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Abstract

High-resolution image reconstruction refers to reconstructing high-regolution images from mul-
tiple low-resolution, shifted, degraded samples of a true image. In this paper, we analyze this
problem from the wavelet point of view. By expressing the true image as a function in Ly([?), we
derive iterative algorithms which recover the function completely in the L sense from the given
low-resolution functions. These algorithms decompose the function obtained from the previous
iteration into different frequency components in the wavelet transform domain and add them into
the new iterate to improve the approximation. We apply wavelet {packet) thresholding meth-
ods to denoise the function obtained in the previous step before adding it into the new iterate.
Our numerical results show that the reconstructed images from our wavelet algorithms are bet-
ter than that from the Tikhonov least squares approach. Extension to super-resolution image
reconstruction, where some of the low-resolution images are missing, is also considered.

1 Introduction

Many applications in image processing require deconvolving noisy data, for example the deblurring
of astronomical images [11]. The main objective in this paper is to develop algorithms for these
applications using wavelet approach. We will concentrate on one such application, namely, the
high-resolution image reconstruction problem. High-resolution images are often desired in many
situations, but made impossible because of hardware limitations. Increasing the resolution by image
processing techniques [1, 3, 9, 14, 15, 22, 23, 24] is of great importance. Here we consider creating
high-resolution images of a scene from the low-resolution images of the same scene. When we have a
full set of low-resolution images, the problem is referred to as high-resolution image reconstruction;
and when only some of the low-resolution images are available, the problem is called super-resolution
tmage reconstruction.

In both cases, the low-resolution images are obtained from sensor arrays which are shifted from
each others with subpixel displacements. The reconstruction of the high-resolution image can be
modeled as solving a linear system Lf = g, where L is the convolution operator, g is a vector formed
from the low-resolution images, and f is the desired high-resolution image, see [1].

In this paper, we look at this problem from the wavelet point of view and analyze the process
through multiresolution analysis. The true image can be considered as a function f in Lo(R?) and
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the low-resolution images can be thought of as the low-frequency samples of f obtained by passing f
through some lowpass filters. Thus the problem can be posed as reconstructing a function from the
given multiple low-frequency samples of f. To recover f, we deconvolve iteratively the high-frequency
components of f which are hidden in the low-frequency samples. Our iterative process decomposes
the function obtained in the previous iteration into different frequency components in the wavelet
transform domain and then adds them to the new iterate to improve the approximation. In this
setting, 1t is easy to apply wavelet methods to denoise the function obtained in the previous step
before adding it into the new iterate.

The high-resolution image reconstruction problem is closely related to the deconvolution preblem.
In the recent works of [12] and [13], an analysis of minimizing the maximum risk over all the signals
in a set of signals is given. Then, it was applied to estimate the risk of the wavelet thresholding
method used on the deconvoluted signals. Their wavelet thresholding algorithm is proven to be close
to the optimal risk bound when a mirror wavelet basis is used. The main difficulty in denoising
deconvoluted signals is that when the convolution lowpass filter has zeros at high frequency, the
noise variance in the solution has a hyperbolic growth [12]. To overcome this difficulty, a mirror
wavelet basis is constructed to define a sparse representation of all the signals in the set of given
signals and to nearly diagonalize the covariance operator of the noise in the deconvoluted solution
in order to reach the optimal risk bound.

The approach here is different. The highpass filters are added to perturb the zeros of the con-
volution kernel to prevent the noise variance from blowing up. Our wavelet (packet) thresholding
method, which is a wavelet dencising method, is built into each iterative step so as {o remove the
noise from the original data. It also keeps the features of the original signal while denoising. In
this sense, our method is more related to the Tikhonov least squares method where a regularization
operator is used to perturb the zeros of the convolution kernel and a penalty parameter is used to
damp the high-frequency components for denocising. Since the least squares method penalizes the
high-frequency components of the original signal at the same rate as that of the noise, it smoothens
the original signal. In contrast, our thresholding method penalizes the high-frequency components
of the signal in a rate significantly lower than that of the noise, and hence it will not smoothen the
original signal in general. Moreover, there is no need to estimate the regularization parameter in
our method. Our numerical tests show that the reconstructed images are of better quality. Also our
algorithms can easily be extended to the super-resolution case.

The outline of the paper is as follows. In §2, we give a mathematical model of the high-resclution
image reconstruction problem. In §3, we derive our algorithms. Extensions to the super-resolution
case are also discussed there. Numerical examples are given in §4 to illustrate the effectiveness of the
algorithms. After the concluding remarks, we provide in the Appendix an analysis of our algorithms
via the multiresolution analysis.

2 The Mathematical Model

Here we give a brief introduction to the mathematical model of the high-resolution image reconstruc-
tion problem. Details can be found in [1]. Suppose the image of a given scene can be obtained from
sensors with N x Ny pixels. Let the actual length and width of each pixel be T} and T respectively.
We will call these sensors low-resolution sensors. The scene we are interested in, i.e. the region of
interest, can be described as:

S ={({z1,22) € R* | 0 < 71 ST1N,0 < 20 < TR}

QOur aim is to construct a higher resolution image of the same scene by using an array of K1 x Ks
low-resolution sensors. More precisely, we want to create an image of S with M; x My pixels, where



M, = K{N, and My = KsNs. Thus the length and width of each of these high-resolution pizels
will be Ty /K and T2/K; respectively. To maintain the aspect ratio of the reconstructed image, we
consider onty K7 = Ky = K.

