(x,y), b(z,y) smooth and 1-periodic in y.
There exists a well understood homogenization theory for this problem by Tartar, {67].

on  Oi t _

“émf+§£ = /v(m,y,t)gdy—u2 (35)
0

ot 09 L 3

5 a8 f“(ﬂ?,y,t)zdy“”z (36)
0

wz,y,0) = alz,y)
oz, y,0) = blz,y)
The two formulations both represent the microscale problem. In (34) the oscillations are

given as a function of z and ¢. In (35) the e-scale is less explicit and only represented by
its local distribution in the new independent variable y. Compare the discussion of fibers

above. From [67] we have
lim ( u{z,t) — 4 (:c, E:——E,t)’ + |v(z,t) — 0 (9:, L +t,t) D =
g—0 £ £
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The natural macroscale variables are the weak limits of the full microscale solutions and Q

is now defined as follows.
Uz, t) = [ i(z,y,t)dy = lim /lim rK,;(m — z)u(z t}dz\
’ jo » 5550 \ &0 j ’ }

1
Vi) = fo B(z,, )dy = lim (g% f Kyl — z)u(z,t)dz)

The kerned Kj is compactly supported in (—d, §) with,

/_i Ks(z)dzr =1

We will see in section 6 that the reconstruction must contain some information of the mi-
croscale oscillations for HMM to be effective.

The relation between the macroscopic and microscopic models is illustrated in Figure
1. In this figure, the macroscopic model is defined in the z space. The microstructures are
defined on the y space, the fibers. As we discussed above, the fibers can be the momentum
space for the kinetic model, the periodic cell for the homogenization problems, the probability
space of ensembles, etc.
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Figure 1. Illustration of the macroscopic and microscopic computational domains. The y-spaces

are the fibers representing the microstructures.

3 The Structure of HMM

There are two main components in the heterogeneous multiscale method: An overall macro-
scopic scheme for U and estimating the missing macroscopic data from the microscopic
model.



3.1 The Overall Macroscopic Scheme

The right overall macroscopic scheme depends on the nature of the problem and typically
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there are more than one choice. For variational pro
element method. In fact our examples in the next section use the standard piecewise linear
finite element method. For dynamic problems that are conservative, we may use the methods
developed for nonlinear conservation laws (see, e.g. {45]). Examples include the Godunov
scheme, Lax-Friedrichs scheme, and the discontinuous Galerkin method. For dynamic prob-
lems that are non-conservative, one could simply use a standard ODE solver, such as the
forward Euler or the Runge-Kutta method, coupled with the force estimator that we discuss

below.

3.2 Estimation of the Macroscopic Data

After selecting the overall macroscopic scheme, we face the difficulty that not all data for the
macro scheme are available since the underlying macro model is not explicitly known. The
next component of HMM is to estimate such missing data from the microscopic model. This
is done by solving the micro model locally subject to the constraint that Qu = U where Q is
the approximation to @ and U is the current macro state. For example, for the variational
homogenization problem, the missing data is the stiffness matrix for the macro model. As we
explain in the next section, this data can be estimated by solving the original microscopic
variational homogenization problem on a unit cell in each element of the triangulation,
subject to the constraint that Qu = U. For dynamic problems, such data can be estimated
from a Godunov procedure, namely, that we first reconstruct the micro state from U, and
evolve the micro state subject to the constraint that Qu = U, and then estimate the missing
data from u. The missing data can be either the forces or fluxes, or a part of the forces or
fluxes such as the eddy viscosity term in a turbulence model. We also have the option of
carrying out a number of such microscopic calculations (e.g. with different reconstruction
or different realization of the randomness) and extract a more accurate estimate from the
collection of microscopic calculations.

3.3 Examples

To illustrate the selection of the macroscale scheme and the estimation of missing macroscale
data from microscale models, we will discuss some examples in more detail.

1. Variational Problems.

Examples include
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where the multiscale nature of the problem is contained in the tensor a®(x,u) =
(a5 ;(z,u}) which can be of the form

(a) of(z,u) = a (=, Z), where a(z,y) is smooth and periodic in y with period [0, 1]%.
This is the classical homogenization problem we discussed earlier.

(b) a®(z,u) = a (=, Z), where a(z,y) is random and stationary in y. This can be used
to model random medium.

(¢) *(m,u) = a(z,u,?), where a(z,u,y) is smooth. The dependence on u makes
this problem nonlinear. The dependence on y can be either periodic or random
stationary.

The macroscale problem is of the type

min /D {%A(m,U,VU)— f(:a)U(:c)}dx

UeHL(D)
2. Atomistic models of crystalline solids:

min V(z: — ;)
-
to3} ywep

subject to loading conditions, where V' is a pairwise atomistic potential, z; = v; +u;,y;
is the position of the i-th atom before deformation, u; is the displacement of the i-th
atom. The macroscale problem is of the type considered in nonlinear elasticity

min / F(VU)
v Jp
where U is the macroscale displacement field.

For these problems, we can choose the macroscale scheme to be the standard finite element
method over a macroscale triangulation. The macroscale data that we need to estimate is
either [, A(z,U, VU)dz or [, f(VU)dz for U € Va, the finite element space. These can be

approximated via the following steps.

1. For each element A, approximate [, A(z,U,VU)dz or [,(VU)dz by a quadrature
formula.
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2. For each guadrature nodes z; € A, approximate A(z, U, VU)(z;) or f(VU){x;) by
minimizing the original microscale problem over a micro-cell A, subject to the con-
straint that [, wu(z)dz = [, Ulz)dz, [, Vu(z)dz = [, VU(z)dz, with appropri-
ate changes for the atomistic problem. For the periodic homogenization and crystalline
solids problems, A,, can be chosen to be a unit cell around z;, if we replace the con-
straint by a periodic boundary condition or the Cauchy-Born rule, as we explain in
the next section. For the stochastic homogenization problem, A;, should be larger
than the correlation length. In this case, it may also be of advantageous to perform

ensemble averages over several realizations of a (z, £).

2. Dynamic Problems of Conservative Type.
Examples include

1.
dw® =V - (a°(z, u) Vi)

where {a°(z,u)} is as discussed above.

Su® + V- (o (z)u) =0

where a°(z) = a (:n, £} ,a{z,y) can cither be periodic or stochastic stationary in y.
3. Kinetic models such as the Boltzmann or BGK equations.
4. Molecular dynamics of the type discussed in Section 2.
5. Spin-exchange models via Kawasaki dynamics [64].

Other examples may include models of phase segregation, mixtures of binary fluids, elastic
effects, etc. The macroscale models are of the type

where U is in general a vectorial macroscale variable, J may depend on z, U, VU, etc.

The macroscale scheme can be either a finite volume method, such as the Godunov
scheme, or a finite element method, such as the discontinuous Galerkin method. We will
discuss here the finite volume method. HMM based on the discontinuous Galerkin method
is considered in [20].

The missing macroscale data for a finite volume method for (37) is the macroscale flux J
at the cell boundaries denoted by {J;, 1 }. They can be estimated by the following “Godunov-
like” procedure

L. Select a microcell A, +1 around the cell boundary at z;, L.
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2. From {U}'}, reconstruct the microstates {@} on {A; 1}. @ should be consistent with
{U?} in the sense that Qu = U™, where () is the approximation of @ restricted to
{Aj+%} :

3. Evolve the microstate u(t) using the microscale model inside {A;, 1 }, with initial state
{@}, and subject to the constraint that

Qu(t) =U
4. Evaluate the macroscale flux {J,. %} using {u(t)}.

The constraint Qu = U requires some additional comment. Take the example of molecular
dynamics. If we would like to capture the macroscale behavior at the level of Euler’s equa-
tions, the constraint is simply that the average mass, momentum and energy should be given
by the prescribed macroscale values given by {U™}. If we would like to capture the viscous
or higher order effects, we also need to constrain the system such that the average density,
momentum and energy gradients be given by the macroscale values. This is less convenient
to implement, particularly if higher order gradients are required. The discontinuous Galerkin
formulation proposed in [20} avoids this difficulty.

The rules for selecting {A,, L } is the same as for the variational problems. As usual for
periodic homogenization and crystalline solids problems, A, 1 can be chosen to be the unit
cell.

3. Dynamic Problems of Nonconservative Type.

Examples include

1.
Pu

O = Z 242 335,,82:3

where {a°(z,u)} is as discussed before.
2. Spin flip models [30] that leads to Ginzburg-Landau type of equations.

In this case, we write the macroscale model as
U, = F(U)

where F(U) can be a nonlinear operator acting on U. For the macroscale scheme, we choose
an ODE solver on a grid, such as forward Euler or Runge-Kutta, and we need to estimate
F(U) on the macro grid.

For each macro grid point z;, we again select a microcell A; around z;. The principle for
selecting A; is the same as before. From {UJ’?}, we construct a piecewise polynomial of k-th
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order in A; denoted by U} (x). The rest of the steps are the same as that for the conservative
systems. We note that the constraint (Ju = U can be interpreted as

[

Ay

(u{z) — U7 (z))z"dz =0
for0 <m < k.

4. Macroscale Markov Chains.

When the macroscale process is a Markov chain, it is natural to use a kinetic Monte Carlo
method as the macroscale scheme. The missing data might be the transition rates between
macro states. Estimating such data is a rather non-trivial task. It is discussed in [23].

