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Abstract

High-resolution image reconstruction refers to reconstructing a higher resolution image from
multiple low-resolution samples of a true image. In [2], we considered the case where there are
no displacement errors in the low-resolution samples, i.e. the samples are aligned properly, and
hence the blurring operator is spatially invariant. In this paper, we consider the case where there
are displacement errors in the low-resolution samples. The resulting blurring operator is spatially
varying and is formed by sampling and summing different spatially invariant blurring operators.
We represent each of these spatially invariant blurring operators by a tensor product of a lowpass
filter which associates the corresponding blurring operator with a multiresolution analysis of
L?(IR?). Using these filters and their duals, we derive an iterative algorithm to solve the problem
based on the algorithmic framework of [2]. Our algorithm requires a nontrivial modification to
the algorithms in [2], which apply only to spatially invariant blurring operators. Our numerical
examples show that our algorithm gives higher peak signal-to-noise ratios and lower relative errors
than those from the Tikhonov least squares approach.

1 Introduction

In [2], we introduced wavelet algorithms for solving general deconvolution problems and applied them
to high-resolution image reconsiruction problems where higher resolution images are reconstructed
from multiple low-resolution samples of the true images with the low-resolution sensors aligned
properly. The blurring operator thus formed is spatially invariant and can be represented by a
tensor product of a lowpass filter that generates a multiresolution analysis of L?*(R?). The low-
resolution samples are viewed as the high resolution image passed through the blurring operator.
Since the blurring operator is spatially invariant, the reconstruction is essentially a deconvolution
problem.

This paper considers the high-resolution image reconstruction from low-resolution sensors that
have subpixel displacement errors, i.e. the sensors are not aligned properly. The resulting blurring
operator is spatially varying and is formed by sampling and summing different spatially invariant
blurring operators. Previous work in [1, 9] reduces the problem to a system of linear equation and
solves it by the preconditioned conjugate gradient method.
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Here, we represent the different spatially invariant blurring operators by tensor products of dif-
ferent lowpass filters. To take advantage of the ideas developed in [2], we first design a dual filter for
each lowpass filter associated with the corresponding blurring operator. Using the simple structure
of these filters, we then modify the algorithms in [2] to obtain an algorithm for the spatially varying
case. We note that although the algorithmic framework laid out in [2] still applies, the modification
is nontrivial since the problem itself is no longer a simple deconvolution problem. Numerical exper-
iments indicate that our algorithm gives higher peak signal-to-noise ratios and lower relative errors
than those of the Tikhonov least squares method.

The outline of the paper is as follows. In §2, we recall the mathematical model of the high-
resolution image reconstruction problem. In §3, filters are designed and our wavelet algorithm is
presented. Numerical experiments follow in §4.

2 The Mathematical Model

Here we give a brief introduction to the mathematical model of the high-resolution image recon-
struction. Details can be found in [1, 2]. Let the intensity function of an underlying continuous
image be f(z1,22). Our model assumes that an image at a given resolution is obtained by means of
averaging f over the pixels which have size corresponding to that resolution. We note that higher
the resolution, smaller in size are the pixels. Our mathematical problem is: given several averages
of f at a low resolution, how can we deduce a good approximation to an average of f at a higher
resolution? In what follows, we will make these notions more precise.

Suppose the image of a given scene can be obtained from sensors with Ny X Ny pixels. Let
the actual length and width of each pixel be Ty and T respectively. We will call these sensors
low-resolution sensors. The scene we are interested in, i.e. the region of inferest, can be described

as:
S {(w1,m2) € R? | 0<2, <N, 029 < T2N2}.

Our aim is to construct a higher resolution image of S by using an array of K; x K3 low-resolution
sensors, i.e. we want an image of S with M7 x M3 pixels, where M = K1 N1 and My = K3Nj. Thus
the length and width of each of these high-resolution pizels will be T1/K; and T3 /K5 respectively.
To maintain the aspect ratio of the reconstructed image, we consider only K; = Ko = K.