Let f(zi,z2) be the intensity of the scene at any point (z1,z2) in 8. By reconstructing the
high-resolution image, we mean to find or approximate the values

K? UK p(G+0Te/K
[ f flz1, zo)dzidze, 0<i< M;,0<j <M,
i J

T, Jim To/K

which is the average intensity of all the points inside the (i, j)th high-resolution pixel:

i T NER Ty . )
{Z“k“a(ﬁ“i‘l)K]x{J?s(J"?‘l)?}a 0<i<M;,0<7 < Mo (1}

In order to have enough information to resolve the high-resolution image, there are subpixel
displacements between the sensors in the sensor arrays. Ideally, the sensors should be shifted from
each other by a value proportional to the length and the width of the high-resolution pixels. More
precisely, for sensor (k1, kz}, 0 < k1, ks < K, its horizontal and vertical displacements df , and dzl ks
with respect to the point (0,0) are given by

1-K\T 1-K\T
iﬂﬂz = (k}l + T) El and dglkz == (kg + —) m2"

For this low-resolution sensor, the average intensity registered at its (ny,n2)th pixel is modeled by:

1 ¥ 5 (n1+1)+dz1k2 Tz(ﬂ2+1)+dil ko
Gy ko 101, 2] = f ./ f (@1, 72)d@1d2 + Mkyky [0, 72]- (2)
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Here 0 < n; < Ny and 0 < mp < Ny and 7, 4,[n1,n2] is the noise, see [1]. We remark that the
integration is over an area the same size of a low-resolution pixel.

Notice that using the mid-point quadrature rule and neglecting the noise 4, (71, 12} for the
moment,
1 . 1,
“2‘) + dfy ke To(n2 + 5) + a7k,
Iy
K

Gki1ky[M1, 2] = f(Tz(m-i-

T 1 1
= f (}-{l(Knl + ki + 5), (Kng + ko + —)) .

2

Thus if we intersperse all the low-resolution images g, to form an M| x M, image g by assigning
9l n1 + ki, Kng + ka] = ghyk, (01, 12, (3)

then T LT )
.. 1, 2. . .
~f| = =), = - 0<i < M,0< M.

which is the value of f at the mid-point of the (%, 7)th high-resolution pixel in (1). Thus g is an
approximation of f. Figure 1 shows how to form a 4 x 4 image g from four 2 x 2 sensor arrays
{9k, kZ}il,kQ_):O where all gg,x, have 2 x 2 pixels. The image g, called the observed high-resolution
image, is already a better image (i.e. better approximation to f) than any one of the low-resolution
samples gi, , themselves, see Figures 4 (a)-(c) in §4.
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Figure 1: Construction of the observed high-resolution image.

To obtain an even better image than the observed high-resolution image g, one will have to solve
(2} for f. According to [1], we solve it by first discretizing it using the rectangular quadrature rule.
Or equivalently, we assume that for each (¢, )th high-resolution pixel given in (1), the intensity f is
constant and is equal to f[i, 7] for every point in that pixel. Then carrying out the integration in (2},
and using the re-ordering (3), we obtain a system of linear equations relating the unknown values
fli, 7] to the given low-resolution pixel values g{i, j]. This linear system, however, is not square. This
is because the evaluation of gg,,[n1,n2] in (2) involves points outside the region of interest S. For
example, go 0[0,0] requires the values f(z1,z2) where z; < 0 and z2 < 0, Le. it involves f[—1,—1].
Thus we have more unknowns than given values, and the system is underdetermined.

To compensate for this, one imposes boundary conditions on f for z; outside the domain. A
standard way is to assume that f is periodic outside:

flz + iDL N,y + jToNo) = flz,y), i.j € L,

see for instance [8, §5.1.3]. Other boundary conditions, such as the symmetric (also called Neumann
or reflective) boundary condition and the zero boundary condition, can also be imposed, see [1, 18].
We emphasize that these boundary conditions will introduce boundary artifacts in the recovered
images, see for examples Figures 4 (d)—(f) in §4. For simplicity, we will only develop our algorithms
for periodic boundary conditions here. For other boundary conditions, similar algorithms can be
derived straightforwardly.

Using the periodic boundary condition and ordering the discretized values of f and g in a row-
by-row fashion, we obtain an M) My x M{ M, linear system of the form:

Lf=g. (4)
The blurring matrix L can be written as

L=I*®L (5)



where ® is the Kronecker tensor product and L7 is the M x M) circulant matrix with the first row
given by

1 1
Lol 5,0,0.,0,5,1, ,1].

Here the first K/2 entries are equal to 1. We note that the last K/2 nonzero entries are there because
of our periodic assumption on f. The My x M, blurring matrix LY is defined similarly.

We note that the matrix L is a block-circulant-circulant-block (BCCB) matrix. Thus (4) can
be solved by using three 2-dimensional Fast Fourier Transforms (FETs) in O{(M; M, log(M; M)
operations, see for instance [8, §5.2.2]. As examples, the matrices L* for the cases of 2 x 2 and 4 x 4
sensor arrays are given respectively by:

2 2 1 1
[ 2 1 1 2 2 2 1 1
1 2 i 1 2 2 1
Iy=1 and Ly =2 : (6)
9 = 1 Ik 4 == 8 .
1 2 1 1 2 2 2 1
1 12 1 1 2
|2 1 12 2]

Because (2) is an averaging process, the system in (4) is ill-conditioned and susceptible to noise.
To remedy this, one can use the Tikhonov regularization which solves the system

(L*L + BR)f = L'g. (7)

Here R is a regularization operator {usually chosen to be the identity operator or some differential
operators) and 8 > 0 is the regularization parameter, see [8, §5.3]. If the boundary condition of
R is chosen to be periodic, then (7} is still a BCCB system and hence can be solved by 3 FFTs
in O(M; M, log{M;M,)) operations. If the symmetric boundary condition is used, then (7} is a
block Toeplitz-plus-Hankel system with Toeplitz-plus-Hankel blocks. It can be solved by using three
2-dimensional fast cosine transforms (FCTs) in O{M; M log(M;M,)) operations, see [18].

We note that (7) is derived from the least squares approach of solving (4). In the next section,
we will derive algorithms for finding f by using the wavelet approach. They will improve the quality
of the images when compared with (7).

3 Reconstruction

In this section, we analyze the model given in §2 using the wavelet approach. Since (2) is an averaging
process, the matrices in {(6) can be considered as a lowpass filtering acting on the image f with a
tensor product refinement mask, say a. Let ¢ be the tensor product bivariate refinable function with
such a refinement mask. Here, we recall that a function ¢ in Lo(IR?) is refinable if it satisfies

=4 Z a{a)d(2 - —a).

ac?