In the following, for dynamic problems we will concentrate on the simplest case when
the macroscopic scheme itself is a Godunov scheme and the missing data is the macroscopic

forces. Extension to more general situations will be studied in [19].

4 Estimating the Macroscale Data

In this section, we discuss in some detail the estimation of the missing macroscale data by
solving local microscale problems. There are two main issues. For consistency and accuracy,
the microscale problems have to be reformulated correctly, by adding constraints such as
Qu = U or boundary conditions. For efficiency, we have to exploit possible reduction of the
complexity of the microscale problems. This can be done by either reducing the size of the
computational domains for the microscale problem through compression, or a semi-empirical
method as we explain later in this section.

4.1 Compressed Microscopic Solvers

The key idea for the efficiency of the proposed method is that of compression, 1.e. to achieve
a reduction of the computational complexity of the microscopic problem through a reduction
of the size of the microscopic computational domain {med) by exploring the separation of
the macroscopic and the microscopic scales. Other compression techniques are found in e.g.
[25].

4.1.1 Variational Problems

Again it is best to illustrate the main ideas with a few examples. We will first discuss the

classical homogenization problem discussed in §2.2.
For u € HY(D), let

. 1 c ou Ou
) =3 [ Va5 s (38)
47
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Define the compression operator ¢ as in §2.2, then

AXU,U) = uFHé}:%l)I,lQuzU af (u, u) (39)
for U € V5. A% is often not explicitly known. It is needed in evaluating the stiffness matrix
for the macroscale finite element method. For this problem, the approximate macroscopic
solver reduces to an approximate evaluation of the stiffness matrix associated with A*(U, U).

First we consider the case when a°(z) = a (:1:, g), where a(z, y) is period in y with periodic
I =[0,1]¢. To obtain an approximation of A*(U,U), we consider, on each triangle A, the
solution of a “cell problem”

xT

V- (a (g; -E-) Vaua(x)) = 0 (40)

on za +&l, where z is an interior point of A, subject to the condition that

ua(z) — U(x) is periodic (41)
Let
~ |A|f Ty Oua Gup
= e id y — -mmd
A, U) EA: = %j:aﬂ (= E) T (42)

where |A] denotes the volume of A. We define this to be the approximation to A*(U,U)
needed to assemble the stiffness matrix for the macroscopic problem.
In the general case when ao° does not have the form a (z, ), we let Ap defined by

- 1 du Ou
U U =min — § . —_—
AU, ) 11;111' |/" ) aij(a:)a 3 jd:n (43)

subject to the condition | i Vudz = { i VUdz, where A is some appropriately chosen sub-
domain of A. We then let

AUUY =) |AlAA (U, ) (44)

and use A as an approximation to A%. A good example of such a situation is when a(z, y)
is random and stationary in y, in this case the size of such approximate cell problems (43)
has to be larger than the local correlation length of a.

This method is based on the strategy of solving directly the macroscopic problems and
approximate the macroscopic stiffness matrices by solving “the micro-cell problems”. The
computational complexity of this method does not increase as ¢ is decreased. Furthermore, as
we show below, it extends easily to nonlinear and time-dependent problems. In contrast the
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method proposed in [6] was based on the idea of replacing the finite element basis functions
with functions having the correct microstructures. This has the disadvantage that the basis
functions are expensive to compute. It is particularly difficult to extend such methods to
nonlinear problems, or problems for which the microstructure evolves in time. [39] extends
the method of [6] to high dimensions. For other related work, see [40, 60)].

The quasi-continuum method can be formulated in the same way. Here our problem is
to simulate the nonlinear elastic behavior of crystalline solids without using a stored-energy
functional, and we base our simulation on the molecular potential V(z;,...zy) where the
{z;}’s are the positions of the atoms. As before, we start with a macroscopic triangulation of
the sample, and denote by V5 the standard (vectorial) piecewise linear finite element space.
The microscopic state variable is now the positions of the atoms u = {z1,...zx}. We say
Qu = U € Vp, if the average strain between the atoms on the triangle A is equal to the
average strain of U on A, for each A. The reduced macroscopic energy functional E(U)
should be given by

E{U) = uléli_I:lU e(u)

where e(u) is the total potential energy associated with the configuration u. The guasi-
continuum method approximates F(U) using the Cauchy-Born rule. For each triangle A, let
EA(U) be the potential energy of a unit cell subject to the constant strain VU on A, and
let
E‘(U) - Z TLAEA(U)
A

where na is the number of unit cells in A. E(U) is the quasi-continuum approximation of
E(U) [66, 62, 61].

The qguasi-continuum method developed by Tadmor et.al has an additional important
twist, allowing it to deal with problems of type C. In this case, quasi-continuum method
provides the option of returning to a full-atom computation for E(U) near defects where the
local strain varies on an atomic scale.

In summary, the basic strategy for compressing the state space complexity of the mi-
croscale model is to reduce the computation on each macroscale cell to a basic microscopic
unit. Such microscopic units are the single period in a periodic homogenization problem, a
unit cell in crystalline materials [66], or a block of size comparable to the correlation length
of the medium in porous medium flows.

4.1.2 Dynamic Problems

For concreteness, let us assume that the macroscopic model takes the form of a differential
equation Uy = F(U). Given U, we would like to estimate F(U) from a microscopic model,
say (17).
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Our basic assumption is that the local relaxation time of the microscopic process is much
shorter than typical time scales for the macroscopic process: tg < tar. Our starting point
is the following generalization of the gas-kinetic scheme [72] for the approximation of F(U),

(see also [29]).
Given U™, F(U) is estimated via the following steps:

Step 1. Reconstruction: Reconstruct the microscopic state % from U™, u = RU™.

Step 2. Microscopic evolution: Evolve the microscopic process on a reduced computational
domain up to some appropriate time aAt, u(t) = s(t)a, 1" <t <" + At

Step 3. Force estimation: Obtaining an approximation to F(U) by compression of the mi-
croscopic forces. If the microscopic process has the form of a differential equation
uy = f(u), then we can write

F(U™) = Q{f(ut)) : t" <t <t" + alt} (45)
where Q is a space-time compression operator.

Step 4. Macroscopic evolution: Having an estimation of F'(U™), we can then compute U™+
using standard ODE solvers.

(45) is called an F-estimator.

In practice, step 3 should proceed simultaneously with step 2. The value of « is deter-
mined by when the F-estimator reaches a nearly stationary value.

If the macroscopic process is a kinetic Monte-Carlo type of Markov process, the force
estimation is replaced by estimating the transition probabilities between macroscopic states.
Such a P-estimator is discussed in [23].

It remains to discuss three specific details of the above algorithm

1. Reconstruction.

2. Compression, i.e. reduction of the computational complexity of the microscopic solver
by reducing the size of the computational domain.

3. Force estimation. The data from the microscopic solver has to be processed in order
to provide an accurate estimation of the macroscopic forcing term.

These three issues are related. We will center our discussion on compression. We will
discuss two aspects of compression: compression in space and compression in time.
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The basic principle for compression in space is the same as for the variational problems,
i.e. by reducing the computation on each macroscopic cell to a “microscopic unit”. For the
homogenization problems,

ot =V (a (a:, ES) Vug) (46)

out+ V- (a (a:, g) uE) =0 (47)

this leads to the following algorithms for approximating the local averages of u®, on a macro-
scopic grid:

Step 1. Reconstruction. From {U7'}, construct a piecewise polynomial U"(z). The order of
the polynomial depends on what problem we solve. It should be at least piecewise
quadratic for (46), and piecewise linear for (47). We will return to this issue later in
section 6 when we discuss the accuracy of this method.

Step 2. For each macroscopic cell A, solve (46) or (47) on za + &I subject to the boundary
condition u(z,t) — U™(z) is periodic with period eI.

Step 3. Let F7* be the average on za; + ¢l of the right hand side of (46) or (47).
Step 4. Compute {U7""'} using standard ODE solvers and the F-estimator {F}'}.

The quasi-continuum method also has a natural extension in the same fashion to dynamic
problems. The easiest setting for doing so is for the finite element method. We would like
to solve the elastic wave equation

P, V) OF
— g (W(U(t)),v)

where U(%),V € Va and the functional E(U) is defined through molecular potentials via the
Cauchy-Born rule, in exactly the same way as was done in quasi-continuum method.

We next turn to compression in time. By resorting to the microscopic model in order
to simulate the macroscopic dynamics, we are forced to resolve the microscopic times scales
which are not of interest. This is particularly expensive if tg < t3;. However in this case
we can explore this time scale separation to reduce the computational cost in the temporal
domain.

Let us express the F-estimator in the form

FU)= Q) vif (u)
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where the weights {1;} should satisfy

afy. frned 1

2

-

1

il

7

u; is the computed microscopic state at microscopic time step j. If is helpful to distinguish
two different scenarios by which relaxation to local equilibrium takes place. For some prob-
lems, such as the parabolic homogenization problem {46) and the Boltzmann equation, we
have strong convergence to equilibrium. No temporal or ensemble averaging is necessary
for the convergence of the physical observables. For other problems, such as the advection
homogenization problem and molecular dynamics, convergence to equilibrium is in the sense
of distributions, i.e. physical observables converge to their local equilibrium values after time
or ensemble averaging. The selection of the weights in the F-estimator crucially depends on
the nature of this convergence. In particular we note two special choices. The first is: 9, =1
and 9; = 0 for j < k. This is suitable when we have strong convergence to equilibrium. The
second choice is: ¢; = %, for 1 < 7 < k. This is more suited for the case when we have weak
convergence to local equilibrium. More accurate choices of the weights are discussed in [19].

