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Abstract

In this paper, we present a level set approach for the modeling of
dendritic solidification. These simulations exploit a recently developed
second order accurate symmetric discretization of the Poisson equation,
see [12]. Numerical results indicate that this method can be used
successfully on complex interfacial shapes and can simulate many of the
physical features of dendritic solidification. We apply this algorithm to
the simulation of the dendritic crystallization of a pure melt and find
that the dendrite tip velocity and tip shapes are in excellent agreement
with solvability theory. Numerical results are presented in both two
and three spatial dimensions.
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1 Introduction

Various numerical methods have been developed to solve the difficult prob-
lems associated with dendritic crystallization. Broadly speaking, there are
two issues that a successful numerical technique must address. First, it needs
to track a topologically complex, moving solid-liquid interface in both two
and three spatial dimensions. Second, it must be computationally efficient
as these problems are usually parabolic in nature with stringent restrictions
on the time step and small spatial scales that require sufficient grid reso-
lution. Thus, a desirable scheme should use implicit time stepping with a
symmetric inversion matrix as well as high order accurate spatial discretiza-
tions of both the parabolic partial differential equation and the interface
itself.

The interface that separates the two phases can be tracked either explic-
itly or implicitly. The main disadvantage of an explicit approach, e.g. front
tracking (see e.g. [17]), is that special care is needed for topological changes
such as merging or breaking. While this is easily overcome in two spatial
dimensions, explicitly treating connectivity in three spatial dimensions can
be daunting. Implicit representations such as level set [26] or phase-field [18]
methods represent the front as a level set of a continuous function. Topo-
logical changes are consequently handled in a straightforward fashion, and
thus the methods are readily implemented in both two and three spatial di-
mensions. Moreover, one can easily model additional physics, e.g. material
strain or flow past dendrites. Sometimes Eulerian methods, such as the level
set method, are criticized for not accurately preserving the mass of a mate-
rial. However, this artifact has recently been removed for level set methods
with the aid of massless marker particles that obtain the accuracy benefits
of a front tracking method without the added hindrance of addressing con-
nectivity, see [8]. Moreover, in [9], the particle level set method developed
in [8] was used to track topologically complex air/water interfaces subject
to a variety of pinching and merging. These accuracy limitations have not
yet been addressed for phase-field methods, but we are optimistic that the
nonphysical mass loss present in phase-field methods can be alleviated to a
large degree using a method similar to that proposed in [8].

A simple level set approach to solving the sharp interface problem de-
scribed in section 2.2 (below) was first proposed in [5]. They used the level
set method to keep track of the front and solved for the diffusion field using
an implicit time discretization method. In order to apply this implicit time
discretization a constant coefficient matrix needs to be inverted at every
time step. Their matrix was nonsymmetric and they used a rather slow
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Gauss-Seidel iterative scheme to invert limiting both the grid resolution and
the number of spatial dimensions, i.e. they were not able to address Ste-
fan problems in three spatial dimensions. In [21], the authors improved
upon the algorithm presented in [5], for example computing the velocity in
a more accurate manner. They numerically simulated the standard four-fold
anisotropy test case, and obtained results in excellent agreement with the
predictions of microscopic solvability theory.

In both [5] and [21] the discretization of the temperature near the inter-
face produces a non-symmetric matrix that needs to be inverted for implicit
time stepping. The lack of symmetry makes this approach computationally
expensive, although methods like GMRES [29] and BICGSTAB [29] might
help to alleviate the situation. In [10], a symmetric second order accurate
discretization for the Poisson equation was originally developed and later
presented and shown to be second order accurate in [12]. This algorithm
was inspired by the ghost fluid method [11] and has been successfully used
by a variety of authors (e.g. [6]). Applying this discretization technique
to the temperature field near the interface allows one to use a robust and
efficient Preconditioned Conjugate Gradient (PCG) [13] method to invert
the constant coefficient matrix resulting from the implicit discretization in
time (this algorithm is to be contrasted with [22] where the authors obtained
only first order accuracy in the presence of a jump condition. Here second
order accuracy is obtained for the Dirichlet boundary condition). In [12],
numerical results showed that this scheme is second order accurate for the
variable coefficient and constant coefficient Poisson equation and the heat
equation. In particular, we showed that this new algorithm converges to
some known exact solutions, e.g. the Frank-Sphere. In this paper, we apply
this algorithm to the modified Stefan problem taking into account crystalline
anisotropy, surface tension and molecular kinetics.