The sequence a is called a refinement mask, or lowpass filter. The symbol of the sequence a is defined

as ‘
a(w) 1= Z a{a)e ™,

acZ?
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The function ¢ is stable if its shifts (integer translates) form a Riesz system, i.e. there exist
constants 0 < ¢ < C < o0, such that for any sequence g € £5(Z?),

clally < || X al@)d(- —e)|| < Clially- (8)

acZ? 9
Stable functions ¢ and ¢¢ are called a dual pair when they satisfy

= ()
(6, 9" (- “a)>”{ 0, ZGZQ\{(O 0)}.

We will denote the refinement mask of ¢¢ by a®.
For a given compactly supported refinable stable function ¢ € Ly(IR?), define S{¢) C L2(R?) to
be the smallest closed shift invariant subspace generated by ¢ and define

SE(p) = {u(2¥) :u € S(¢4)}, keZ

Then the sequence S*(¢), k € 7, forms a multiresolution of Ly(R?). Here we recall that a sequence
55(¢) forms a maultiresolution when the following conditions are satisfied: (i) S*(¢) C S*+1(¢); (ii)
UkezSE(¢) = La(R?) and NyenS*(¢) = {0}; (i) ¢ and its shifts form a Riesz basis of S(¢), see [5].
The sequence S*(¢%), k € Z, also forms a multiresolution of La(R?).

The tensor product of univariate refinable functions and wavelets used in this paper will be
derived from the following examples.

Example 1 ([5, p.277]). For 2 x 2 sensor arreys, using the rectangular rule for (2), we get Ly in
(6). Correspondingly, the refinement mask m is the piecewise linear spline, i.e.

1 1 1
m(m}-) - Z? m(D) = 5: m(l) = E}
and m(a) = 0 for all other o. The nonzero terms of the dual mask of m used in this paper are:
1 1 3 1
df oy . 1 di_agy — — d i d — d —

In general, the tensor product bivariate filters for the dilation 21, where [ is the identity matrix,
are generated as follows. Let ¢ and ¢¢ be a dual pair of the univariate refinable functions with
refinement masks m and m? respectively. Then, the biorthonormal wavelets % and ¢ are defined
by

-—ZZT(Q $(2-—a), and ¢* “'“ZZT‘ (2 - —a),
oel atZ
where
ra) = (-1)®m%1 —a), and r%a):=(-1)°m(l ~a)

are the wavelet masks, see for example {5} for details. The tensor product dual pair of the refinement
symbols are given by a(w) = m(wl)m(wg), Hw) = 'fﬁ,d( 1)m (wg), and the correspondmg wavelet
symbols are o) (w) = Mw)Fwa), By )W) = U Jrt(wn), b)) = Plwn)(ws), B g (w) =
7w ) (we), b1y (W) = Flwn)F(wa), B | (W) = PHw)7(ws), where w = (wn,ws).

Although we only give here the detai(ls of refinable functions and their corresponding wavelets with
dilation 27, the whole theory can be carried over to the general isotropic integer dilation matrices.
The details can be found in [10} and the references therein. In the next example, we give the refinable
and wavelet masks with dilation 47 that are used to generate the matrices for 4 x 4 sensor arrays.



Example 2. For 4 x 4 sensor arrays, using the rectangular rule for (2), we get Ly in (6). The
corresponding mosk is

with m{a)} = 0 for all other a.. It is the mask of a stable refinable function ¢ with dilation 4 (see e.g.
[16] for a proof). The nonzero terms of a dual mask of m s

115151 1

dy__ 115151 1
mi) =16 5761 168" 16"

a=-3,...,3

The nonzera terms of the corresponding wavelet masks (see [20]) are

101 11
Tl(a)n_gs_130?21§: O.’=—2,. :2:
i 1 5 1 b 1 1
S S A SO . —2,... .4
72(“) 16° 816’ 41161 g’ 16: < H 3

11 7 7 1 1
= — - —— 0, — —— —— =-2,...,4.
=153 %% v E ° e

The dual wavelet masks are
ri{a) = (-1)'ry(1 - a), r§(a) = (1) m(l — @), r§(a) = (=1)'""ri (1 - a),
for appropriate o.

In the next two subsections, we will use the wavelet approach to design algorithms for recovering
the high-resolution image from the low-resolution images of a true image. In §3.1, we first consider
the true image as a representation of a function in certain subspace of L2(R?) and using wavelet
means we recover this function from the given set of low-resolution images. In §3.2, we translate the
wavelet algorithms inte matrix terminologies.

3.1 Function Reconstruction

Since §%(¢%), k € Z, forms a multiresclution of Ly(R?), we can assume without loss of generality
that the pixel values of the original image are the coefficients of a function f in S*(¢%) for some k.
The pixel values of the low-resolution tmages can be considered as the coefficients of a function g in
Sk1(49) and its 1/2F translates, i.e. g is represented by ¢%(28~1(- — /2%)) with o € Z2. The low-
resolution images keep most of the low-frequency information of f and the high-frequency information
in f is folded by the lowpass filter a. Hence, to recover f, the high-frequency information of f hidden
in the low-resolution images will be unfolded and combined with the low-frequency information to
restore f. We will unfold the high-frequency content iteratively using the wavelet decomposition and
reconstruction algorithms.

For 2 x 2 sensor arrays, the multiresolution analysis S*(¢%) used is from a refinable function with
dilation matrix 27. In general, K x K sensor arrays can be analyzed by the multiresolution analysis
generated by a refinable function with dilation matrix K - I. For simplicity, we give the analysis for
the case that the dilation matrix is 27 and £ = 1. A similar analysis can be carried out for more
general cases.

Let f € S'{(¢%). Then,

F= (202 —a))2¢%(2- ) =2 > v(e)¢*(2- —a). (9)

aEZ? ach?



The numbers v{a), o € Z?, are the pixel values of the high-resolution image we are seeking, and
they form the discrete representation of f under the basis 2¢%(2 - —a), o € Z2. The given data set
a + v(e) is the observed high-resolution image. By using the refinability of ¢%, one finds that a * v is
the coefficient sequence of the function g represented by ¢(- — a/2), a € Z?, in §1(¢%). We call this
g the observed function and it is given by

g:= Y (axv)(a)d’(- —/2). (10)
acZ?
The observed function can be obtained precisely once a % v is given.