The time interval on which the microscopic model has to be solved depends on how fast
the transient introduced by the reconstruction step dies out. This is best illustrated by
examples. Consider the parabolic homogenization problem

u; =V-(a (a:} g) Vu©) (48)

on D, with Dirichlet boundary condition u°|sp = 0. To approximate the macroscopic behav-
ior of 4, we will work with a macroscopic grid of size (Az, At). Let U = Qu® be the moving
cell averages of u® over a cell of size Az. Let R be the piecewise linear reconstruction. In
one-dimension, this is RU(z) = U; + gi-'%m:gf—(m — z;), for ¢ € [jAz, (j + 1)Az]. With this
reconstruction, we proceed with the microscopic solver. Asymptotic analysis suggests that
the relaxation time for this problem is O(g?) [7]. We plot in Figure 2 a typical behavior of
the microscopic flux j%(z,t) = a (z, f) Vué(z,t) at a cell boundary over the time interval
[t?,t" + Af] as a function of the micro time steps. It is quite clear that j°(z,t) quickly settles
down (after about 35 micro time steps) to a quasi-stationary value after a rapid transient.
We obtain an efficient numerical scheme if we select this value as the macroscopic flux and
use that to evolve U over a much larger time step Af.
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Figure 2. Computed flux 75(z,t) = a (z, %) Vué(z,t) as a function of the micro time step over

one typical macro time step, for the parabolic homogenization a (m, E) = 2 +8in27x%. The bottom

&
figure is a detailed view of the top figure for small time steps. Notice that j¢(z,t) quickly settles
down (after about 35 micro time steps) to a quasi-stationary value after a rapid transient.

Our next example is the advection homogenization problem
£ & £
ut—I—V-(a(a:,—g)u)xO (49)

in one-dimension. We assume a(z,y) > ap > 0. We proceed as before, except that we
take a piccewise constant reconstruction. In contrast to the previous example, the temporal
oscillations in the solutions of (49) do not die out. This is reflected in Figure 3 where we
plot the microscopic flux j¢(z,t) = a (z, Z) u*(x,t) over the time interval [t", 1" + Al] as a
function of the microscale time steps. j° remains oscillatory throughout the time interval.
Nevertheless, if we plot the time average

T

_ 1 A 4 T
ot = [ K(1-0)j'e,r)dr,  K(r)=1-cos2nr (50)

as shown in Figure 3, we see that it settles down to a quasi-stationary value on a time scale
of Ofe).
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Figure 3. Top figure: Computed flux j°(z,t) = a (z, £) u° as a fraction of the micro time step
over one macro time step for the convection homogenization problem (49). Bottom figure: Time
averaged flux 7(x,?) as a function of the micro time step.

The fact that the microscopic process only has to be evolved on time scales comparable to tg
leads to other possibilities of state space compression by neglecting the part of the state space
which does not contribute significantly to the F-estimator. Truncation of the mcd introduces
artificial numerical boundaries where boundary conditions have to be imposed. We suggest either
periodic or free boundary conditions subject to the constraint that Qu = U. Ideally one should
apply the absorbing boundary conditions that aim at eliminating the spurious effect of the artificial
boundary. Such boundary conditions were proposed in the context of wave equations in [14, 26],
and for molecular dynamics in [21, 22]. However, extending them to general situations does not
seem to be a simple task, and we will take it up in future work.

In summary, we can express the F-estimator at time ¢ as

Fo(U, ) = Gac{f((r)),¢ < 7 < t+ AL, i(t) = RU} (51)

where @(t) is the solution of the compressed microscopic model (possibly over a truncated computa-
tional domain) with initial data @(f) = RU, Q¢ is the numerical approximation of the compression

operator. Typically Qm has the form
QAt = QeQth (52)

where )., Qr, @+ denote the compression operators over the probability, spatial and temporal spaces
respectively. Having F'¢(U, t), the macroscopic state variables can be updated using standard ODE
solvers. The simplest example of forward Fuler scheme gives

Urtl = Um 4 AtFE(UT ), (53)

4.2 Simplifications

In many situations we can simplify the compression techniques further by replacing the compressed
microscale solver by explicit macroscale models. The parameters in the macroscale models can be
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either analytically computed or numerically fitted using the microscale model. This technique is
particularly useful for type A problems which are characterized by the fact that such techniques
are applicable over most of the computational domain.

4.2.1 Traditional Approach: Explicit Macroscopic Models

When an explicit macroscopic model is known and known to be valid, the compressed microscopic
solver discussed above can be replaced by a traditional approach of using the explicit macroscopic
models. This is particularly useful for problems of type A. In such cases, an adaptive model selection
is needed. See for example [21].

4.2.2 Semi-Empirical Methods

This method is a compromise between the explicit macroscopic models and the compressed micro-
scopic models. We assume that the macroscopic model takes a specific form but the coefficients
involved might be unknown or change with the environment, and we estimate these coeflicients us-
ing data obtained from the microscopic models. Such ideas are used extensively as a pre-processing
step to calibrate the input data and simulation parameters for macroscopic models. We propose to
incorporate such ideas in IIMM.

As an example we discuss the parabolic homogenization problem considered earlier. Even
though the macroscale equation for U = Qu might be difficult to obtain explicitly, it must take the

form
U =V - (A{z)VU) (54)

QOur task is to find the tensor A{z). In Figure 4, we plot, for a simple one-dimensional problem
with a(z,y) = 2 + sin2ny, the computed macroscopic flux (which should be an approximation to
A(x)VU) using the compressed microscopic model, as a function of V7. We see a clean straight
line whose slope gives an estimate of A{x). Therefore in an actual computation, for each unknown
entry of A at a cell boundary the compressed microscopic solver has to be used only twice at that
macroscopic cell boundary to give us an estimate of that entry of A.

5
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Figure 4. Empirically computed macroscopic flux as a function of the macroscopic gradient, showing
in “x”. The line is the exact homogenized flux, for the parabolic homogenization problem. This
figure illustrates the semi-empirical method. Knowing the form of the macroscopic equation, the
unknown coefficients can be empirically estimated with small cost.

Other examples of a similar spirit include the dynamic subgrid models of Moin et. al [49] for
large eddy simulation of turbulent flows; the work of Vanden-Eijnden on numerical solutions of
multiscale stochastic differential equations [71], and model reduction techniques in control theory.

4.2.3 Type A Problems

The additional twist for type A problems is an adaptive procedure that decides on each macro-
scopic computational element whether the known explicit macroscopic model can be used. We will
postpone general discussions on such adaptive procedure to a later publication.

Tt may also happen that near defects or singularities, tg becomes comparable to 37, In this case,
it may no longer be advantageous to use the compression techniques discussed earlier. Consequently,
the compression and reconstruction operators are unnecessary and the microscopic state is kept to
the next macroscopic time step. This is the case for example in the method proposed in [59] which
couples kinetic Monte Carlo and continuum models for epitaxial growth.

4.3 Galerkin Formulation

For many problems in applications, it is rauch more convenient to work with the Galerkin formula-
tion. In this section, we will discuss the extension of HMM to Galerkin formulation. For simplicity
we will assume that the fibers satisfy D, = Dy, i.e. they are independent of z.

4.3.1 Variational Problems

Let a{u,v) be a bilinear form on an appropriate function space H on the microscopic domain
D = D x Dy satisfying the standard requirements such as continuity and ellipticity. Consider a
problem of the form: Find » € II, such that

a.('u,, U) = (f: 'U) (55)

for all v € H. Here f is a given continuous functional on H. The version of HMM that we discuss
below will be based on a splitting of this problem into two pieces:

1. Let U be a macroscopic state. Denote by R*U the solution of the problem: Find u such that
Qu =U and

a(uv 'L?) = (f7 'U) (56)

for all v satisfying the constraint Qv = 0.
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2. Let R be a fixed reconstruction operator, and define a macroscopic bilinear form A by
AU, V) = a(R*U,RV)
Then the macroscopic problem is
AU, V) = (f,RV) (57)
It is easy to see that if I/ is a solution to (57), then R*U is a solution to (55) since
a(R*U, RV +v) = (f,RV) + (f,v) = (/, RV +v) (58)

For what follows, it is convenient to take the example of the homogenization problem, for which
Ty Ou dv
aw)= [ 2 (%) Ga e (59)

for w,v € H = H}(D). In this case Dy = D. We emphasize that the methodology applies to
general situations. Let Kp and K; be finite element triangulations of I} and Dy respectively.
Standard Galerkin methods based on the microscopic formulation would proceed directly with a
finite element space over Kp x Ky, denoted by V*. In contrast, HMM proceeds in two steps.

Let Va be a standard (e.g. piecewise linear) finite element space over Kp. We define () as
before: Qu = U € Va, if f/_\. Vudz = [, VUdz, for all A € Kp. For U € Vj, denote by R*U the
solution of the problem: Find v € V{*, Qu = U and

a(u:'u) = (f:v)

for all v € V" satistying Qv = 0. The second step is to solve for U from

a(R*U,V) = (f,V)

for all V € Va.