The main difference between the phase-field and level set approach is
that the level set method can be used to exactly locate the interface in or-
der to apply discretizations that depend on the exact interface location. In
contrast, the phase-field method only has an approximate representation of
the front location and thus the discretization of the diffusion field is less
accurate near the front resembling an enthalpy method [7]. Formulating a
phase-field model requires an asymptotic expansion analysis be performed
with a small parameter proportional to the interface width, W . It is impor-
tant to note that the grid size is proportional to W and only in the limit as
W → 0 does the phase-field method converge to the sharp interface model.
In that sense, the phase-field method is only a first order accurate approxi-
mation to the true macroscopic sharp interface model. That is, even if the
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numerics are second order accurate for a given value of W , the model is in
error by W ∼ O(4x) so that the method can be no better than first order
accurate overall. In fact in [20] it was shown rigorously that if the grid size
is not proportional to W, the numerical results are generally incorrect. The
level set method does not need this extra level of adaptivity. The interested
reader is referred to [18] and the references therein for more details on the
phase-field method.
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2 Equations and Numerical Method

2.1 Level Set Equation and Numerics

The level set equation

φt + ~W · ∇φ = 0, (1)

where φ is the level set function and −→
W is the velocity field, is used to

keep track of the interface location as the set of points where φ = 0. The
unreacted and reacted materials are then designated by the points where
φ > 0 and φ ≤ 0 respectively. To keep the values of φ close to those
of a signed distance function, i.e. |∇φ| = 1, the reinitialization equation
introduced in [30]

φτ + S(φo) (|∇φ| − 1) = 0 (2)

is iterated for a few steps in fictitious time, τ . Here S(φo) is a smoothed
out sign function. The level set function is used to compute the normal
~n = ∇φ/|∇φ| and the mean curvature κ = ∇ · ~n in a standard fashion. The
level set advection equation and the reinitialization equation are discretized
by using the HJ-WENO type schemes [15], see also [23, 16]. For more details
on the level set method see e.g. [25, 24].

2.2 Sharp-Interface Model

Dendritic solidification that includes effects of undercooling, surface ten-
sion, crystalline anisotropy and molecular kinetics can be described by the
sharp-interface model. Consider a Cartesian computational domain, Ω, with
exterior boundary, ∂Ω, and a lower dimensional interface, Γ, that divides the
computational domain into disjoint pieces, Ω− and Ω+. The sharp-interface
model is given by

∂T

∂t
= ∇ · (ν∇T ) ~x ∈ Ω, (3)

Vn = [ν∇T · ~n] = (ν∇T · ~n)r − (ν∇T · ~n)u ~x ∈ Γ, (4)

where T denotes the temperature, Vn = ~V · ~n the normal velocity at the
interface, and the subscripts u and r define the unreacted and reacted ma-
terials respectively (for example, in the case of a solidification process, the
reacted material would be the solid and the unreacted one would be the
melt bath). The thermal conductivity ν(~x) is assumed continuous on each
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disjoint subdomain, Ω− and Ω+, but may be discontinuous across the in-
terface Γ. Furthermore, ν(~x) is assumed to be positive and bounded below
by some ε > 0. On the boundary of the computational domain, ∂Ω, we
consider either Dirichlet boundary conditions of T (~x) = g(~x) or Neumann
boundary conditions of ∇T · ~n(~x) = h(~x), although one could also consider
periodic boundary conditions in a straight forward way. At the interface,
we impose the Gibbs-Thomson relation

TI = −εcκ− εvVn, (5)

where κ is the curvature of the front, εc the surface tension coefficient, εv

the molecular kinetic coefficient and Vn the interface velocity. This inter-
face condition accounts for the deviation of the interface temperature TI

from equilibrium. In the case where the surface tension at the interface is
anisotropic, one can take for example in two spatial dimensions

εc = d0 (1− 15ε cos(4α)) , (6)

where ε is the anisotropy strength, and α is the angle between the normal at
the interface and the x-axis. This formula represents the standard four-fold
anisotropy. The Gibbs-Thompson relation is computed at every grid point
neighboring the interface and then linearly interpolated to the front using
an easy to implement level set procedure, see [22]. When computing the
Gibbs-Thomson relation, we use the value of the normal velocity Vn at time
tn.

