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ABSTRACT A novel framework for solving variational problems and par-
tial differential equations for scalar and vector-valued data defined on sur-
faces is described in this chapter. The key idea is to implicitly represent
the surface as the level set of a higher dimensional function, and solve the
surface equations in a fixed Cartesian coordinate system using this new
embedding function. The equations are then both intrinsic to the surface
and defined in the embedding space. This approach thereby eliminates the
need for performing complicated and not-accurate computations on trian-
gulated surfaces, as it is commonly done in the literature. We describe
the framework and present examples in computer graphics and image pro-
cessing applications, including texture synthesis, flow field visualization, as
well as image and vector field intrinsic regularization for data defined on
3D surfaces.

1 Introduction

In a number of applications, variational problems and partial differential
equations need to be intrinsically solved for data defined on arbitrary mani-
folds, three dimensional surfaces in particular. Examples of this exist in the
areas of mathematical physics, fluid dynamics, image processing, medical
imaging, computer graphics, and pattern formation. In computer graphics,
examples of this include texture synthesis [60, 64], vector field visualiza-
tion [61], and weathering [18]. In other numerous applications, data defined
on surfaces often needs to be regularized, e.g., as part of a vector field
computation or interpolation process [47, 62], for inverse problems [24], or
for surface parameterization [19]. These last regularization examples can
be addressed solving a variational problem defined on the surface, or its
corresponding gradient-descent flow on the surface, using for example the
well developed theory of harmonic maps [21, 22], which has recently been
demonstrated to be of use for image processing and computer graphics
applications as well, e.g., [11, 19, 45, 52, 54, 67]. All these equations are
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generally solved on triangulated or polygonal surfaces. That is, the surface
is given in polygonal (triangulated) form, and the data is discretely defined
on it. Solving the problems then in this representation involves the non-
trivial discretization of the equations in general polygonal grids, as well
as the difficult numerical computation of other quantities like projections
onto the discretized surface (when computing gradients and Laplacians for
example). Although the use of triangulated surfaces is extremely popular
in all areas dealing with 3D models, mainly in computer graphics, there is
still not a widely accepted technique to compute simple differential char-
acteristics such as tangents, normals, principal directions, and curvatures;
see for example [17, 39, 57] for a few of the approaches in this direction.
On the other hand, it is widely accepted that computing these objects for
iso-surfaces (implicit representations) is straightforward and much more
accurate and robust. This problem in triangulated surfaces becomes even
bigger when we not only have to compute these first and second order dif-
ferential characteristics of the surface, but also have to use them to solve
variational problems and PDE’s for data defined on the surface. Moreover,
virtually no analysis exists on numerical PDE’s on non-uniform grids in the
generality needed for the wide range of applications mentioned above, mak-
ing it difficult to understand the behavior of the numerical implementation
and its proximity (or lack thereof) to the continuous model.