The key to the efficiency of HMM comes again from the possibility to approximate efficiently
a(R*U, V). The idea is completely analogous to that of the variational problems. For each & € Kp
let za be an interior point of A and let

ou o
ap{u,v) :[m Za,;,j (a:, -:—) 8:::1;' —B%dm

atel g

Given U € Vp, let ua be the solution to the problem
aalu,v) = / fvdzx
za+tel

for all v € H(za + eI), satisfying the constraint that v is periodic with period eI. wua is also
required to satisfy the boundary condition that ua(z} — U{z) is periodic with period eI. Define

o A - (,Z) Bua OV
A(U’V) - %: en /mﬂ_{_d%az’“? (ﬂf:, E) 3:1:1' 3:11jd$
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We then approximate A(U,V) by A(U,V). Finally, the macroscale problem is
AU, V) =(f,V)

for all V € Va.

This method is closely related to the analytic tool of two-scale convergence in homogenization
theory [3, 18, 50]. There the idea is to use oscillatory test functions of the form ¢ (3:, %) in order
to probe both the macroscopic behavior and the oscillations in the unknowns. Here we split this
into two steps: we probe the oscillations in the first step when we compute ua, and in the second

step we find the approximation to the macroscopic behavior.

4.3.2 Dynamic Problems

The set up is similar to that of the variational problem. Consider now a dynamic problem of the

form

d

a(uﬁ'v) = a('u.,'v) (60)
with a corresponding macroscopic model

d
or a time-discretized version:

AL
) -y = [ A, v (62)
tn

for V € Va. To evaluate A(U, V') from microscopic models, we proceed in the following steps.
1. Reconstruction: & = RU™.

2. On each element A, we solve (60) restricted to a small subset of A x Ky with appropriate
boundary conditions. For the homogenization problem, we can take this subset to be za +ef
and use periodic boundary condition. ;From this we can construct an approximation to
A(U{t),V) = alu(t), R*V) in a similar way as we constructed A(U,V) in the last subsection.
We denote this approximation as A(U(t), V). We stop the microscopic solver until A(U (), V)
or its time average reaches a quasi-stationary value, A*(U™, V).

3. We let
(Un+1,v) _ (UR,V) — AtA*(Un,V)

for V. g Va.
In some situations, we can simply use
(UL, V) — (U™, V) = AtA(U™, V)

where A was constructed earlier.
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5 Examples

5.1 Simple Illustrative Examples

Interesting special cases of HMM can already be found in the literature. An immediate first
example is the Godunov scheme in gas dynamics [32]. Classical Godunov scheme corresponds to
the case when the reconstruction operator is just the identity operator. Non-trivial high order
reconstruction operators are used in extensions of the Godunov scheme, such as the MUSCL, PPM
and ENO schemes (see for example [45]).

The next interesting example is found in the literature on solving stiff ODEs. In particular
projective methods make use of the time scale separation by combining micro- and macro- time
steps in order to achieve large overall time steps. For details see [33, 43, 28].

Perhaps the most significant example in the published literature that closely resembles the spirit
of the algorithm described above for problems of type B is the kinetic scheme [72] for gas dynamics.
In the form of [72] the kinetic scheme is based on the BGK model

_f-f

T

fi + (’U-V)f

where f¢ is some local equilibrium state, 7 is a small relaxation time. Given the numerical
approximation to the local conserved quantities at time ¢”, the kinetic scheme proceeds via the

following steps to compute the local conserved quantities at time gt

1. The approximate local equilibrium states f? and local gas distribution functions are con-
structed in neighborhood of the cell boundaries.

2. The BGK equation is solved on the cell boundaries.

3. The numerical fluxes for the conserved quantities are evaluated from the distribution func-
tions, and the local conserved guantities are updated.

This procedure does not use Euler’s equation for gas dynamics. It only makes use of the BGK
equation. In connection with HMM, we can define the compression operator ) by

Qf = (p,m,E')

where p,m, B are respectively the density, momentum and total energy densities associated with
f. Designing the reconstruction operator B is the most involved step in [72], which computes
corrections to the local Maxwellians in the form of Taylor expansions in order to achieve second
order accuracy {see [72] for details).

5.2 Further Applications

1. Interface Dynamics
Interfaces occur in many problems. Their dynamics may be modeled by a variety of approaches,

including;:
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1. Explicit interfacial boundary conditions, such as curvature flows.

2. Phase field models. Examples include phase-field equations for solidification, Landau-Lifshitz

nrviatinm fnvv Arnmain walla in o
UL UCoULAIL LU ML euit Y Culi sid o A1y

netics, domain walle modeled bv Allen-Cahn. Cahn-

RAAdibasa WY FRELELE L L A Aol LEAARY

Hilliard equations.

3. Molecular dynamics. Examples include phase boundaries, twinn boundaries, grain bound-

aries.

4. Kinetic Monte Carlo models. Examples inciude steps on surfaces, grain boundaries, domain
walls in Ising-type of models.

Current methods for treating interfaces can be divided into two classes. Sharp interface methods
based on explicit interfacial boundary conditions and direct simulation of the full model that re-
solves the detailed microscopic structure of the interface. A variety of powerful techniques have
been developed for the first class of methods, including front tracking methods [31] [69], level set
methods [51], immersed boundary methods [52]. Algorithmic development for the second class of
methods have so far centered on adaptive mesh refinement in the interfacial region. Even though
these methods tend to be more expensive, for problems for which no explicit interfacial boundary
conditions are available, they are so far the only choice.

HMM offers a third choice, by resolving the macroscopic dynamics of the interface using effi-
ciently the microscopic model. It consists of two main components.

1. A macroscopic grid that resolves the fields (temperature, elastic deformation) away from the
interface. The interface ig immersed in the macroscopic grid.

2. Given a piece of the interface and its environment, compute its normal velocity using the

compressed microscopic solver.

Obviously, it is crucial to have an expression for the normal velocity of the interface in terms
of the microscopic model. We discuss the simple example of the Ginzburg-Landau equation (32).
More complicated examples will be discussed in a separate paper.

Assume we have a grid with size (Af, Az) that resolves the dynamics and shape of the level set
{u® = 0}. Tn order to find the velocity for the level set, we integrate (32) on a cell y that intersects
the level set, to obtain

V] = /8 vn-V'u,EdS+El2 / W (1 — (uf)2)dV (63)
¥

where n is the outward normal of 8y, V is the normal velocity of the level set.

Preliminary versions of these ideas have been used in [21, 22] to study the dynamics of defects
and interfaces in crystalline solids. In particular, applications to dislocation dynamics, dry friction
and fracture dynamics were considered.

2. Kinetic Equations

For rarefied gases for which the Knudsen number is not small, Euler’s equation of gas dynamics
becomes inaccurate. In this case, HMM provides a way of approximating the macroscopic behavior
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of the system using direcily the kinetic equations. However, since tx is no longer small compared
with £y, the gain of efficiency through compressing the microscopic solvers might be lost. This
is likely to be the case when the standard conserved quantities, namely density, momentum and
energy are selected as the only macroscopic variables.

However, an interesting possibility exists that an expanded set of macroscopic variables might
decrease tg. Such an expectation is embodied in approaches such as Grad’s 13-moment closures and
the entropy-based closure schemes of Levermore [44]. If this is the case, the procedure described
in section 7 can be used to find this expanded set. HMM can then be used based on this set, and
efficiency will be gained as a result of decreasing tx.

Another possibility exists and is likely to offer an improvement upon existing approaches even
for simple gases in rarefied regimes. Instead of expanding the set of macroscopic variables, one still
uses the same set of hydrodynamic variables but with HMM based macroscopic model instead of
empirically truncated equations such as the Navier-Stokes or Burnett equations.

6 Stability and Accuracy

Let U be the numerical solution computed by the heterogeneous multiscale method, u be the
exact solution of the microscopic problem, and @ be the compression operator. Our aim was to
approximate Qu. In this section, we will estimate the error U — Qu.

6.1 Variational Problems

Again we will take the classical homogenization problem as an example. But the principle of the
analysis applies to more general problems.
Consider the problem

1 zy\ Ou Hu
; -l . SYVEE Y g — d
uemo%r(lD) fD 5 ?j Qi (3;, e) 92: Oz, T fou o

where f = f(z) is a given smooth function, the a;;(z,y)’s are smooth and periodic in y with period
I =[0,1]¢. See section 4.1.1 for notations. We will assume that the triangulation is quasi-regular,
i.e. all the triangles are of comparable size and all angles are bounded uniformly away from 0.

We will analyze the HMM with A5(U, U) approximated by A(U,U), defined in (42). Stability
comes from the fact that the quadratic form we are dealing with, A(U, U), is still uniformly elliptic
if a®(u,u) is. Accuracy can be estimated using the first Strang lemma on the approximation of
stiffness matrix for finite element methods {13] although for the present problem it is simpler to
proceed directly.

Lemma 6.1 Assume that o®{(u,u) is uniformly V-elliptic in the sense that

o (u,u) > OO[ |Vuldz.
D
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for v € H}{(D). Then
AS(U,U) > Oy / VU |dz.
D

for all U € Va.

Proof: From (39), we have

AU, U) = min a®(u,u) > min C(]f |Vul|*dz
| ue H} (D),Qu=U weHL(D) D
Qu=U7
= / VU |*dz
D

Lemma 6.2 Under the same condition as in Lemma 6.1, we have

AU, T zcof |VU|*de
D

Jor all U € Va.