In one spatial dimension, the discretization of the temperature is as
follows. For grid points more than one grid cell away from the interface, we
use a standard backward Euler implicit time discretization

Tn+1
i − Tn

i

4t
=

νi+ 1
2

(
T n+1

i+1 −T n+1
i

4x

)
− νi− 1

2

(
T n+1

i −T n+1
i−1

4x

)

4x
(7)

which is second order accurate in space where the resolution of the interface
is crucial, but only first order accurate in time. Moreover, second order ac-
curate spatial resolution is desirable since equation 4 computes the interface
velocity using the first derivatives of the temperature.

This discretization is not valid if the interface, Γ, cuts through the sten-
cil of points: xi−1, xi and xi+1. For example, suppose that the interface
location, xI , falls in between xi and xi+1. Then when discretizing at xi, we
do not have a valid value for Ti+1 at xi+1 since T will generally have a kink
across the interface (but may also be discontinuous in some models). We

6



circumvent this difficulty by defining a ghost value of TG
i+1 at xi+1 rewriting

equation 7 as

Tn+1
i − Tn

i

4t
=

νi+ 1
2

(
T G

i+1−T n+1
i

4x

)
− νi− 1

2

(
T n+1

i −T n+1
i−1

4x

)

4x
. (8)

With Dirichlet boundary conditions on the interface Γ, we can compute
the interface temperature as TI and use it to define the ghost value TG

i+1.
Then, possible candidates for TG

i+1 include

TG
i+1 = TI , (9)

TG
i+1 =

TI + (θ − 1)Ti

θ
(10)

and

TG
i+1 =

2TI +
(
2θ2 − 2

)
Ti +

(−θ2 + 1
)
Ti−1

θ2 + θ
(11)

corresponding to the use of constant, linear and quadratic extrapolation
across the interface, respectively. Here θ = (xI − xi)/4x. Plugging equa-
tion 11 into equation 8 gives the standard second order accurate nonsym-
metric discretization used by many authors, e.g. [5] and [21]. As pointed
out in [12], this local quadratic extrapolation is unnecessary, however many
authors still use it being misled by local Taylor expansion analysis. [12]
showed that local linear extrapolation using equation 10 is enough to obtain
second order spatial accuracy in the case where the exact interface location
is known. Moreover, the resulting discretization is symmetric enabling the
use of fast linear solvers such as PCG when employing implicit discretization
in time. Plugging equation 10 into equation 8 gives a second order accurate
symmetric discretization of

Tn+1
i − Tn

i

4t
=

νi+ 1
2

(
TI−Ti
θ4x

)
− νi− 1

2

(
Ti−Ti−1

4x

)

4x
. (12)

This is the scheme that we will use in the examples of section 3. Note
that since the temperature is computed to second order accuracy and Vn =
[∇T · ~n], the interface location is only first order accurate. Therefore in the
case of a moving front the accuracy of the method first order. The Crank-
Nicholson scheme would lower the truncation error but the scheme would
still be first order accurate overall due to the calculation of the velocity field.
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In certain situations, ν may only be known at the grid nodes and the
interface in which case νi+ 1

2
in equation 8 is determined from a ghost value,

νG
i+1, and the usual averaging

νi+ 1
2

=
νi + νG

i+1

2
(13)

noting that the ghost value is easily defined using linear extrapolation

νG
i+1 =

νI + (θ − 1) νi

θ
(14)

according to equation 10.
In multiple spatial dimensions, the equations are discretized in a dimen-

sion by dimension manner using the one dimensional discretization outlined
above. The interested reader is referred to [12] for the details of this method.

We find the interface normal velocity using the jump in the temperature
gradient in the normal direction across the interface. Here again, we use the
value of the temperature at the interface, TI , and assume that the temper-
ature profile is locally linear to compute the temperature gradient on each
side of the interface. More precisely, we compute the derivatives Tx and Ty

of the temperature in the x and y direction and then compute the tempera-
ture gradient in the normal direction Tn = ∇T ·~n. Once Tn is defined at grid
points adjacent to the interface, we extrapolate the values of (Tn)r from the
reacted side of the interface to the unreacted side and extrapolate the values
of (Tn)u from the unreacted side to the reacted side so that both (Tn)r and
(Tn)u are defined at every grid point in a band about the interface. This
is accomplished with constant extrapolation in the normal direction to the
interface according to