When only a + v is given, to recover f, one first finds v from a * v; then, derives f using the
basis 2¢%(2 - —a), @ € Z? as in (9). Here we provide an iterative algorithm to recover v. At step
(n + 1) of the algorithm, it improves the high-frequency components of f by updating the high-
frequency components of the previous step. The algorithm is presented in the Fourier domain where
the problem becomes: for a given @ * v == @0, one needs to find ¥ in order to restore f.

Our algorithm will make use of the following fact from the biorthogonal wavelet theory: for a
given tensor product bivariate refinement mask a corresponding to a stable refinable function ¢, one
can find a tensor product dual mask a? and the corresponding wavelet masks b, and b2, v € Z2, such
that the symbols of the refinement masks and wavelet masks satisfy the following equation:

ala+ > bh=1 (11)
veZR{(0,0)}

We note that when the refinable function ¢ (of the convolution kernel a) and its shifts form an

orthonormal system (e.g. in the Haar case), then (11) holds if we choose @¢ = @ and b¢ = b,. This

leads to orthonormal wavelets. When ¢ and its shifts form only a Riesz system, one has to use
biorthogonal wavelets.

By (11), we have ¥ = a%d % v + (ZV@E;V)?I. Hence we have the following algorithm.
Algorithm 1.
(i) Choose Ty € Lof—m, m)%;

(i1} Iterate until convergence:

Bop1 = Q%G F D + S b, | G (12)
veZA{(0,0)}

We remark that the first term a%a * v = a%a0 in the right hand side of (12) represents the approxi-
mation of the low-frequency components of f whereas the second term improves the high frequency
approximation.

Given ¥, fn is defined via its Fourier transform as:

Fa() = Bal/2H(-/2) € $1(9%). (13)
We now show that the functions f, converge to the function f in (9).

Proposition 1. Let ¢ and ¢% be a pair of dual refinable functions with refinement masks a end al
and let b, and b2, v € 23\ {(0,0)}, be the wavelet masks of the corresponding biorthogonal wavelets.
Suppose that 0 < a3 < 1 and its zero set has measure zero. Then, the sequence ¥, defined in (12)
converges to U in the Ly-norm for any arbitrary Gy € Le[—=, 7|2, In particular, f, in (13) converges
to f in (9) in the La-norm.



Proof. For an arbitrary Uy € La[—,7}%, applying (12), we have

n

G-Ba=| Y. U] &%)
veZA{(0,0)}

1t follows from 0 < 8% < 1 and (11) that

S W<l
veZA{(0,0)}

Since @4a > 0 and its zero set has measure zero, the inequality

> b, | < 1
veZ\{(0,0)}

holds almost everywhere. Hence,
K3
> Wb, | @—T0) 20, asn— oo ae.
veZ3\{(0,0)}
By the Dominated Convergence Theorem (see e.g. [19]), T, converges to ¥ in the Ly-norm.

Since ¢?(- — @) is a Riesz basis of S%(¢%), from (8), 2642 - —a) is a Riesz basis of §*(¢%). Hence
by (8) again,

U= flla = IS (afe) — v(a))26(2 - ~a)|l2

och?
< 01 Y (nle) — vl@))l = 55— 9lly — 0.
acZ?

Remark 1. The symbols of the refinement masks and the corresponding dual masks used in this
paper are tensor products of univariate ones that satisfy the assumptions of this proposition.

Remark 2. The above convergence result is also applicable to the super-resolution case. Assume for
simplicity that a+v is downsampled to four sub-samples axv(y —2a), v € Z%. For the super-resolution
case, one only has some of the sub-samples, a*v(v —2a), v € A C Z3. In this case, one first applies
an interpolatory scheme (e.g. [10]) to obtain the full set of the sample w approzimately. Let the £
solution of the equation a * z = w be u. Then, a * u(v — 2a) = a x v(v — 2a) for v € A. Applying
Algorithm 1 to o % u, the above proposition asserts that it converges to u.

When there are noise in the given data ¢ * v, one may subtract some high-frequency components
from ¥, at each iteration to reduce the noise, since noise is in the high-frequency components. Then
we get the following modified algorithm:



Algorithm 2.
(i) Choose g € Lo[—m, 7l%;

(ii) Herate until convergence:

B =atarv+(1-f) | S W | %, 0<p<L (14)
veZ{(00)}

In this denoising procedure, the high-frequency components are penalized uniformly by the factor
{1 — /). This smoothens the original signals while denoising.

To remedy this, we now introduce a wavelet thresholding denoising method. It is based on the
observation that by, = m, v € Z2\ {(0,0)}, is the exact wavelet coefficients of the wavelet
decomposition (without downsampling) of the function f,, the nth approximation of f. A further
decomposition of b, * v, by using the lowpass filter ¢ and the highpass filters b, several times, will
give the wavelet coefficients of the decomposition of f,, by the translation invariant wavelet packets
defined by the biorthogonal filters a, a® and b, and b (see e.g. [17] and [25]). More precisely, by
using (11) we have

J—1 . .
BB, = (E‘E)J @7 5o+ (a_d)” S Wb, @) b,
3=0 YEZ\{(0,0}}

where J is the number of levels used to decompose b,U,,. For each j and v € Z2\ {{0,0)}, 37 (@) byon,
is the coefficients of the wavelet packet (see e.g. [25]) down to the jth level. A wavelet thresholding
denoising procedure is then applied to b, (@)’ by, the coefficients of the wavelet packet decomposi-
tion of f,, before b, # v, is reconstructed back by the dual masks. This denoises the function f,. Our
method keeps the features of the original signal. Moreover, since we do not downsample (by a factor
of 2} in the decomposition procedure, we are essentially using a translation invariant wavelet packet
system [17], which is a highly redundant system. As was pointed out in {4] and [17], a redundant
system is desirable in denoising, since it reduces the Gibbs oscillations.