Proof: Observe that
Gua Ou . Ou &
f Zazj (9:, E) %B_Adw = mln/ Zaij (x, f) é_y_a_udw
za+el i £ Ty Oj oatel ny £ T; OLj
where the minimum is taken over all functions u such that u — U is periodic on za +eJ. Therefore
dua O )
/ Zai,j (9:, _:13) YA TUA 1y > mInC'(;f |Vu[2d$
ratel i € aw'ﬁ 637_? catel

= C'O/ |VU|%dz = Cpet - |VU|? (64)
zatel

"This gives the desired result.
Let U. be the solution of

win (4°0,0) - [ f@)Ua)n)

Then it is easy to see that
U — Quellgn < CAzx
Let U, be the solution of
in {A(U,U) - Ulz)d
P A0 - [ fove)

We will estimate ||U. — Ue|| mi(p)- The difference is due to the fact that the quadratic form A* is
approximated by A.
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We have
CollU. — U3 < AU, - U,, U, - U) = A(U., U, — U,) — A(U,,, U; — Us)

Therefore

L 0LY) - A
O 0 Veva “I/”H1

In order to estimate A* — fi it ig helpful to introduce yet ancther bilinear form
8u ou
(U, U me/ ZGU sz ijd (66)

Here the minimization is over all functions u such that ulagp = 0,u € H'(A), [, Vudz = [, VUdz,
fau(z)dz = [, Ulx)dx, for all A € Kp. Clearly

e ~ Uellin < - (65)

AS(U,U) < A5(U,U)

for all 7 € Va.

The difference between A® and A€ is that in A%, the minimization is carried out independently
over each triangle. We no longer require v € H'(D). Let ia be the minimizer of (66} on the
element A,

Lemma 6.3 @ satisfies

lia(z) — (U(z) + eur (m —)); < CelVU| (67)
where U(z) is the solution of
. BV v
mm[ﬁth:A%,( B 33:Jd (68)

subject to the constraint Vi]pp = 0, [ VVdz = [, VUdz, [, V({z)dz = [, U(z)dz, V € H(A),
{Aij(z)} is the coefficient for the homogenized problem, ui(z,y) is the solution of

Y, - {a(z,y)(Vyur + ViU)) =0 (69)

for each fized z € A, with periodic boundary condition in y. Moreover we have

VU (z) — VU(z)| < CAz|VU] (70)
UAZ;@J( )%%d —/ZAW(m)aUa—Ud <ClAz+AIIVTE (1)
(U, 1) — Z [ ZAH 3—U_@d | < C(Az + )| VU2, (72)

The constant C is independent of A, Az and ¢.
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Proof: The first part of the lemma is a simple consequence of the results in chapter 1 of [7].
Let

() = Ufz) + eur (gg, »Z-) + 2y (sf;, g)

where U and u; are specified in the statement of Lemma 6.3, us satisfies
Vy - {a(z,y)(Vaur + Vyug)) + Vg - (a(z, y) (ViU + Vyur)) =0

then we have

IA

fiala) ~(a) < CelVU]
Bu/_\ dia aU aU 20
|fzaw ) oo e /Z 5oz < CElVUPIAl

IViia(z) — Va(z)] < Ce|VUI

To estimate the difference between U7 and U, we observe that U(z) is the exact solution of

. ov ov
mm/& Z:Aij(.’l‘:A gg—s;é—gd:v
ij

subject to the constraint that V € HY(A), f, VVdz = [, VUdz, [, V(z)dz = [, U(z)dz. Since
|Aij(2) — Aij(za)| < CAz

for z € A, we obtain
|V () ~ VU(z)| < CAz|VU]

The rest of the lemma follows easily.
The next lemma estimates the error due to the non-conformity of A%,

Lemma 6.4

4, 0) - A @,0) < ¢ (s + =) VU2 (73)
Proof: Let

Then on each element A,

|Vu(z) - Vi(z)] = |[VU(z) — VU(z)| < CAz|VU|
Bu Bu o ou
|f Za” ) o Seds fz%.( )——-(-amdaﬂ < CAz|VUPA|
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Since [/(z) is continuous across the edges of the triangles, the discontinuities in u(z) across the
edges are of size Ofe) - |[VU|. Consider now a modification of u(z)

Y IR S SRS S JURN
WwAL) = U] -+ oulE )
such that: (1) u* € H}(D), (2) Qu* = U. We can construct such a du, satisfying
£
dulpe < C-—|VU
[Véu|pee < O |VU]

on each element A. Therefore, we have

AU U) < af(u* u*)<2[ Zaw @g—”dz+c —||VU||L2

IA

) Oia
Z[ o (57) G % +ZO(A:¢+£+—) N

E@U,U)+C (A + é) VU2,

The last step is to estimate |A(U,U) — A%(U,U)|. Here we just have to observe that for each
A, we have

Lemma 6.5

1 Bup BUA U 8U
E_d/amﬂfzaij ( ) oxz; O d ZAij(mA)w_d < C(Az +€)|VU|*

This is true since

BU 8U .1 i du
ZA:'.J ZA) axz Hﬂngg mﬁj%:% (JSA; )a,;;b?}dfﬂ

where the minimization is subject to the constraint that u(z) —U({z) is periodic. This, plus Lemma,
6.3, gives Lemma 6.5.

So far we have estimated the quadratic form. The estimate for the bilinear form goes along
exactly the same lines and we obtain:

Theorem 6.6 Assume that the finite element triangulation is quasi-regular, then
U, — QU'E”Hl{D) <C (A:B =+ E)

Theorem 6.5 suggests a result of a general nature, namely that the error of HMM for variational
problems comes from two sources: the standard local truncation error (here the first term) and the
error due to compression {here the second term).
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The proof of Theorem 6.6 was complicated by the fact that we were comparing U, with Qu,,
therefore we needed to estimate A — A%, It is simpler to estimate U. — U, where U is the solution
to the homogenized equation. For that purpose, we just have to estimate A(U,U) — A(U,U) where
AUU) = [p3; Aij(m)g—gig%dm, and this is a direct consequence of the Lemma 6.5. Therefore
we have

Theorem 6.7 Let I7 be the solution of

1
in (AU, U)~ | fU(2)d
i (GAU0) - [ U@}
Then

|Ue ~ Ullgipy < C{Az +¢)

6.2 Dynamic Problems of Type B

For concreteness we will discuss the case when the macroscopic model is a differential equation of
the form U = F(U), and HMM takes the form

+1 _
Ut = UP - At FE(UT)

We will estimate the error between {U]'} and some suitably chosen numerical scheme for the
macroscopic model. Let us write this numerical scheme in the form

UPth = U7 + AtF;(T™)
Let E;" = U}’ — U}‘. Then
B = B} + AUF; (U™ - F(O™) + At(Ff(U™) — F5(U™)

F should be chosen so that it is stable and minimizes JZ*"J,‘.E o F'j. For this purpose, we define the
Generalized Godunov Scheme (GGS), which is obtained by replacing the microscopic solver in
HMM by the exact macroscopic solver. The precise definition is not important. We just have to
identify one particular macroscopic scheme that is both stable and close to HMM. Examples of
GGS will be given below.

For nonlinear problems, we have to be careful about the notion of stability. For problems
with smooth numerical solutions for which divided differences of suitable orders are uniformly
bounded, Strang showed that L? stability of the linearized equation is sufficient for getting the full
accuracy of the nonlinear problem [65]. For multiscale problems, even though we are interested in
macroscopic variables which are typically averaged quantities, small scale fluctuations still exist at
small amplitudes and we have to specify more carefully the class of numerical solutions that are
allowed when we define stability.

Fix a macroscopic time T. Let K be a class of discrete functions defined on the numerical grid.
For example in Strang’s theorem, K = {{U}'}, | DX, UP|| < Cq for @ < N, and nAt < T}, where
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N is an integer depending on d, the spatial dimension, C, is independent of At, and Az, D% is
the divided difference operator of order a.. For our problem, K will usually be chosen to consist of
discrete functions which have bounded divided differences up to some order, and which are close

to the exact solution of the macroscopic model.
Definition: The GGS is said to be (X, §)-stable if

1
ITE_ (I + At / VE(U™ +0(V™ — U™))d6)|| < Constant (74)
0

for all k, £ such that 0 < k < £ < [-£], and all {U™}, {V"} such that {U"},{V"} € K, and
U -Vl <é
il nAt < T. The constant depends only on T'.
Theorem 6.8 Assume that
1. GGS is (K, d)-stable
2. {UrL{U" e K
3. max, . 1 HE(U™) — FE(U™)]| = 0 and |[U° —~U®|| = 0 as e = 0, At, Az — 0.
Then there exist €y, Atg, Az, such that if € < eg, At < Aly, Az < Azg,nAt T

IT™ - U™ < C(IU° ~ U°| + max IF(U*) - FEUH)
: 0<k<;

Proof: First let us assume that
o -u"|| <é

Let §" = I+ At f} VF(U™ + (U™ — U™))df. Then from (74) we have

n—1
B = (g SHE + Aty (5 85 (F(U*) - F(UR))
k=0
Hence using (K, §)-stability,
n—1 ~
IE™ < CollB|i+At) | Col|E=(U*) — F(U*)]|
k=0

A

Coll %]+ 7Co mae | F*(U%) — F(U™)]

Now we will show that the assumption that ||[U™ — U™|| < & will not be violated for nAt < T.
Since ||U° — U°|| = 0, as & — 0, At, Az — 0, we have ||T° — U®|| < §. Assume that ||T% — U*|| < §
forall k <n < A%. fn+1< %f, then we can use the (K, §)-stability to get

I < CollE®|| + TCo max 175 (U*) - FUH)|
=At
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.From the third assumption in the statement of the theorem, there exist g4, Aty, Azg such that if
€ < €9, At < Atg, Az < Axp, then the right hand side of the above inequality is less that 6. Hence
|E™t1|| < & and by induction this proves that ||E"|| < difn < BTEE and £ < gg, At < Ay, Azx < Azg.
This completes the proof of the theorem.