Iτ ± n · ∇I = 0 (15)

where I is the variable to be extrapolated and the equation is solved in
fictitious time τ to steady state. This was first implemented in [5] using an
equation that appears in [31] . This is done separately to advect I = (Tn)r

in one direction and to advect I = (Tn)u in the other direction. Note that
we do not solve equation 15 directly, but instead use an optimal spatial
marching procedure [1] in order to obtain I local to the interface. See [12]
for more details. Once both (Tn)r and (Tn)u are both defined at each grid
node near the interface, we compute the jump in a node by node fashion
using the nodal values of (Tn)r and (Tn)u i.e. (Vn)i = (νTn)r,i − (νTn)u,i.
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The time step restriction throughout this paper is given by

4t = min(4tH ,4tL), (16)

with

4tH = .5min(4x,4y,4z) (17)

chosen for accuracy considerations in the heat equation,

4tL(
w1

4x
+

w2

4y
+

w3

4z
) ≤ .5, (18)

with ~W = (w1, w2, w3) = Vn ·~n chosen for stability of the level set equation.
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3 Numerical Results

In [12] we addressed the simulations of a melt with constant temperature at
the interface and compared our solutions to the Frank sphere exact solution.
Here, we show that our method can take into account the different physical
parameters needed to faithfully model crystal growth.

3.1 Topological Changes - Merging and Breaking

These two examples illustrate one of the main advantages of the level-set
method, which is that it handles topological changes and complex interfacial
shapes in a natural way. Figure 1 shows seven seeds growing under a con-
stant normal velocity and merging. This characteristic has been exploited
in the Islands-Dynamics model for epitaxial growth to model the merging
of islands [4, 6, 28]. As a note, a constant velocity at the interface is physi-
cally relevant since, for example, it can model infinite edge diffusion at the
interface of an island [4, 6, 28]. Figure 2 shows the breaking of crystals.
In this example, a single crystal is shrunk with a negative constant normal
velocity. This feature has been applied to the modeling of epitaxial growth
to properly account for the thermal detachment of atoms from island edges,
where island dissociation can occur [27].

3.2 Effect of Varying Isotropic Surface Tension

Figure 3 demonstrates the effect of adding isotropic surface tension at the
interface by imposing T = −εcκ, and the corresponding smoothing effect on
the crystal. Figure 3a depicts the evolution of a pure melt with εc = 0. Since
this case is mathematically unstable, the regularization built-in to the level
set method allows its calculation, see [14]. Our method seems to introduce
less numerical diffusion than previous algorithms using the level set method,
see [5] for a comparison. This comes in part from a higher order accuracy
in the level set evolution, and translates into the more detailed dendrite
structure obtained with our method. Figures 3b and 3c show the smoothing
effect of increasing the surface tension at the interface.

3.3 Grid Refinement

This example, taken from [5], tests the convergence of our method under
grid refinement. Consider a small frozen seed of material placed in a sur-
rounding region of undercooled liquid with temperature T∞ = −0.5. The
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computational domain is [−2, 2] × [−2, 2] and the initial shape is given in
terms of the following parametric equations,

x(s) = (R + P cos(8πs)) cos(2πs)
y(s) = (R + P cos(8πs)) sin(2πs)

where R = .1, P = .02 and s ∈ [0, 2π]. We apply the Gibbs-Thomson
relation, equation 5, at the interface with εc = .002 and εv = .002. For
coarser grids, figure 4a, the numerical diffusion overcomes the physical reg-
ularization. However, as we refine the grid, the artificial numerical dissipa-
tion becomes negligible compared to the physical surface tension and the
zero level set of φ converges to a similar shape. The convergence of these
plots under grid refinement are comparable to those obtained by [5], but we
achieve convergence with fewer grid points as our method has less artificial
numerical dissipation, due to our use of more accurate numerical methods
in a variety of places.

3.4 Effect of Anisotropic Surface Tension

Physical anisotropy forces a crystal to grow along preferred directions. In
this example we impose the condition T = −εcκ at the interface with

εc = .001
(
8/3 sin4 (2α− π/2)

)
, (19)

where α is the angle between the normal to the interface and the x-axis. This
fourfold anisotropy will cause the crystal to grow along the four diagonal axes
as detailed in [2]. Consider the initial seed to be an irregular pentagon on a
domain Ω = [−1.5, 1.5]× [−1.5, 1.5] on a grid with 200 points in each spatial
dimension. We let the crystal grow to a final time tfinal = .4. Figure 5
demonstrates that the crystal indeed grows along the preferred diagonal
directions. Note that the dendrite growing from the initial singularity at
the top corner of the pentagon is properly limited by the anisotropic surface
tension that attains a maximum along the y-axis.