In this chapter we present the framework introduced in [4] to solve vari-
ational problems and PDE’s for scalar and vector-valued data defined on
surfaces. We use, instead of a triangulated/polygonal representation, an
implicit representation: our surface will be the zero-level set of a higher
dimensional embedding function (i.e., a 3D volume with real values, posi-
tive outside the surface and negative inside it). Implicit surfaces have been
widely used in many areas including computational physics, e.g., [43], com-
puter graphics, e.g., [7, 25, 63], and image processing [50], as an alternative
efficient representation to triangulated surfaces. We smoothly extend the
original (scalar or vector-valued) data lying on the surface to the 3D vol-
ume, adapt our PDE’s accordingly, and then perform all the computations
on the fixed Cartesian grid corresponding to the embedding function. These
computations are nevertheless intrinsic to the surface. The advantages of
using the Cartesian grid instead of a triangulated mesh are many: we can
use well studied numerical techniques, with accurate error, stability, and
robustness measures; the topology of the underlying surface is not an issue;
and we can derive simple, accurate, robust and elegant implementations.
If the original surface is not already in implicit form, and it is for example
triangulated, we can use any of a number of implicitation algorithms that
achieve this representation given a triangulated input, e.g., [20, 34, 56, 66].
For example, the public domain software [35] can be used. If the data is
just defined on the surface, an extension of it to the whole volume is also
easily achieved using a PDE, as we will later see. Therefore, the method
here proposed works as well for non-implicit surfaces after the preprocess-
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ing is performed. This preprocessing is quite simple and no complicated
regridding needs to be done to go from one surface representation to an-
other (see below). Finally, we will solve the variational problem or PDE
only in a band surrounding the zero level set (a classical approach; see
[44]). Therefore, although we will be increasing by one the dimension of
the space, the computations remain of the same complexity, while the ac-
curacy and simplicity are significantly improved. A final note before we
proceed. As we have mentioned, the data defined on the surfaces will only
be scalar or vector valued, i.e., if we see our variational problems and PDE’s
as involving maps form a domain manifold into a target manifold, then our
domain manifolds in this chapter will be arbitrary implicit surfaces while
our target manifolds will only be the Euclidean space IR™ or the unit ball.
But the same formulation that is presented here to deal with the domain
manifold as an implicit surface can be adapted to treat the target manifold
as an implicit surface as well, always working on Cartesian grids, as shown
in [36]. So in general there is no limitation as to the nature of the target
manifold, and we can work not just with scalar and vector-valued data but
with any sort of data defining a target manifold.

1.1 The background and our contribution

Representing deforming surfaces as level sets of higher dimensional func-
tions was introduced in [43] as a very efficient technique for numerically
studying the deformation (see [42] for a review of this technique and also
[63] for studies on the deformation and manipulation of implicit surfaces
for graphics applications). The idea is to represent the surface deformation
via the embedding function deformation, which adds accuracy, robustness,
and, as expected, topological liberty. When the velocity of the deformation
is given by the minimization of an energy, the authors in [68] proposed a
“variational level set” method, where they extended the energy (originally
defined only on the surface) to the whole space. This allows for the im-
plementation to be in the Cartesian grid. The key of this approach is to
go from a “surface energy” to a “volume energy” by using a Dirac’s delta
function that concentrates the penalization on the given surface.

We will follow this general direction with our fixed, non deforming sur-
faces. In our case, what is being “deformed” is the (scalar or vector-valued)
data on the surface. If this deformation is given by an energy-minimization
problem (as is the case in data smoothing applications), we will extend the
definition of the energy to the whole 3D space, and its minimization will be
achieved with a PDE, which, despite its being intrinsic to the underlying
surface, is also defined in the whole space. Therefore, it is easily imple-
mentable. This is straightforward, as opposed to approaches where one
maps the surface data onto the plane, performs the required operations
there and then maps the results back onto the triangulated representation
of the surface; or approaches that attempt to solve the problem directly on
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a polygonal surface.

Very interestingly, the new framework proposed here also tells us how to
translate into surface terms PDE’s that we know that work on the plane
but which do not necessarily minimize an energy (e.g., texture synthesis
or flow visualization PDE’s). Instead of running these PDE’s on the plane
and then mapping the results onto a triangulated representation of the
surface, or running them directly on the triangulated domain, we obtain a
3D straightforward Cartesian grid realization that implements the equation
intrinsically on the surface and whose accuracy depends only on the degree
of spatial resolution.

Moreover, we consider that for computing differential characteristics and
solving PDE’s even for triangulated surfaces, it might be appropriate to run
an implicitation algorithm as any of the ones used for the examples in this
chapter and then work on the implicit representation. Current algorithms
for doing this, some of them publicly available [35], are extremely accurate
and efficient.

The contribution of this work is then a new technique to efficiently solve
a common problem in many computational physics, computer graphics and
engineering applications: the implementation of variational problems and
PDE’s on 3D surfaces. In particular, we show how to transform any intrin-
sic variational or PDE equation into a corresponding problem for implicit
surfaces. In this chapter we are then proposing a new framework to bet-
ter solve existent problems and to help in building up the solutions for
new ones. To exemplify the technique and its generality, we implement and
extend popular equations previously reported in the literature. Here we
solve them with our framework, while these problems were solved in the
literature with elaborate discretizations on triangulated representations.