Another potential problem with Algorithm 2 is that at each iteration, 9,41 inherits the noise
from the observed data & * v present in the first term on the right hand side of (14). If the algorithm
converges at the ng-th step, then Ty, still carries the noise from d* . One can eliminate part of
these noise by passing the final iterate ¥, through the wavelet thresholding scheme we mentioned
above (see Step (iii) below). We summarize our thresholding method in the following algorithm.

Algorithm 3.
(i) Choose By € Lol—m, 7]%;
(ii) Iterate until convergence:
G =ataio+ 3. BT (b)),
veZ{(0,0)}
where i
o =T e T~ — /=\] oV P L~ RN Lol
Ths) = (@) @ ha+> (&) 3w (5@ h6),
3=0 vEZ{(0,0}}

and D is a thresholding operator (see for instant (19) below).
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(iii) Let Un, be the final iterate from Step (it). The final solution of our Algorithm is:

= (@ @0 @ T @),
=0

YEBIN{(0,0)}
where D is the same thresholding operator used in Step (ii).

In both the regularization method {Algorithm 2) and the thresholding method (Algorithm 3),
the nth approximation f, is denoised before it is added to the iterate to improve the approximation.
The major difference between Algorithms 2 and 3 is that Step (ii) in Algorithm 2 is replaced by Step
(ii} of Algorithm 3 where the thresholding denoising procedure is built in.

3.2 Image Reconstruction
Let us now translate the results above from wavelets notations into matrix terminologies. Denote
by L, L¢, HY¢ and H, the matrices generated by the symbols of the refinement and wavelet masks

a, r;&, 5; and E;;‘E respectively. For the periodic boundary conditions, the matrix L is already given in
(5) and the matrices L%, H? and H, will be given in detail in §4. Using these matrices, (11) can be
written as:

I+ Y HiH, =1 (15)
vEZH{(0,0)}
Also (12) can be written as:
£ =Lo%g+ N miH, | f, (16)
veZ3\{(0,0)}

where g (~ a # v) 1s the observed high-resolution image given in (4} and f, are the approximations
of f at the nth iteration.
Rewriting (16) as

fn+1 - Z HSHU £, = Ldg>
veZ3\{(0,0)}

one sees that it is a stationary iteration for solving the matrix equation

I- > HyH, || f=1%.
vez\{{0.0)}

Therefore by (15), we get the matrix form of Algorithm 1.

Algorithm 1 in Matrix Form:
LOLf = L%. (17)

We note that there is no need to iterate on (16) to get f.

11



In a similar vein, one can show that Algorithm 2 is actually a stationary iteration for the matrix
equation

(LdL +8 > HﬁHy) f= L.
veZ\{{0,0)}

By (15), this reduces to the following algorithm.

Algorithm 2 in Matrix Form:

d B I Y
(L L+m1)f_—1“ﬁL g (18)

Again there is no need to iterate on (14) to get f. For periodic boundary conditions, both
the matrices L and L% in (18) are BCCB matrices of size M; My x MM and hence (18) can be
solved efficiently by using three 2-dimensional FFTs in O(M;M; log(M)M>)) operations, see [8,
§5.2.2]. For symmetric boundary conditions, both matrices L and L% are block Toeplitz-plus-Hankel
matrices with Toeplitz-plus-Hankel blocks. Thus (18) can be solved by using three 2-dimensional
FCTs in O(M M, log(M; M) operations (see [18]). It is interesting to note that (18) is similar to
the Tikhonov least squares method (7), except that instead of L”, we use L%.

In (16}, it is easy to further decompose H, f,, v € Z3\ {(0,0}}, by applying the matrices L and
H,, v € Z2\ {{0,0)}, to obtain the wavelet packet decomposition of f,. Then we can apply the
threshold denoising method we have discussed in §3.1. To present the matrix form of Algorithm 3,
we define Donoho’s thresholding operator. For a given A, let

DA((wla-' PO P )T) = (t)‘(ﬂfl),.. . ,t)\(.ﬁb',g),. . ')T: (19)

where the thresholding function ¢ is either (i) ¢x(z) = z)|z|>, referred to as the hard threshold, or
(i1} £A(z) = sgn(z) max(|z| — A, 0}, the soft threshold.

Algorithm 3 in Matrix Form:
(i) Choose an initial approzimation £ (e.g. fy = Lig);
(i) Iterate until convergence:
fupr =Lig+ > HIT(Hf).
veZ\{(0,0)}

Here

J—1
T (Hf) = (LY (L) (HL)+ Y (LY > HIDy,, (H,(LYHE) (20
J=0 YeZ3{(0,0)}

with Dy, , given in (19) and Any = 0nu/2log(M1 M) where on, is the variance of H,f,
estimated numerically by the method provided in [7].

(i3) Let £, be the final iterate from Step (ii). The final solution of our Algorithm is

J1
£, = (LY (L) oy + > (LY D" HIDy,, (Hy(L)Es),
3=0 YeZR{(0,0)}

where Dy, is the thresholding operator used in Step (ii).
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According to {7], the choice of A, ., in Step (ii) is a good thresholding level for orthonormal wavelets
as well as biorthonormal wavelets.

The computational complexity of Algorithm 3 depends on the number of iterations required
for convergence. In each iteration, we essentially go through a J-level wavelet decomposition and
reconstruction procedure once, therefore it needs O(M;M,)} operations. As for the value of J, the
larger it is, the finer the wavelet packet decomposition of f, will be before it is denoised. This leads
to a better denoising scheme. However, a larger J will cost slightly more computational time. From
our numerical tests, we find that it is already good enough to choose J to be either 1 or 2. The
variance o, , is estimated by the method given in [7] which uses the median of the absolute value
of the entries in the vector H,f,,. Hence the cost of computing on,, is O(My My log(M Ms)), see for
instance {21]. Finally, the cost of Step (iii) is less than one additional iteration of Step (ii). One nice
feature of Algorithm 3 is that it is parameter-free — we do not have to choose the regularization
parameter 3 as in the Tikhonov method (7) or Algorithm 2.