3.5 Grid Orientation Effects with Anisotropic Surface Ten-
sion

This test demonstrates that the artificial grid anisotropy is negligible. Con-
sider a domain Ω = [−1, 1] × [−1, 1] with 100 grid points in each spatial
dimension on which we seed a crystal with initial shape described by the
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following parametric equation:

x(s) = .4 cos(4s) cos(s)
y(s) = .4 cos(4s) sin(s)

where s ∈ [0, 2π]. The interface condition is the fourfold anisotropy bound-
ary condition T = −εcκ with εc = .001

(
8/3 sin4 (2(α− α0))

)
, where α is

defined as in section 3.4 and α0 is the preferred direction of growth. Fig-
ure 6a depicts the evolution of the level set function up to a time t = .04
when α0 = 0. The preferred directions are the x and y axes where the den-
drite tips sharpen. On the diagonal axes, the surface tension at the interface
attains a maximum value that forces the dendrite tips to widen. Figure 6b
illustrates the evolution of the same initial data when α0 = π/4. The pre-
ferred directions are along the diagonal directions as expected. Moreover,
the shape is that of Figure 6a rotated by π/4 demonstrating that the arti-
ficial grid anisotropy is negligible. In this example, we compute the normal
velocity component in four different coordinates directions as detail in [5].

3.6 Effect of Varying the Thermal Conductivity

This example illustrates the impact of varying the thermal conductivity.
The velocity at the interface is given by Vn = [ν∇T · ~n], so the stronger the
thermal conductivity ν, the faster the growth. Here we consider a domain
Ω = [−.5, .5] × [−.5.5] with 100 grid points in each direction. The initial
data is given by the following parametric equations:

x(s) = 0.2 (0.5 + 0.2 sin(6s)) cos(s)
y(s) = 0.2 (0.5 + 0.2 sin(6s)) sin(s)

where s ∈ [0, 2π] and we let the crystal grow to a final time of t = .025.
In this example we impose the condition T = −εcκ at the interface with
εc = .001. Figure 7 depicts the results with two different values of the
thermal conductivity ν.

3.7 Different Diffusion Constants

One advantage of using a level set formulation is the ability to simulate the
growth of a crystal with a different thermal conductivity than the medium
that it is in. This illustrates the versatility of our level set approach. The
phase-field formulation, on the other hand, requires one to perform asymp-
totic expansion to include different thermal conductivity on each side of the
front. Consequently, this has been a challenge up to recently [19].
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We consider the same problem as in section 3.6 but with different thermal
conductivities on each side of the interface. Figure 8 depicts the results when
the thermal conductivity inside νr = 1 and the thermal conductivity outside
νu = 1.2. Note that in our approach the two-phase problem is separated
into two distinct ones since we impose a Dirichlet condition at the interface
of each sub-domain. Therefore, one could take the ratio νr/νu as large as
wanted and the algorithm would perform as well in contrast with the phase-
field method. (We have chosen a more subtle difference in the ratio only to
fit the results into the graph for sake of comparison). In [21], the authors
also studied discontinuous thermal conductivities with their non symmetric
level set approach and showed that their numerical results converged to the
linearized solvability theory of Barbieri and Langer [3].

3.8 Comparison to Solvability Predictions

An often used example to test the validity of the phase-field approach is
to compute the dendrite tip velocity and tip shape of the standard fourfold
anisotropy crystalline growth. Consider a domain Ω = [−8, 8]× [−8, 8] with
a grid spacing ∆x = .01. We seed a disk of radius .15 in an undercooled
bath with temperature Tundercool = −.65. We impose the Gibbs-Thomson
relation 5 at the interface with ε = .05, d0 = .01 and εv = 0. The dimen-
sionless tip velocity Ṽtip = Vtipd0/D reaches a steady state value of .047
consistent with solvability theory as shown in figure 9). Figure 10 illustrates
the dendritic shapes of the standard fourfold anisotropy.

3.9 Dendritic Growth in Three Spatial Dimensions

The following example illustrates our method’s potential for modeling crys-
tal growth in three spatial dimensions. We obtain a fair amount of detail
in the dendrite structures with little computational effort, since our method
yields a symmetric linear system that can be inverted efficiently (numerical
experiments were performed on a Pentium III laptop).