Theorem 6.8 does not guarantee that {U"} closely approximates the true macroscopic behavior
of the system. For this to happen it is important to assume that the GGS is consistent. Consider
the following illustrative example for solving the parabolic homogenization problem (46). The
proposed method consists of the following steps.

1. Given {U7'}, let RU™(z) be the piecewise linear reconstruction RU™ () =U ;+95%§%3i(m—

:nj),:cj_% <zr< Tipl

2. On [z;,z; + €], solve (46) with initial data u(z,?") = RU™(z), and the boundary condition
that u(z,t) — RU™(z) is periodic.
3. Let FT* be the average of V- (a (=, ) Vus(z, t"+1)) over [z, 2; + €.
41 _
4. U =UL + ALF}

The corresponding GGS is the same except we replace the microscopic model in steps 2 and 3 by
the homogenized equation.

This algorithm is unlikely to converge to the true macroscopic behavior described by the ho-
mogenized equation since the GGS itself is not consistent with the homogenized equation. In fact
it is easy to check that the GGS produces U; = 0. For consistency, the reconstruction has to be at
least piecewise quadratic.

Corollary 6.9 Assume that the conditions in Theorem 6.8 hold and let U0 =U% Then

1T ~ Qu{-, M)l < CUIT™ — Qu{-, £™)|| + [ max, IFU*) = FEUH)) (75)

The error has two contributions: the first term is the standard local truncation error of the
macroscopic scheme and the second term is the error due to compression.

The compression error also has two contributions: error due to compression in time and error
due to compression in space. Here we will study error due to compression in time.

In many situations, the macroscopic model takes the form

F{U) = Qf(R'U) (76)

where R*U is the microscopic “local equilibrium” state associated with U. Recall that F*(U, ) has
the form

Fe(U,t) = Qad{fla(r),t <7 <t+ At,i(t) = RU}
Qar = QeQ.Qy

For simplicity, let us assume that f(r) = u(7), i.e. the microscopic solver is exact.
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Observe that if we replace 4{7) by R*U, then
Q{/ (7Y} = f(R'U).

Let
Qf(R*U) = Qeme(R*U)

then
F(U) - F(U,t) = Qf (R*U) — Qf (R*U)
+Qf(R'U) ~ Qae{fu(m)),t < 7 < t+ At,u(t) = RU}

In the following, we will consider special cases for which @ = Q. Then estimating F(U) — F*(U, t)
reduces to estimating

QU (RU) ~ Quef{ulr),t < 7 <t 4 At,ult) = RU}).

This clearly depends on the rate of relaxation to local equilibrium. It is relatively easy to calibrate
this term when strong relaxation takes place.

Lemma 6.10 Let u(r)} be the solution of the microscale problem with initial data u(0) = RU.
Assume that strong relazation takes place in the sense that

lu(t) - R*U| < Ce 3@ (77)
Qf(u(r)) - QF (R )| < Ce 5@ (78)
and let
Qulf(u(r)),t < 7 < t+ At,u(t) = RU)} (79)
= f{u(t + all)) (80)
then

\F(U) — F5(U,1)| < Ce i

Typically (77) and (78) holds if there is a spectral gap. d(¢) is the relaxation time which goes
to zero as ¢ goes to zero.

The case of weak relaxation is more subtle since non-trivial time averaging is necessary in order
to guarantee convergence. We will postpone a discussion of the general theory to [19].

For what follows, we will concentrate on linear problems of the type

Ui +V-J=0

for which the notion of standard linear stability suffices. In this case, it is natural to use the finite
volume method as the underlying macroscopic scheme. Instead of estimating forces, we estimate
macroscopic fluxes at the cell boundaries.
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We will compare the solutions of the HMM, expressed in the form

grtl _pn J5 L (UM) =T (U
7 . J —+ J+3 i—3 =0 (81)
FAYA ’

where J® ; is the numerical flux computed via HMM at the cell boundary at Tl with that of

Az

2
an associated macroscopic scheme

Frntl _ 7. Yy — F, n
Ot -0y w0 @ (52)

At

Let E;“ = UJT‘ - er’f. Then we have

vl gn jj+%(E”) - ij%(E")
At Az (83)
b U 0 = T ) - U5y 0 - Ty ) =0
Lemma 6.11 Assume that the GGS is stable. Then we have
@) - U4 @ - ;@)Y (54)

NEH

371 < Com| 25, 0) — Ty
In some situations, the quantity Hj i1 Uy = J; 1 Uy - .J?J +1(U) is smoothly varying in j,

2 2
therefore the divided difference of H*(U) is comparable in magnitude with H*(U) itself.

Our task is now reduced to estimating

1 e e

(85)

We will discuss this using several concrete examples
QOur first example ig the advection equation
(86)

u§+V-(a(£§)uE)=:0

in one dimension, where a(y) is assumed to be smooth and strictly positive. We will consider a
simplified situation in which the microscopic solver is exact, and J* is computed as the averages

over a small interval of size a/Atf
1 alt 'Tj-l-l
£ — 2 £
Jj"‘%———_a&t | a(————g )u (z Tipts ,t)dt (87)

where u®(z,t) is the exact solution of (86) with the reconstruction u(z,0) = U; for z < « +2

w(z,0) = Ujpq for o > T2
For this particular problem the macroscopic equation is simply

U +V-(AU) =0

(88)
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where A = (fol aly—)dy)_l. The GGS is the upwind scheme: jﬁ_%(U) = AU;_1. The stability

condition is A'tA < 1.

To compute J¢ ,, let v° be defined as v}, = u®, and v* solves the equation
ST g

v +af(z)v; =0 (89)

with initial data v®(z,0) = Uj(m—mﬁé) for z < Ziyl and v¢{z,0) = Uj+1(mw$j+%) for z > iy
Here a®(z) = o (%) This equation is easily solved by the method of characteristics. Let X (y,t) be
the solution of
dX{y, )
dt

and y(z,t} be the inverse function of X (y,t) (with ¢ fixed), X(y(z,t),t) = =. Then v*(z,t} =
Usy(z,t). Moreover

= a’E(X(%t)): X(y,O) =Y (90)

dy

a’(z)u’ = of(z)v = aE(m)Uj—é—; (91)
a®(y)
= GE(HJ)UjW = a*{y)Uj.
Therefore we have
1 alt
& —_ £ £
R /0 (a0 (055 Dt
1 alt
= mUj/ a*(y(z;1,t))dt
(92)
ait dt
= u [ o (5)
1 alit
- U; d
aAtUJ_/O Y
since —é—% as%y) Hence
4 :U.y(:r:ju}_%,O) n—y($3+1,aAt) U-EM% —y(mj+%,a£)t) 93)
J+3 7 al\t 1 ot
;From (90), it is easy to see that
(:L.J—i-% - ( J+l y O’.’At)) [ ﬁdy -+ O(E) = aAt (94)
Therefore
1 1 -1
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1 £
o[ JE L = JE 4] < C
Az Uit JJ—%I ~ T altAzx
;From Lemma 6.9, we have
- E
ur Ut <
U; i< CaAtAfn (96)
which in turn gives
€
U7 = (Qu)(zg, )| < C (goge + o). (97)
This estimate is not optimal due to (96).
For our second example, we fake
w=V-(a (x fg’“—) V) (98)

in one dimension with boundary condition u*(0,¢) = u*(1,¢) = 0.

For simplicity we will neglect possible technical difficulty at the boundary. This can be assured
by choosing ¢ in the form £ = 1/N where N is an integer. Our argument also applies to the general
case, with slight modification.

Let

4% (2, 1) = up(z, t) + uq (w, E_j—,t, 512) + e%uq (m, %,t, 52—)
where up satisfies the homogenized equation
Syug = V - (A(z)Vug)

with A(z) = (fol E(;mdy) “1, U1, Uz, . .. satisfies, for fixed (z,t)

drur — Vyla(z,y)(Vyur + Vaug)) =0

Bruy — Vy(a(z, y)(Vyug + Viau1)) = Vala(z, y)(Vyur + Vauoe)) — Ve(A(2)Veuo)
etc. Consider the family of operators defined by

Lfu(y) = —Vylalz, y)Vyu(y)).

with periodic boundary condition. For every fixed z it has a zero eigenvalue and other eigenvalues
are positive. Let A(z) be its smallest positive eigenvalue, and let @ (z,y,t), @(z,y,t)--- be the
solutions of '

Vyla(z,9)(Vyia + Voup)) = 0

Vylalz, y)(Vyiis + Vour)) = ValA(2)Vauo) — Vela(z, y)(Vyta + Vsug))
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In general, their averages with respect to y are determined by the slow equations of @1, %2 obtained
from higher order terms in the hierarchy, see [7]. Here we can take their averages to be 0. Then we

have
lui(z, y, 8, 7) — G (z,y,8)| < Ce @7
lug(z, y, 1, 7) — Go(z,y,8)] < Ce @7
Now let
je = d 7 e 2~ z
J(z,t) = a (az, e) Ox (uo(a:) + eiiy (a:, E,t) + &%y (3:, e’t))

FE — £ “E € — ‘{’_U_ £
Sz, t) = a (a:, 5) Op %, JH(z,t) =a (m, s) Opt
we then have o
| o (2, 1) — Jé(z, 1)l < Ce™ 2
| (=, t) — J*(z,8)| < Ce

with A = ming A\(z) and the constant ' only depends on uy and Az. C takes the form Cp/(Az)*
where k depends on the smoothness of the reconstruction. In one dimension, we have

a(z,y)(Bpup + Byur) = A(x)Oup = J(z,1) (99)

Hence Jé(z,t) — J(z,t) can be expressed as

Fo(z,4) — J(z,8) = efr (m —:_t) +efs (=, gt) (100)
Therefore we have
1 Co At
A (540 = 9548~ ey t) = I, )| < agele )

Going back to the HMM, if we assume that the microscopic solver is exact, and the flux-estimator
is given by J{(z, a/At), where a € (0, 1), then the GGS is given by
cmtl
v - _
At

where J{z,t) is obtained from exact solution of the homogenized equation with the same recon-
struction as in the HMM, and we finally obtain an estimate of the type

1
_KSE(J(;,; alt) — J(:r:j__%,aﬁf))

i35

Pt 7.t

(e+e )

T ny o 20
U} = U7| < (Az)Eti
where k depends on the regularity of the reconstruction.