Before proceeding, we should comment on a few of the basic charac-
teristics of our framework. First, as stated before, although we solve the
equations in the embedding space, the basic computational complexity of
our technique is not increased, sine all operations are performed on a nar-
row band surrounding the given surface. Secondly, since the work is now
on a Cartesian grid, all classical numerical analysis results on issues like
robustness and stability, apply here as well. Note that for triangulated
representations, new theoretical results are needed to justify the common
methods proposed in the literature, while with our framework, classical and
well established numerical techniques can be used, as accurate, robust, and
computationally efficient as dictated by the application.
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2 The framework

2.1 Surface and data representation

As mentioned before, our approach requires us to have an implicit repre-
sentation of the given fixed surface, and the data must be defined in a band
surrounding it and not just on the surface. The implicit surfaces used in this
chapter have been derived from public-domain triangulated surfaces via the
computation of a (signed) distance function 9 (z,y, 2) to the surface S. Ar-
riving at an implicit representation from a triangulated one is currently not
a significant issue, there are publicly available algorithms that achieve it
in a very efficient fashion. To exemplify this, in our chapter we have used
several of these techniques. For some surfaces the classical Hamilton-Jacobi
equation || Vi ||= 1 was solved on a pre-defined grid enclosing the given
surface via the computationally optimal approach devised in [58]. Accurate
implicit surfaces from triangulations of the order of one million triangles
are obtained in less than two minutes of CPU-time with this technique.
Alternatively we used the implementation of the Closest Point Transform
available in [35]. The teapot and knot surfaces were obtained from unorga-
nized data points using the technique devised in [41]. We therefore assume
from now on that the three dimensional surface S of interest is given in
implicit form, as the zero level set of a given function 1 : IR® — IR. This
function is negative inside the closed bounded region defined by S, positive
outside, Lipschitz continuous a.e., with S = {z € R?® : ¢(z) = 0}. To
ensure that the data, which needs not to be defined outside of the surface
originally, is now defined in the whole band, one simple possibility is to
extend this data u defined on S (i.e the zero level set of ¢) in such a form
that it is constant normal to each level set of . This means the extension
satisfies Vu - V¢ = 0. (For simplicity, we assume now u to be a scalar
function, although we will also address in this chapter problems where the
data defined on S is vector-valued. This is solved in an analogous fashion.)
To solve this we numerically search for the steady state solution of the
Cartesian PDE

Oou

ot

This technique was first proposed and used in [12]. Note that this keeps
the given data u on the zero level set of ¢ (the given surface) unchanged.

Both the implicitation and data extension (if required at all by the given
data), need to be done only once off line. Moreover, they will remain for
all applications that need this type of data.

+ sign(y)(Vu - Vb)) = 0.

2.2 A simple example: Heat flow on implicit surfaces

We will exemplify our framework with the simplest case, the heat flow or
Laplace equation for scalar data defined on a surface. For scalar data u
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defined on the plane, that is, u(z,y) : IR? — IR it is well known that the
heat flow 5
u
— =A 1.1
at (L.1)
where A := % + ng’; is the Laplacian, is the gradient descent flow of the

Dirichlet integral
1

—/ | Vu ||? dzdy, (1.2)
2 e

where V is the gradient.

Eq. (1.1) performs smoothing of the scalar data u, and this smoothing
process progressively decreases the energy defined in eq. (1.2). If we now
want to smooth scalar data u defined on a surface S, we must find the
minimizer of the harmonic energy given by

1
5/5 I Vsu |2 d, (1.3)

The equation that minimizes this energy is its gradient descent flow:

Here Vs is the intrinsic gradient and Ags the intrinsic Laplacian or Laplace-
Beltrami operator. These are classical concepts in differential geometry,
and basically mean the natural extensions of the gradient and Laplacian
respectively, considering all derivatives intrinsic to the surface. For instance,
the intrinsic gradient is just the projection onto S of the regular 3D gradient
while the Laplace-Beltrami operator is the projected divergence of it [51].