For the super-resolution case, where only some of the sub-samples a * v(v — 2a), v € A C Z3,
are available, we can first apply an interpolatory scheme {e.g. interpolatory subdivision scheme in
[6] and [10]) to obtain the full set of the sample w approximately. Then, with w as the observed
image, we find an approximation solution u from either Algorithm 2 or Algorithm 3. To tune up the
result, we can compute Lu to obtain e u{v — 2a), v € Zs, and replace the component o * u(v — 2a),
v € A, by the sample data, i.e. a*v(v — 2a), v € A. With this new observed high-resolution image,
we again use either Algorithm 2 or Algorithm 3 to get the final high-resolution image f.

4 Numerical Experiments

In this section, we implement the wavelet algorithms developed in the last section to 1D and 2D
examples and compare them with the Tikhonov least squares method. We evaluate the methods using
the relative error (RE) and the peak signal-to-noise ratio (PSNR) which compare the reconstructed
signal (image) f. with the original signal (image) f. They are defined by

iIf =Ll
RE = 1 €=
£l
e €13
PSNR = 10logyq ——2—,
S TR
for 1D signals and
2552 N M

PSNR = 1010g10 m,

for 2D images respectively, where the size of the signals (images) is N x M.

In our tests, N = 1 for 1D signals while N = M for 2D images. For the Tikhonov method (7), we
will use the identity matrix I as the regularization operator R. For both (7) and Algorithm 2, the
optimal regnlarization parameters 3* are chosen by trial and error so that they give the best PSNR
values for the resulting equations. For Algorithm 3, we use the hard thresholding for D in (19} and
J =1 in (20}, and we stop the iteration as soon as the values of PSNR peaked.

4.1 Numerical Simulation for 1D Signals

To emphasize that our algorithms work for general deblurring problems, we first apply our algorithms
to two 1D blurred and noisy signals. The blurring are done by the filter given in Example 2. The
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matrices L¢, L, H? and H,,, v = 1,2,3, are generated by the corresponding univariate symbols of

the refinement and wavelet masks m¢, m, r? and 7, respectively (with either periodic or symmetric
boundary conditions). For example, the matrix L for the periodic boundary condition is given by
the matrix L4 in (6) (cf. §4.2.1 for how to generate the other matrices).

The Tikhonov method (7) and Algorithm 2 reduce to solving the linear systems

* _ F* d B — 1 d
(L*L+ I = L*g and (LL+WM1__JBI)£ 1_ﬁLg

respectively. For Algorithm 3, Steps (ii) and (iii) become

3 3
fo01=L%+> HI L'LHf, + Y HID,,, (HyH.E,) |,
v=1 =1

3
fo=LLfn, + Y HIDy,, (Hufn).
v=1

The 1D signals in our test are taken from the WaveLab Toolbox at “http://www-stat.stanford.
edu/~wavelab/” developed by Donoho’s research group. Figure 2(a) shows the first original signal
f. Figure 2(b) depicts the blurred and contaminated signal with white noises at SNR = 25. The
results of deblurring by (7), Algorithm 2 and Algorithm 3 with periodic boundary conditions are
shown in Figures 2(c)—(e) respectively.

It is clear from Figure 2 that Algorithm 3 outperforms the other two methods. When the
symmetric boundary condition is used, the numerical results for each algorithm are almost the same
as that of the corresponding algorithms with the periodic boundary condition. Hence, we omit the
figures here. The similarity of the performance for the two different boundary conditions is due to
the fact that for the given filter, the extensions of the signal by both boundary conditions are very
close (note that the original signal has almost the same values at the two end points).

In the second example (Figure 3), the different boundary conditions lead to different extensions
of the signal. It is therefore not surprising to see in Figure 3 that the symmetric boundary condition
gives better PSNR values and visual quality than those of the periodic one. We omit the figures
generated by Algorithm 2 for this example. The numerical results from both tests show clearly that
Algorithm 3 (the thresholding method) outperforms the regularization methods (the least squares
method and Algorithm 2).

4.2 High-Resolution Image Reconstruction

This section illustrates the effectiveness of the high-resolution image reconstruction algorithm derived
from the wavelet analysis. We use the “Boat” image of size 263 x 263 shown in Figure 4(a) as the
original image in our numerical tests. To simulate the real world situations, the pixel values of the
low-resolution images near the boundary are obtained from the discrete equation of (2) by using the
actual pixel values of the “Boat” image instead of imposing any boundary conditions on these pixels.

4,2,1 2 x 2 Sensor Array

For 2 x 2 sensor arrays, (2) is equivalent to blurring the true image with a 2-dimensional lowpass filter
o which is the tensor product of the lowpass filter given in Example 1. Gaussian white noises are
added to the resulting blurred image, and it is then chopped to size 256 x 256 to form our observed
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high-resolution image g. We note that the four 128 x 128 low-resolution frames can be obtained by
downsampling g by a factor of 2 in both the horizontal and the vertical directions.

The vector g is then used in the Tikhonov method (7), Algorithm 2 and Algorithm 3 to recover
the high-resolution image vector £f. We recall from §2 that the matrix system relating g and f is not a
square system; and in order to recover f, we impose boundary assumptions on f to make the matrix
system a square system, see (4). We have tested both periodic and symmetric boundary conditions
for all three methods. For simplicity, we will only present the details for the periodic case. The case
for the symmetric boundary condition can be derived analogously, see [18, 2.

In what follows, all images are viewed as column vectors by reordering the entries of the images in
a row-wise order. For the periodic boundary conditions, both the Tikhonov method and Algorithm
2 are BCCB systems and hence can be solved efficiently by three 2-dimensional FFTs, see [8, §5.2.2].
For symmetric boundary conditions, the systems can be solved by three 2-dimensional FCTs, see
[18]. For Algorithm 3, we have L = Lo ® Lg, Hp,1) = L2 ® Ha, H(19) = Ha ® Lo, H(11) = Ha @ Hy,
de= L@ L, Hfio,l} = L& ® HY, H{d}’o) = HY ® LE, and Hgl,l) = HY ® HE. Here L, is given in (6)
an

T 6 2 -1 -1 27
2 6 2 —1 1
1 2 6 2 —1
-1 2 6 2 -1
7 o , (21)
8 S
-1 6 2 —1
—1 1 2 6 2
| 2 -1 -1 2 6|
T2 -6 2 1 17
) ]2 1
Hy=< JHE=Z] 1 -2 1 (22
‘T3 1 2 6 2 1| ' 4 R (22)
1 1 2 -6 2 :
2 1 1 2 —6 1 -2 1]
6 2 1 1 2

Tables 1 and 2 give the PSNR and RE values of the reconstructed images for different Gaussian
noise levels, the optimal regularization parameter 8* for the Tikhonov method and Algorithm 2 and
also the number of iterations required for Step (ii) in Algorithm 3. For the periodic boundary condi-
tion, Algorithm 2 and Algorithm 3 are comparable and both are better than the Tikhonov method.
For the symmetric boundary condition, Algorithm 3 performs better than both the Tikhonov method
and Algorithm 2. In general, symmetric boundary conditions perform better than the periodic ones.