This analysis cannot be extended to high dimension since {99) ceases to be valid in high dimen-
sion. In fact, HMM in the flux form may not converge in high dimension. This is discussed further
in section 6.4.
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For our third example, we consider the case of an ensemble of independent random walkers on
the line. This example serves the purpose of illustrating the effect of different reconstructions on
the rate of relaxation. The macroscopic equation for the average density of the walkers is simply
the heat equation. On a macroscopic grid the HMM can be formulated as

" _ N
A O Tt
At Ar

1
2

where J" L is computed by ensemble averaging (over N independent copies) of the empirical flux

across the bounda,ry ab z; +i obtained by placing particles according to some reconstructed dis-
tributions. The empirical flux is computed as N {aAt) — N_(aAt), where Ny (alt) denotes the
number of particles crossing the cell boundary at Tl from the right/left respectively, up to time

aAd.
For simplicity, we will let =, 1 = 0, and replace the random walks by their continuous coun-
2

terpart, the Brownian paths. Denote by yi,k = —-K,-K +1,... K the initial position of the
Brownian particles. At later time, the positions of the Brownian particles are at mi (t) =y +fw£ (£},
£=1,...N. We will consider two different cases.

Case 1. wi(t) = w’(t) where {w*(-)} are independent Brownian paths.

Case 2. {wi()} are independent Brownian paths for £=1,---N, k= —-K,-K +1,... , K.

Let Ni(t) be the number of particles starting at yi that cross 0 before time ¢. For £ > 0, let
Xk,ﬂ(ts 'UJ) == l{minosss‘g 'wf; (S)(""yk}

where 1z denoctes the indicator function of the set B, w denotes the random path. Then
= Z Xk,ﬂ(ta ‘LU)
]

Using the reflection principle, we have

Expe(t,w) = Prob {min wi(s) < -y}

= 2Prob {w(t) < —yx}

~4k
= 2 Hy(MdA = filyr)
—00
2
where Hi(A) = ~2= ¢~ 4. The last equality defines f;(y). Hence

é'n‘t

ENg(t) = > Expelt,w) = N fi(ur)
¢
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If we denote by N..(f) the total number of particles that cross z = 0 from the right before time ¢,

we have
=" filw)
k>0
Consider first the case when {y;} are distributed as y = k—l}‘sf for k>0, and for k <0, y = %ﬁf.
Here Uy = Ujy1, U— = Uj. This corresponds to a piecewise constant reconstruction. Let Az =
Kéz.
ey
N E>0
13 Az
- & ( ™ fway+om)

_ {\[(1—(3 - +A:1:erf(f>%)}

o0 _%dm As K — oo, we have

where erf(y) = ﬁ f

N4 () t U,
E N - T &%

N_(t) tU_
E N %\/—5:3

where N_(t) is the total number of particles that cross & == 0 from the left. The ensemble averaged

flux is
gty =g = N-() \/? L, -

This has a square root behavior in £, mstead of linear. As expected, the rate of crossing 0 slows
down as time increases. To compute the variance, let us first consider case 2. Notice that

ENE(t) — (ENk(1))? = ZEXkEXkE’“(ZEXkE
o

= ZEXk£+ZEXk£fEXke— ZEsz)

EEE

Similarly for k < 0

= 3 (Exe — Exed?) = N{fulu) — hilwe)?)

£

Therefore

Var (M) o ZVar Ni(t) Z Jelye) — ft(yk)Q) ~ "j]\n_;r

N
k

SR
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For case 1, let us assume that the Brownian paths for & > 0 and ¥ < 0 are independent. Let

¢E(t:w) = EXk,K(t?w)
k

EY] = E D xeelt,w)xwolt,w) +E Y xuelt,w)xw elt,w)
e >0 k<0

Observe that for 0 < ¥ < k,
Xk, et wxw o(t, w) = xx o(t, w)
Similarly for k¥ < ¥’ < 0. Hence

B = Y |k[Expelt,w)

k
= > Iklfelwe).
k
Therefore
v (W) - 2 Vel = ¥ QKA = Qo flw) (oD

As expected this is larger than the variance for case 2.
The above calculation is based on a piecewise constant reconstruction. We next consider the

case of piecewise linear reconstruction: U{z) = Up+ gig;q:cc, where Uy = U+‘§U‘. Yy is now defined
by the equation
kdx
Yo = — .-
Up + %’yk
Let y(z) satisfy the relation
y(z)U(y(z)) ==
then dx = Uydy + 2U+A“$U* ydy. In the same way as before, we have
N (t) R
B = > filw) = iz J, fily(z))dz
k>0
1 [y U, —U.
= — Updy + 2————ydy).
5/, Fily) (Uody + 2————ydy)

Let Ay = y(Az), then
BV, (1) — N_(1)
N

4 UL —U_ (™
§T /0 yfi(y)dy

e Lo () S ()

50

Jt) =




2
where G(y) = —= [ A2e~Fd\. Let Gy = G(+00). Then

2

Gly) = G+ Ofye™ 7).

Hence the time averaged flux behaves as

J(ty Uy U= _an?
T e CG—ASC (1 -+ O(e 4t ))

with Cp = J& 1.

This calculation clearly shows the superiority of the piecewise linear reconstruction, in which
case the averaged flux rate quickly saturates to a stationary value.

In summary, the error due to compression in time depends on the nature and rate of relax-
ation to local equilibrium, the compression operators used to extract the F-estimators, and the

reconstruction operator.

6.3 Subtleties of the Flux-Formulation

Next we turn to the error due to compression in space, i.e. the effect of Q. To see the importance
of Q;, let us consider the the example of the parabolic homogenization problem. For the macroscale
scheme, we will pick the finite difference method. We will take the macroscale flux to be

x
Ty =a(o) velesy
;From homogenization theory, we know that v* has the form
£ T 2 £
uf (z,t) = up(z,t) + euq (w,g,t) + £°ug (a:,-g—,t) +...
where ug satisfies the homogenized equation

ugy = V - (A{z)Vug)

A is the homogenized coefficient tensor defined earlier, and u; is given by
6ua
ui(z,y,1) = ) x5 9) 5 (%1)
i i

where x; are the solution of the cell problem
Vy(alz,y)(Vyx; +€5)) =0

We also know that
IV - (a (w -‘:;i) Vi) — V - (A(z) V)| = Ofe)

as € — 0. However, except in one dimension, it is generally not true that

JE(a,t) — J(z,8) = a (sc f) Vs (2, 1) — A(z)Vug(z,t) = 0
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Instead, we have

1,1} 3 0 will be given

i

1!?1’!.0'[“3 'F ("f‘
whnere g\ &

’ y! hd -~
below.
The flux-form of HMM is able to compute J¢(z,t) accurately. But notice that

Vi JHz,t) ~ Vi - J(z,t) = Vi fo (m,z,t) +eVp- fi (m,g,t) +...

where V- is the discrete divergence operator on the macroscopic grid. The evaluation of U™ will
suffer from the large errors coming from the poor approximation of Vj - fo (:1:, z t) to V- fo (a:, % t).
This problem does not occur if we approximate directly the force V- (A(x)Vup) since the oscillatory
component of fy does not contribute to the force by virtue of Vy - fo(z,y,£) = 0.

This additional error is due to the oscillatory nature of the microscopic fluxes from which
macroscopic fluxes are extracted. It is similar in nature to the case of weak relaxation to local
equilibrium when error due to compression in time was considered. The solution to this problem is
simple. Instead of using pointwise values of the flux at cell boundaries, we have to take appropriate
spatial averages to smooth out the spatial oscillations.

We now give an example for which fy # 0. First of all, let us observe that if fo = 0, then we

have
a{z, ) + Vyx) = A(z)

Hence

Vyx = alz,y) Al) -1

a0 = (f a(m,y)“ldy)_l

Let us consider a situation when

aloay— | @) 0
(z,9) ( 0 a(yi))

where a(y) > 0 is a smooth periodic function with period 1.
It is an easy computation to get the solutions for the cell problem

-1
dxi 1 (fl 1 )
AL ——d -1
dys a(z) \Jo aly1) v

dx2
dy;

This holds in one-dimension.