Classically, eq. (1.4) would be implemented in a triangulated surface,
giving place to sophisticated and elaborate algorithms even for such sim-
ple flows. We now show how to simplify this when considering implicit
representations.

Recall that S is given as the zero level set of a function ¢ : IR® —
IR, v is negative inside the region bounded by S, positive outside with
S = {z € R? : ¢(x) = 0}. We proceed now to redefine the above energy
and compute its corresponding gradient descent flow. Let ¢ be a generic
three dimensional vector, and Py the operator that projects a given three
dimensional vector onto the plane orthogonal to ¥:

TRU
Py:=1 e (1.5)

It is then easy to show that the harmonic energy (1.3) is equivalent to
(see for example [51])

1
3 1 PevulP s, (16)
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where N is the normal to the surface S. In other words, Vsu = PgVu.
That is, the gradient intrinsic to the surface (V) is just the projection onto
the surface of the 3D Cartesian (classical) gradient V.! We now embed this
in the function :

D=

1 .
Jvsulpas =3 [ 1pgvul as
S S

[ I PeuvulP 6 |9 |1 da.
QER?®

I

where §(-) stands for the Dirac delta function, and all the expressions above
are considered in the sense of distributions. Note that first we got rid of
intrinsic derivatives by replacing Vs by PgVu (or PyyVu) and then re-
placed the intrinsic integration ([ dS) by the explicit one ([, s de) using
the delta function. Intuitively, although the energy lives in the full space,
the delta function forces the penalty to be effective only on the level set of
interest. The last equality includes the embedding, and it is based on the
following simple facts:

1. V¢ || N.
2. [o0() | Vi || do = [ dS = surface area.
In [4] it is shown that the gradient descent of this energy is given by

ou 1

In other words, this equation corresponds to the intrinsic heat flow or
Laplace-Beltrami for data on an implicit surface. But all the gradients in
this PDE are defined in the three dimensional Cartesian space, not in the
surface S (this is why we need the data to be defined at least on a band
around the surface). The numerical implementation is then straightforward.
This is the beauty of the approach! Basically, for this equation we use a
classical scheme of forward differences in time and a succession of forward
and backward differences in space (see [4] for details). The other equations
in this chapter are similarly implemented. This follows techniques as those
in [48]. Once again, due to the implicit representation and embedding in
a Cartesian grid, classic numerical techniques are used, avoiding elaborate
projections onto discrete surfaces and discretization on general meshes,
e.g., [17, 29]. Classical numerical approaches and theoretical findings on
robustness, accuracy, and error bounds, apply then for our framework.

It is easy to show a number of important properties of this equation:

INote that using this fact, we have transformed the computation of the norm of the
intrinsic 2D gradient into an equivalent 3D Euclidean computation, see below.
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1. For any second embedding function ¢ = ¢(v), with ¢' # 0 and ¢(0) =
0, we obtain the same gradient descent flow. Since both ¢ and ¢
have to share the zero level set, and we are only interested in the
flow around this zero level set, this means that the flow is (locally)
independent of the embedding function.

2. If 4 is the signed distance function, a very popular implicit repre-
sentation of surfaces (obtained for example from the implicitation
algorithms previously mentioned), the gradient descent simplifies to

ou

— =V (PV¢Vu). (18)

ot
We have then obtained the basic approach for embedding intrinsic vari-

ational problems. We proceed now to embed general PDE’s.