4.2.2 4 x 4 Sensor Array

We have done similar numerical tests for the 4 x 4 sensor arrays. The bivariate filters are the tensor
product of the filters in Example 2. The observed high-resolution image is generated by applying the
bivariate lowpass filter on the true “Boat” image. Again, true pixel values are used and no boundary
conditions are assumed. After adding the noise and chopping to size 256 x 256, we obtain the observed
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Least Squares Model Algorithm 2 Algorithm 3
SNR(dB) | PSNR RE g PSNR RE 8* PSNR  RE  Iterations
30 30.00 0.0585 0.0291 | 3231 0.0449 0.2596 | 32.34 0.0447 2
40 30.39 0.0560 0.0275 i 32.67 0.0430 0.2293 | 32.53 0.0438 2

Table 1: The resulis for the 2 x 2 sensor array with periodic boundary condition.

Least Squares Model Algorithm 2 Algorithm 3
SNR(dB) | PSNR RE B PSNR RE g PSNR. RE  Iterations
30 32.55  0.0437 0.0173 | 33.82 0.0377 0.0364 | 34.48 0.0350 9
40 33.88 0.0375 0.0132 | 34.80 0.0337 0.0239 | 35.23 0.0321 12

Table 2: The results for the 2 X 2 sensor array with symmetric boundary condition.

high-resolution image g. The image g can be downsampled by a factor of 4 in both the horizontal
and the vertical directions to generate the sixteen 64 x 64 low-resolution frames. We emphasize that
the process is the same as obtaining the low-resolution frames via (2). The vector g is then used
in the Tikhonov method, Algorithm 2 and Algorithm 3 to recover f. Again, all three methods here
make use of either the periodic or the symmetric boundary conditions to form the coefficient matrix
L. The matrices Ly, L$, H, and Hﬁ, v = 1,2,3, can be generated by the corresponding filters in
Example 2 like what we did in §4.2.1,

Least Squares Model Algorithm 2 Algorithm 3
SNR(dB) | PSNR  RE &* PSNR RE G* PSNR  RE  Ilterations
30 25.09 0.1031 0.0448 | 26.45 0.0882 0.2354 | 26.58 0.0868 3
40 25.13 0.1026 0.0444 | 26.47 0.0880 0.2313 | 26.59 0.0867 3

Table 3: The results for the 4 x 4 sensor array with periodic boundary condition.

From Tables 3 and 4, we see that the performance of Algorithm 3 is again better than that
of the least squares method and Algorithm 2 in all the cases. Figure 4 depicts the reconstructed
high-resolution image with noise at SNR = 30dB. As is shown in the figures, the periodic boundary
condition introduces boundary artifacts in the recovered f, while the symmetric one has less bound-
ary artifacts. A careful comparison between Figures 4(g)—(i) reveals that Algorithm 3 gives better
denoising performance than the other two methods.

4.3 Super-Resolution Image Reconstruction

In this test, we tried a partial set of the low-resolution images indexed by A C Zi. The following
procedure is used to approximate the original high-resolution image f:

Step 1: From the given partial set of low-resolution images, we apply an interpolatory subdivision
scheme such as those in [6, 10] to obtain an approximate observed high-resolution image
w.

Step 2: Using w as the observed high-resolution image, we solve for the high-resolution image u
by using the least squares model, Algorithm 2 or Algorithm 3.
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Least Squares Model Algorithm 2 Algorithm 3
SNR(dB) | PSNR RE a* PSNR RE el PSNR. RE  Iterations
30 29.49 0.0621 0.0125 | 29.70 0.0601 0.0158 { 30.11 0.0579 30
40 30.17 0.0573 0.0089 | 30.30 0.0566 0.0101 | 30.56 0.0549 45

Table 4: The results for the 4 x 4 sensor array with symmetric boundary condition.

Step 3: After obtaining u, we re-formulate a set of low-resolution frames from u by passing it
through the lowpass filter and then replacing those in the set A by the given ones. Then
we have a new observed high-resolution image g;

Step 4: With this new observed high-resolution image g, we solve for the final high-resolution
image f by using the least squares model, Algorithm 2 or Algorithm 3.

In our test, the interpolatory filter from [6] is used in Step 1 and the subset A is chosen to be
{(0,0),(0,2),(1,1),(1,3),(2,0),(2,2),(3,1), (3,3) }, see Figure 5. As in §4.2.2, the tensor product of
the lowpass filter m in Example 2 is used to generate the low-resolution images, and white noises at
SNR = 40dB are added. Table b shows the results of the least squares model, and Algorithms 2 and
3 with symmetric boundary conditions. The optimal 5% in Step 2 and Step 4 are 0.0121 and 0.0105
for the least squares method and 0.0170 and 0.0161 for Algorithm 2 respectively. The total number
of iterations for Algorithm 3 in Step 2 and Step 4 is 35. Figure 6(a)} is the approximation of the
observed low-resolution image after the interpolatory subdivision scheme (i.e. it is the vector w in
Step 1) and Figure 6(b) is the resulting picture from our super-resolution algorithm with Algorithm
3 (1.e. the vector f in Step 4).

Least Squares Model | Algorithm 2 Algorithm 3
PSNR RE PSNR RE |[PSNR RE
27.44 0.0787 27.82 0.0753 | 28.03 0.0734

Table 5: The results of the super-resolution image reconstruction.