= 0
x1 = x1{¥1), x2 = x2(71). The leading order flux is then
T
€ — —
JE(z,t) = Jo (g; E,t)
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where

Jo(z,y,t) = alz,y)(I + Vyx(z,y))Vauo

_ ( i Ty )10z, o, ) )

G‘(yl)amz Ug (SL‘)

Hence
0
folz,y,t) = ( (a(i1) mfﬂi o{y)dy) Oz uo (s, t) )

6.4 Limitations of HMM

To appreciate the limitations of HMM, we go back to the example of Carleman equations, discussed
earlier in section 2. ;From the homogenized form of the Carleman equations, (35), we see that some
essential knowledge of the oscillations must be kept after compression. The nonlinear terms in (35)
imply that the local distribution of » and v values in the oscillation influence the weak limit via

the terms,
1 1
[ 2dy f wldy
0 0

and the evolution of these distributions decay along the characteristics from the term —@? and —#2.

A local microscale computation as in the linear homogenization problems discussed earlier
followed by compression to approximate the weak limit will thus not work.

The homogenized form of the equation (35) can be used as a basis for HMM, replacing a
direct discretization of the original problem (34). A discretization in the y-fiber is needed but the
computational complexity of the algorithm will not increase with decreasing €.

In this case it is however possible to construct a HMM with the same complexity as a coarse grid
calculation in z, f-space. By choosing appropriate coarse grid discretization a coarse grid sampling
of 1, v is enough. The details are given in [24]. The original compression is thus a uniform sampling
with Az /e # rational. For the initial values we have,

U} = Aalzi,zi/e)} = Qalz,z/e)
(V'Y = {blai,zi/e)} = Qblz, z/e)

7 Variations and Improvements of the Basic HMM

The HMM as we have described it requires the definition of @ and thus the macro scale variable
U. In most of our examples the choice of coarse scale variable were quite natural. This may not
always be the case and it is possible to determine ) automatically as part of the computational
process. Let us mention two such techniques.
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The first is the whole class of model reduction methods that, in particular, are used in connection
to control. The dimension of the state space is reduced when the reduced model is derived. The
numerical techniques involved may, for example, be singular value decomposition or Krylov subspace
methods, [9]. The reduced state space will in our case typically correspond to the macro scale.

The other technique is based on wavelet compression. Such compression is common in signal and
image processing but has also been applied to differential equations. In [25] Engquist and Runborg
describe a wavelet based method for numerical homogenization. A differential equation representing
both macre and micro scale processes is first discretized on the micro scale by standard fechnigues.
The resulting numerical operator is then projected onto a coarse wavelet space. The corresponding
compression also reduces the numerical state space and can be used as our ). Examples are given
from classical homogenization for which the compressed dependent variable corresponds to the
standard macro scale.

The numerical methods for the coarse grid that we have presented have mainly been of low
order. This is advantageous in the presentation of the principles but in practical computation it is
often better to apply higher order methods. This fits well into our general framework. Higher order
elements can replace P in the variational problems and higher order differencing and reconstruction
are possible in the Godunov setting,

In order to apply these higher order methods, higher order of fluxes or forces from the micro
scale simulation is required. This is achieved by appropriate choice of F-estimators.

Assume that f(z) is the microscale force computed from a microscale simulation for z € Q35 C
R¢, where §; is a computational cell in med, with diameter (£25) == §. x can represent both spatial
and temporal variables. Assume also that f(z) has the form:

f(z) = F(z) + b{z,e) (102)

where F is the macroscale forcing that we would like to approximate. We would like to estimate
F from f using

F(z) = K(z,z)f(z)dx (103)

where K is defined such that

L,p=0

Qs
When # € §25 and f is smooth then F = f and K(x,%) can be chosen as d(z — Z). If {25 contains a
subdomain Qf in which f has a transient, K should be supported outside of 5. In the case when
f contains oscillations then K should be smooth as a function of z and compactly supported in
5\ .
To be more specific, if f is highly oscillatory around a smooth mean function F(z), then we
can write b as

STB = b(z,€), |Blz,e)| < Ce, 1 <k < d (104)
k
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Hence

K(z,z)f(z)dz = fﬂ K(ﬂ:,a‘:)(z Fi(z — z))da + O(6PT) -2—/ K(z,z)b(z,e)dx =

s Qg

[

I g

0K (z,Zz)

B B(z,e)dz

F(E) + O(6PT1) +f

25
= F(&)+ 0" +e67)

The final step for the high order numerical F-estimator is replacing the integral in (103) by a high
order accurate quadrature formula.

In this paper, we concentrated on the case when the missing macroscale data depend only
on local behavior of the macroscale quantities. This is not true for many practical problems.
The incompressible limit of fluid flows is a good example. There the missing macroscale data,
the pressure, depends on the velocity field in a nonlocal way. It is possible to modify the HMM
procedure presented here to accommodate such situations. We will postpone a detailed discussion
of this extension to a later publication [19].

Some knowledge about the macroscopic model is necessary in order to guarantee consistency
with the macroscopic problem. For example it is important to know whether the macroscopic
model is nonlocal, and if it is local, it is helpful to know the order of the differential equations.
Such information might be probed in a pre-processing step or adaptively during the computation
using the microscopic model. This too will be considered in more detail in a future publication
[19].

For type A problems, it often happens that near the defects or singularities, ¢p is no longer small
compared with t37. In such cases, it is important to modify HMM locally so that the microscopic
states are retained near defects or singularities, instead of been converted to the macrostates at the
end of each macro time step. This is already done in algorithms involving multi-levels of physical
models that are coupled together locally [1, 2, 21, 22, 59].

8 Conclusion

The heterogeneous multi-scale method (HMM)} is a general methodology that allows us to efficiently
move between the macroscopic and microscopic models, and to best exploit scale separation in the
problem for improving efficiency. As is the case with other fast algorithms, such as multigrid, fast
multipole method, and wavelet-based multi-resolution methods, the efficiency is achieved through
minimizing redundancy in the computations. For HMM, this is done through (1) compressing
the complexity of the microscopic solvers, (2} using explicit macroscopic models when they are
valid and available, and (3) using available computational data. As we demonstrated with several
examples, this approach offers considerable flexibility.

There are two main components in HMM. The first is to formulate the microscopic problem on
the smallest possible computational domain, without altering its basic local averaged properties.
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This includes prescribing the right constraints, processing the data to extract the macroscopic infor-
mation efficiently and accurately. The second component is information passing at the macroscopic
level by linking correctly the different microscopic problems in order to model the macroscopic
behavior. This is done in HMM through the overall macroscale scheme. We have given several
versions on how this can be implemented.

In order not to be overwhelmed by the generality of HMM, we summarize here some examples
of new algorithms that emerge from applications to specific problems.

1. The homogenization problem. For both the static and dynamic homogenization problems
(6),(46), our method proceeds as a standard finite element method with the usual basis functions.
The new component comes in the computation of the stiffness matrix which is obtained by solving
a small “cell problem” on each element. Additional savings will be obtained if the semi-empirical
methods are used (see Figure 4). The flexibility of HMM means that it can be readily applied to
more complicated problems such as nonlinear problems or if the microstructure changes with time.

In contrast, the methods proposed in [6, 39] modify the basis functions by building in the
microstructures. This means that the microstructure problem has to be solved over the whole
element. It also limits the applicability of the method to problems for which the microstructures
can be found beforehand.

2. Coupling molecular dynamics with thermoelasticity. At low temperatures, there exist sat-
isfactory algorithms that couple molecular dynamics with continuum elasticity. For static and
quasi-static problems, the quasi-continuum method is now a popular tool {66, 62, 61}. For dynamic
problems, the dynamic atomistic/continuum method proposed in [21, 22] works quite well. These
methods are ideal for studying crystalline solids with isolated defects. The natural next step is
to deal with the effect of finite temperature and heat conduction. HMM can be readily used for
this purpose. Away from defects and interfaces, one uses the continunm theory of thermoelasticity
with material parameters obtained from molecular dynamics. Near the defects where the local
deformation is large, one uses the compressed microscopic model to evaluate the fluxes or forces in
the macroscopic equations. The details of the microscopic expression of the fluxes can be found in
section 2.

In the same fashion, HMM provides a way of coupling molecular dynamics with continuum
theory of fluid flow.

3. Structure and dynamics of complex interfaces. For complex interfaces such as turbulent
flames, twinn boundaries and grain boundaries for which the interfacial equations are not explicitly
known, HMM provides an efficient way of evolving the interfaces using the microscopic models and
at the same time couple it to the macroscopic behavior away from the interfaces.

4. Coupled hydrodynamic/kinetic models for complex fluids [8]. When molecular conformation
has a non-trivial contribution to macroscopic stress, HMM provides an efficient way of exploiting
the separation between relaxational and hydrodynamic time scales.

There are numerous other possible areas of applications that we will not enumerate here.

;From a theoretical point of view, we can associate an underlying macroscopic scheme, the
Generalized Godunov Scheme (GGS), to HMM. The stability properties of HMM can be read off
from the GGS. The error of HMM comes from two main sources: the standard truncation error
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and the additional error due to compression. The compression error also comes from two sources:
compression in time and compression in space. The error due to compression in time depends on
the nature and rate of relaxation to local equilibrium, as well as the compression operators used
to extract the F-estimators. Similarly the error due to compression in space also depends on the
compression operators used in the F-estimators, and the boundary and constraining conditions
imposed when truncating the microscopic computational domains.
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