2.8  From variational problems to PDE’s

We note that we could also have derived eq. (1.7), directly from the har-
monic maps flow
a = ASUJ

via the simple geometry exercise of computing the Laplace-Beltrami Agu
for S in implicit form (this is simply done by means of the projected deriva-
tives as explained above, e.g., [51]). That is, the same equation is obtained
when embedding the energy and then computing the gradient descent and
when first looking at the gradient descent followed by the embedding of all
of its components. This property is of particular significance. It basically
shows how to solve general PDE’s, not necessarily gradient-descent flows,
for data defined on implicit surfaces. All that we need to do is to recom-
pute the components of the PDE for implicit representations of the surface.
Note that in this way, conceptually, we can redefine classical planar PDE’s
on implicit surfaces, making them both intrinsic to the underlying surface
and defined on the whole space.

2.4 Anisotropic diffusion on implicit surfaces

From this very simple example on the Laplace-Beltrami flow we have seen
the key point of our approach. If the process that we want to implement
comes from the minimization of an energy, we derive a PDE for the whole
space by computing the gradient-descent of the whole-space-extension of
that energy. Otherwise, given a planar PDE we recompute its components
for an implicit representation of the surface. For instance, anisotropic dif-
fusion can be performed on the plane by

ou Vu
I (n Vu ||)’ (1.9)
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which minimizes the TV energy [p.. || Vu || dzdy (see [48] and also [2, 6, 46]
for related formulations).

If we now want to perform intrinsic anisotropic diffusion of scalar data
on a surface S, we can either recompute the gradient-descent flow for the
intrinsic TV energy [ || Vsu || dS, which for S in implicit form becomes
fﬂelR3 || PyyVu || 6(¢) || Vo || dz, or just substitute in eq. (1.9) the cor-
responding expressions as explained in the previous section. Either way we
obtain the same result, the following PDE, which is valid in the embedding
Euclidean space:

ou 1 ( Pv¢ Vu
|

8t Vol \|[PyyVu]

Note that general p-harmonic maps, that is, maps for Ly, p # 2, norms
of the intrinsic surface gradient have been studied in the literature as well,
e.g., [11, 13, 26, 28, 54]. In the following section additional equations will
be presented.

19w ||) . (1.10)

3 Experimental examples

We now exemplify the framework just described for a number of important
cases. The numerical implementation used is quite simple, and requires a
few lines of C'++ code. The CPU time required for the diffusion examples is
of a few seconds on a PC (512Mb RAM, 1GHz) under Linux. For the texture
synthesis examples, the CPU time ranges from a few minutes to one hour,
depending on the pattern and parameters chosen. All the volumes used
contain roughly 1282 voxels. Note once again that due to the use of only
a narrow band surrounding the zero level set, the order of the algorithmic
complexity remains the same. On the other hand, the use of straightforward
Cartesian numerics reduces the overall algorithmic complexity, improving
accuracy and simplifying the implementation.

3.1 Diffusion of scalar images on surfaces

The use of PDE’s for image enhancement has become one of the most active
research areas in image processing [?, 50]. In particular, diffusion equations
are commonly used for image regularization, denoising, and multiscale rep-
resentations (representing the image simultaneously at several scales or
levels of resolution). This started with the works in [33, 65], where the au-
thors suggested the use of the linear heat flow (1.1) for this task, where
u represents the image gray values (the original image is used as initial
condition). Note of course that this is the basic regularization needed for
inverse problems defined on surfaces, e.g., [24]. By deriving the heat flow
or Laplace-Beltrami equation on implicit surfaces we then derive the basic
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FIGURE 1. Intrinsic isotropic diffusion. Left: original image. Middle: after 15
diffusion steps. Right: after 50 diffusion steps.

PDE used for image processing as well as the fundamental data regulariza-
tion energy /flow. As we have seen, this flow is the gradient-descent of (1.2),
and the generalizations of these equations for data on the surface are given
by (1.4) and (1.3) respectively. In implicit form, the heat flow on surfaces
is given by (1.7). Figure 1 shows a simple example of image diffusion on a
surface. Please note that this is not equivalent to performing 3D smoothing
of the data and then looking to see what happened on S. Our flow, though
using extended 3D data, performs smoothing directly on the surface, it is
an intrinsic heat flow (Laplace-Beltrami on the surface and not Laplace on
the 3D space). The complete details of the numerical implementation of
this flow are given in [4] (they once again show how the implementation
is significantly simplified with the framework here described). In Figure 2
we show an example for the anisotropic flow (1.10). In this case, we have a
noisy image with known variance. We can then easily add this constraint
to the flow and the corresponding variational formulation. The energy cor-
responding to this constraint is given by (A € IR is a parameter and ug is
the given noisy image)

A

A 2
2/S(u ug)°dS,

which after it is made intrinsic and implicit becomes

A

2 /,R (u—u0)*6() || V4 || d.