Let Ω = [−1.5, 1.5] × [−1.5, 1.5] × [−1.5, 1.5]. The initial data is given
by φ = min(φ1, min(φ2,min(φ3, min(φ4,min(φ5, φ6))))), where the φi’s are
spheres of radius .1 and centered off the x-axis or y-axis or z-axis by ±.05.
Initially, T = 0 inside Ω−, and T = −.5 outside Ω−. Dirichlet boundary
conditions of T = −.5 are enforced on ∂Ω. We apply the Gibbs-Thomson
relation, equation 5, at the interface with εc = .002 and εv = .002. The
evolution of this initially ”bumpy” sphere is presented in Figure 11. The
snapshots are given every .014 s from the initial time t = 0 s to the final
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time t = .14 s.
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Figure 1: Several seeds of arbitrary shapes grow under the normal velocity
vn = 1 and merge together. This example was ran with 100 grid points in
each direction.
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Figure 2: A bulk of material is evolved with an interfacial normal velocity
vn = −1 and eventually breaks apart. This example was ran with 100 grid
points in each direction.
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Figure 3: Effect of varying isotropic surface tension. We impose the Gibbs-
Thomson relation at the interface with εv = 0 and (a) εc = 0, (b) εc = .0005,
(c) εc = .001. Grid sizes used are 300× 300.
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Figure 4: Growth histories for four grid resolutions: from left to right and
top to bottom, 120 points, 160 points, 200 points, 240 points in each spatial
dimension. We apply the Gibbs-Thomson relation at the interface with
εc = .002 and εv = .002. As we refine the grid the artificial numerical
dissipation becomes negligible compared to the physical mechanisms and
the zero level set of φ converges to a similar shape.
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tion is the fourfold anisotropy boundary condition T = −εcκ with εc =
.001

(
8/3 sin4 (2α− π/2)

)
. The crystal grows along the preferred diagonal

directions and the dendrite growing from the initial singularity at the top
corner of the pentagon is properly limited by the anisotropic surface tension
that attains a maximum along the y-axis.
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Figure 6: Grid orientation effects with anisotropic surface tension on a grid
with 100 points in each spatial dimension. The interface condition is the
fourfold anisotropy boundary condition T = −.001

(
8/3 sin4 (2(α− α0))

)
κ

with (left) α0 = 0 and (right) α0 = π/4. The shape of the crystal in the right
figure is that of the crystal in the left figure rotated by π/4 demonstrating
that the artificial grid anisotropy is negligible.
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Figure 7: Effect of varying the thermal conductivity on a grid with 100
grid points in each spatial dimension. This demonstrates that the interface
velocity Vn = [ν∇T · ~n] is larger for higher value of the thermal conductivity.
ν = .5 for the left figure and ν = 1 for the right figure.
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Figure 8: Effect of having different thermal conductivity on each side of the
interface on a grid with 100 grid points in each spatial dimension. The final
time is .025. From left to right: νr = 1 and νu = 1, νr = 1 and νu = 1.2.
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Figure 9: Time evolution of the dimensionless tip velocity in the case of
standard fourfold anisotropy. The solution is computed on a [−8, 8]× [−8, 8]
domain with 400 points in each directions, the undercooling is -.65 and the
anisotropy strength is given via the Gibbs-Thomson relation TI = .01(1 −
0.75 cos 4α), where α is the angle between the normal to the interface and
the x-axes. The final time is t = 1.42. The dimensionless tip velocity Ṽtip =
Vtipd0/D reaches a steady state value of .047 consistent with solvability
theory.
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Figure 10: Sequence of dendritic shapes in the case of standard fourfold
anisotropy. The solution is computed on a [−8, 8] × [−8, 8] domain with
400 points in each directions, the undercooling is -.65 and the anisotropy
strength is given via the Gibbs-Thomson relation TI = .01(1− 0.75 cos 4α),
where α is the angle between the normal to the interface and the x-axes.
The final time is t = 1.42.
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Figure 11: 3D Stefan problem. The contours show the evolution of the
interface location from time t = 0s (top left) to t = .14s (bottom right).
We apply the Gibbs-Thomson relation at the interface with εc = .002 and
εv = .0.002. This computation uses 100 grid points in each spatial direction.
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4 Conclusion

In conclusion, the level set method should be considered as a method of
choice for the study of dendritic crystallization. We have shown that our
algorithm can produce accurate solutions that can be compared favorably
with solvability theory. In addition, our spatial discretization of the tem-
perature yields symmetric matrices for the implicit time discretization that
can be inverted with fast linear solvers, making it very efficient.
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