5 Concluding Remarks

Using examples in high-resolution image reconstruction, we have shown that our new wavelet thresh-
olding algorithm is better than the traditional Tikhonov least squares algorithm. We emphasize that
the main issue here is essentially deconvolving noisy data by wavelet approach. Our new algorithm
works not only for high-resolution image reconstruction, but also for more general deblurring prob-
lems, as the 1-D examples in §4.1 have shown.

Appendix. Analysis via Residuals

In this appendix, we explain through the residual analysis, why (17) is the right equation to
solve for the image reconstruction problem. For this, we first derive (17) by analyzing the observed
function g given in (10). Since ¢7 is refinable and since $*(¢?) is a half integer shift invariant space,
(- — e/2), @ € Z2, are in S*(¢). Hence, g is in $*(¢?) and can be written as

=2 ha)p*(2:—a).

acZ?
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By substituting ¢%(-) and its half integer translates in (10) by

=2 Z Ha)pH(2 - ~a)

acf?
and its (1/2)-integer shifts, we see that h = a%(—-) * a * v. Therefore, the solutions of
ad(——-) *a+z=al{—)%axv, (23)

are possible approximations of v since the given observed function g can be generated from this
solution. In fact, (17) is the corresponding matrix equation for (23).

On the other hand, recovering the original image from the observed high-resolution image a * v
is to deconvolve the equation

a%z=a%*v. (24)

In fact, (4) is the matrix representation of this equation.

Here, we give some residual analysis on the difference between using (24) and (23), when only
numerical approximation solutions can be obtained. Let v; be a numerical solution of (24) and v,
be a numerical solution of (23). Define

f=2) n(@)¢'2 —a)

ac?

and

fo=2 Y mla)t(2- —a).

acZ?
Then f; and fs are the approximations of f corresponding to v1 and vz. Then,

gi= ) (arxu)(@¢'(-~a/2)

aEeh?

and
=2 3 (ad(=) ¥ axvr) (@2 —a)
acZ?
are the observed functions of f; and f5 respectively, which are the approximations of g, the observed
function of f. Since only ¢ is available, we may compare the difference between g and g; and also
the difference between g and g2 in terms of the residual errors of v; and vy respectively.
Since the system ¢%(2 - —a), o € Z2, is a Riesz basis of S(¢%), we will have

clla®(=)a* v —a* (=) xaxvally <llg = gally < Clla®(—)arv—a¥(=) xarwml, (25

The upper bound of (25) indicates that the corresponding g is a good approximation of g as long
as vz has a small residual error. The lower bound of (25) asserts that any good approximation of g
must come from the solutions of (23) which have small residual errors. More precisely, let

fa=2) " vs(e)’(2- —a),
acZ?

be an arbitrary approximate solution of f, and g3 be the corresponding observed function. If ||g — gsl|,
is small, the lower bound estimate of (25) asserts that [|a%(—) % a % v — a®(~) x @ * vs]|, must be
small.
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On the other hand, since the system ¢%(- ~ @/2), o € Z2 normally is not a Riesz system (only
the upper Riesz bound in (8} holds for this system), we only have

flg _91”2 < O”“*”—G*WHQ- (26)

This indicates that those solutions of (24) with small residual errors will have their observed func-
tion close to g. However, the lack of lower bound estimate for (26) indicates that not all good
approximations of g necessarily come from the solutions of (24} with small residual errors.
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Figure 2: (a) Original signal; (b) Observed signal, blurred by the filter a in Example 2 and contam-
inated by white noise at SNR = 25; (¢) Reconstructed signal from the least squares method with
the identity regularization (PSNR = 43.19dB, RE = 0.0987, 3* = 0.0402); (d} Reconstructed signal
from Algorithm 2 (PSNR = 44.44dB, RE = 0.0855, 8* = 0.2205); (e) Reconstructed signal from
Algorithm 3 after 12 iterations (PSNR = 45.75dB, RE = 0.0735).

21



L * 1 1 L L 3 s : > X . 1 1 i L . L
L] a1 0z 03 G4 oS 05 [ 08 49 1 a &1 ez 03 o4 o5 0.6 o7 o8 09 1

(c) ()

t 1 . : 1 1 L A 3 s £ L L t t s L 1
o ol o2 02 0.4 o5 [ o7 08 0.g 1 0 01 0z 3 0.4 08 o8 or ag &8 1

Figure 3: (a) Original signal; {(b) Observed signal, blurred by the filter e in Example 2 and con-
taminated by white noise at SNR = 25; (c) Reconstructed signal from the least squares method
with the identity regularization and periodic boundary conditions (PSNR == 45.80dB, RE = 0.1183,
8% = 0.0619); (d) Reconstructed signal from Algorithm 3 with periodic boundary condition and after
2 iterations (PSNR = 48.90dB, RE = 0.0828); (e} Reconstructed signal from the least squares method
with the identity regularization and symmetric boundary condition (PSNR = 47.86dB, RE = 0.0933,
B* = 0.0421); (f) Reconstructed signal from Algorithm 3 with symmetric boundary condition and
after 5 iterations (PSNR = 50.92dB, RE = 0.0657).

22



Figure 4: (a) The original “Boat” image; (b) Low-resolution 64 x 64 image from the (0, 0)th sensor; (c)
Observed high-resolution 256 x 256 image (with white noise at SNR=30dB added); (d) Reconstructed
256 x 256 image from the least squares method with periodic boundary condition; (e) Reconstructed
256 x 256 image from Algorithm 2 with periodic boundary condition; (f} Reconstructed 256 x 256
image from Algorithm 3 with periodic boundary condition; (g} Reconstructed 256 x 256 image from
the least squares method with symmetric boundary condition; (h) Reconstructed 256 x 256 image
from Algorithm 2 with symmetric boundary condition; (i) Reconstructed 256 x 256 image from
Algorithm 3 with symmetric boundary condition.
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Figure &: The 4 x 4 sensor array.

Figure 6: (a) Approximation of the observed low-resolution image; (b} The reconstructed high-
resolution image using Algorithm 3.
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