In order to incorporate the constraint on the noise variance into the diffu-
sion/denoising process, we add to the flow (1.10) the corresponding Euler-
Lagrange of this energy, given by

Au — ug).

Note in the figure how the noise is removed while the image details are pre-
served, as expected from an anisotropic flow. The parameter ) is estimated
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FIGURE 2. Intrinsic anisotropic diffusion with constraints (automatic stop term).
Left: original noisy image. Middle: after 50 diffusion steps. Right: after 90 diffusion
steps. Notice how the diffusion stops and information is not smeared.

in a way suggested in [48], see [4]. The same approach, that of anisotropic
diffusion with a stopping term given by the constraint, may be used to
perform intrinsic deblurring, see [15].

We should note before proceeding that [32] also showed how to regularize
images defined on a surface. The author’s approach is limited to graphs (not
generic surfaces) and only applies to level set based motions. The approach
is simply to project the deformation of the data on the surface onto a
deformation on the plane.

3.2 Diffusion of directional data on surfaces

A particularly interesting example is obtained when we have unit vectors
defined on the surface. That is, we have data of the form v : S — S”~1.
When n = 3 our unit vectors lie on the sphere. Examples of this data in-
clude principal directions (or general directional fields on 3D surfaces) and
chromaticity vectors (normalized RGB vectors) for color images defined on
the surface. This is also one of the most studied cases of the theory of har-
monic maps due to its physical relationship with liquid crystals, and it was
introduced in [54] for the regularization of directional data, unit vectors, on
the plane (see also [11, 45, 52]). This framework of harmonic maps was used
in computer graphics for texture mapping and surface parameterization, as
pointed out earlier.
We still want to minimize an energy of the form

/ I Vsu [P dS,
S

though in this case Vs is the vectorial gradient and the minimizer is re-
stricted to be a unit vector. It is easy to show, e.g., [8, 53], that the gradient
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descent of this energy is given by the coupled system of PDE’s

ou; i
81:51 =divs (|| Vsu P> Visus) +ui || Vsu [P, 1<i<n.

This flow guarantees that the initial unit vector u(z,y, z,0) remains a unit
vector u(x,y, z,t) all the time, thereby providing an equation for isotropic
(p = 2) and anisotropic (p = 1) diffusion and regularization of unit vectors
on a surface.

We can now proceed as before, and embed the surface S into the zero
level-set of 1, obtaining the following gradient descent flows (see [4] for the
derivation):

8uz~ 1 ( PV,/,Vu,-
|

- | Py Vu [P

— . \% +u; || PyyVu ||P. (1.11
= = TogT 199 1) + i | Pouu . @10

Note once again that although the regularization is done intrinsically on
the surface, this equation only contains Cartesian gradients. An example of
this flow for anisotropic diffusion of principal direction vectors is given in
Figure 3. On the left, we see the surface of a bunny with its correspondent
vector field for the major principal direction. Any irregularity on the surface
produces a noticeable alteration of this field, as can be seen in the details
a and b. In the details o’ and b’, we see the result of applying the flow
(1.11). Once again, the implementation of this flow with our framework
is straightforward, while it would require very sophisticated techniques on
triangulated surfaces (techniques that, in addition, are not supported by
theoretical results).

Following also the work [54, 55] for color images defined on the plane,
we show in Figure 4 how to denoise a color image painted on an implicit
surface.

The basic idea is to normalize the RGB vector (a three dimensional
vector) to a unit vector representing the chroma, and diffuse this unit
vector with the harmonic maps flow (1.11).2 The corresponding magni-
tude, representing the brightness, is smoothed separately via scalar diffu-
sion flows as those presented before (e.g., the intrinsic heat flow or the
intrinsic anisotropic heat flow). That is, we have to regularize a map onto
S? (the chroma) and another one onto IR (the brightness).

3.3 Pattern formation on surfaces via reaction-diffusion flows

The use of reaction-diffusion equations for texture synthesis became very
popular in computer graphics following the works of Turk [60] and Witkin

2We re-normalize at every discrete step of the numerical evolution to address de-
viations from the unit norm due to numerical errors [16]. We could also extend the
framework in [1] and apply it to our equations.
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FIGURE 4. Intrinsic vector field regularization. Left: heavy noise has been
added to the 3 color channels. Right: color image reconstructed after 20 steps
of anisotropic diffusion of the chroma vectors.

and Kass [64]. These works follow original ideas by Turing [59], who showed
how reaction diffusion equations can be used to generate patterns. The ba-
sic idea in these models is to have a number of “chemicals” that diffuse
at different rates and that react with each other. The pattern is then syn-
thesized by assigning a brightness value to the concentration of one of the
chemicals. The authors in [60, 64] used their equations for planar textures
and textures on triangulated surfaces. By using the framework here de-
scribed, we can simply create textures on (implicit/implicitized) surfaces,
without the elaborate schemes developed in those papers.

Assuming a simple isotropic model with just two chemicals u; and wuo,
we have

ou
a—tl = F(ul,u2) -+ DlAul,
% = G(ul,uz) + DQAUI,

where D; and D, are two constants representing the diffusion rates and F'
and G are the functions that model the reaction.

Introducing our framework, if u; and us are defined on a surface S im-
plicitly represented as the zero level set of ¢ we have

6U1

1
— = —V - (P 1.12
It F(’U,l,U2) +D1 ” Vlﬁ ”v ( V¢V’U/1 || V¢ ”)7 ( )
U2 _ Glur,u) + Da———V - (PoyVus || V9 |) (1.13)
or TRV T ' '

For simple isotropic patterns, Turk [60] selected
F(uy,uz) = 5(16 — uyus),

G(u1,u2) = s(urug — uz — ),
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where s is a constant and f is a random function representing irregularities
in the chemical concentration. Examples of this, for implicit surfaces, are
given in Figure 5 (the coupled PDE’s shown above are run until steady
state is achieved).

FIGURE 5. Texture synthesis via intrinsic reaction-diffusion flows on im-
plicit surfaces. Left: isotropic. Right: anisotropic. Pseudo-color representation
of scalar data is used. The numerical values used in the computations were
D; =1.0,Dy = 0.0625, s = 0.025, 8 = 12.0 & 0.1, u1 (0) = u2(0) = 4.0.

To simulate anisotropic textures, instead of using additional chemicals as
in [60], we use anisotropic diffusion, as suggested in [64]. For this purpose,
we replace eq. (1.12) with:

0
i _ F(ui,u2) + Dy

5 V(4 -PoyVu)d || Vo),  (1.14)

1
I Vel

where d is a vector field tangent to the surface, e.g., the field of the ma-
jor principal direction (which for our examples has been also accurately
computed directly on the implicit surface, using the technique proposed in
[38]). Note how this particular selection of the anisotropic reaction-diffusion
flow direction provides a texture that helps on the shape perception of the
object. Additional patterns can be obtained with different combinations of
the reaction and diffusion parts of the flow.

3.4 Flow visualization on 3D surfaces

Inspired by the work on line integral convolution [9] and that on anisotropic
diffusion [46], the authors of [61] suggested to use anisotropic diffusion to
visualize flows in 2D and 3D. The basic idea is, starting from a random
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image, anisotropically diffuse it in the directions dictated by the flow field.
The authors presented very nice results both in 2D (flows on the plane) and
3D (flows on a surface), but once again using triangulated surfaces which
introduce many computational difficulties. In a straightforward fashion we
can compute these anisotropic diffusion equations on the implicit surfaces
with the framework here described, and some results are presented in Figure
6. Note the complicated topology and how both the inside and outside
parts of the surfaces are easily handled with our implicit approach. Also
note that, when we choose the vector field to be that of one of the principal
directions, the result emphasizes the surface shape.

FIGURE 6. Flow visualization on implicit 3D surfaces via intrinsic anisotropic
diffusion flows. Left: flow aligned with the major principal direction of the surface.
Right: flow aligned with the minor principal direction of the surface. Pseudo-color
representation of scalar data is used.

4  Concluding remarks

In this chapter, we have described a framework for solving variational prob-
lems and PDE’s for data defined on surfaces. The technique borrows ideas
from the level set theory and the theory of intrinsic flows via harmonic
maps. The surface is embedded in a higher dimensional function, and the
Euler-Lagrange flow or PDE is solved in the Cartesian coordinate system
of this embedding function. The equations are simultaneously intrinsic to
the implicit surface and defined on the embedding Cartesian space. With
this framework we enjoy accuracy, robustness, and simplicity, as expected
from the computation of differential characteristics on iso-surfaces (implicit
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surfaces) and the use of classical and well established numerical techniques
in Cartesian grids. In addition to presenting the general approach, we have
exemplified it with equations arising in image processing and computer
graphics.

We believe this new framework opens up a large number of theoretical
and practical questions. In the theoretical arena, the large amount of re-
sults available for harmonic maps (see for example [54] for a review on this)
need to be extended to the “implicit harmonic maps” equations presented
in this chapter. The effect of perturbations on the surface (zero-level set)
on the solutions of the intrinsic PDE should be investigated. This is crucial
to understand the desired accuracy of surface implicitation algorithms. We
expect that as with the level set theory (e.g., [14, 23]), these theoretical
results will follow. On the practical side, it is of interest to address other
related equations that appear in the mathematical physics, image process-
ing, and computer graphics literature. For example, how to extend the use
of harmonic maps for texture mapping (and not just texture synthesis).
This was done for triangulated surfaces in [3, 19, 27]. Also to investigate
threshold dynamics and convolution generated motions [31, 37, 49] for im-
plicit surfaces. Other PDE’s, like those for image inpainting [40] or image
segmentation [10] can be extended to work on implicit surfaces following
the theory described in this chapter, expecting the same quality of results
that were obtained on the plane. We could also use this framework to ex-
perimentally study results as those in [30]. Finally, the use of the approach
here presented for regularization in inverse problems, e.g., [24], is of interest
as well.

To conclude, we should note that it is natural to ask about the target
manifold for the most general form of harmonic maps, when this target is
not just the Euclidean space or a unit ball, but a general hypersurface. In
[36] we have shown how to extend the framework described here to arbitrary
implicit target surfaces. The key idea is again to implicitly represent the
target manifold as the level-set of a higher dimensional function, and then
implement the equations in the Cartesian coordinate system of this new
embedding function. In the case of a variational problem, the search for the
minimizing map is restricted to the class of maps whose target is the level-
set of interest. In the case of partial differential equations, all the equation
characteristics are implicitly represented. A set of equations that while
defined on the whole Euclidean space, are intrinsic to the implicit target
manifold and map into it, is then obtained. See figure 7 for an example of
denoising of a texture map from IR? onto a “teapot” surface. This result was
obtained with the following evolution equation, that guarantees that the
diffusion of the map, though performed in a 3D Cartesian grid, is intrinsic
to the implicit surface that is the teapot:

o

5 = At - (AT - V)V, (1.15)

17
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FIGURE 7. Diffusion of a texture map for an implicit teapot (noisy on he top
and regularized on the bottom). A checkerboard texture is mapped.

where 4 is the map and 1 is the signed distance function to the teapot.

Note also that general motion of curves on implicit surfaces is studied
in [5, 15]. These works, together with the one here presented, provide then
the basic framework for solving generic PDE’s on implicit surfaces.
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