Let f(z1,z2) be the intensity of the scene at any point (z1,z2) in 8. By reconstructing the
high-resolution image, we mean to find or approximate the values

K2 UH0T/K /(j+1}T2/K
Jae

ey f(scl,a:g)dac;dacg, 0<e<M,0< 5 < My,
T

T1/K T /K
which is the average intensity of all the points inside the (4, 7)th high-resolution pixel:
1. T N T : ,
S y - -2 < ]
I:ZK,(‘L-!-I)K:IX[_?K,(‘?‘{‘l)K , 0<i< M, 07 <M (1)

In order to have enough information to resolve the high-resolution image, there are subpixel
displacements between the sensors in the sensor arrays. Ideally, the sensors should be shifted from
each other by a value proportional to the length and the width of the high-resolution pixels. However,
in practice there can be small perturbations around these ideal subpixel locations due to imperfection
of the mechanical imaging system. Thus, for sensor {k1,kz), 0 < ki, ke < K with (ky, ko) # (0,0),
its horizontal and vertical displacements dj , and dzl k, With respect to the (0, 0} reference sensor

are given by
z T1 T2
dk1kz = (kl + Eﬁhkz) f and dglkz = (kg + 6%1,’02) f
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Figure 1: Sensors without and with displacement error when K = 2 (left and right respectively).

Here €f, ,, and Ez;,kz are the horizontal and vertical displacement errors respectively. They can be
obtained by the manufacturers during camera calibration. Figure 1 shows the case when we have a
2 x 2 sensor array. We assume that

1 1
ek kol < 3 and |eg1’k2| < 3 (2)

For if not, the low resolution images from two different sensor arrays will be overlapped so much that
the reconstruction of the high resolution image is rendered impossible. For example, in Figure 1, if
€ > 1/2, then the three high-resolution pixels on the left hand side are not covered by the lower-
resolution pixel at all whereas the three high-resolution pixels on the right hand side are covered
twice by two adjacent lower-resolution pixels.

For sensor {k1, k2), the average intensity registered at its (n1,ng)th pixel is modeled by:

f(wla $2)d$1d$2 + 1 ko [nis 'n'2]- (3)

i /Tl (ﬂ1+1/2)+dﬁ1k2 /T2 (n2+1/2)+dil ks

Gkiks [ni 3 'n"?;z] =
DL Jryma-1/2yvdg . ITa(ma—1/2)+dY

Here 0 < ny < Ny and 0 < np < N2 and 1k, g, [n11, e is the noise, see {1]. Examples of low-resolution
images are given in Figures 3{a) and 4(a). We intersperse all the low-resolution images g, to form
an My x M, image g by assigning

g[Kn1 + k1, Kng + ko] = gg, gy [11, 2] (4)

The image g is called the observed high-resolution image. It is already a better image than any one
of the low-resolution samples gx, &, themselves, see Figures 3(b) and 4(b).

To obtain an even better image than g, one will have to solve (3} for f. According to [1], we solve
it by first discretizing (3) using the rectangular quadrature rule, which is an approximation to the
physics of the CCD arrays. Equivalently, we assume that for each (4, j)th high-resolution pixel given
in (1), the intensity f is constant and is equal to f[i, j] for every point in that pixel. Then carrying
out the integration in (3), and using the re-ordering (4), we obtain a system of linear equations
relating the unknown values f[i, j] to the given low-resolution pixel values g[4, j]. This linear system,
however, is not square. This is because the evaluation of g, ,[n1,n2] in (3) involves points outside



S. For example, go0[0,0] in (3) requires the value of f[—1,—1]. Thus we have more unknowns than
given values, and the system is underdetermined.

To resolve this, one can impose boundary conditions on f for points outside S. A standard way
is to assume that f is periodic outside:

f(w + Ty N,y +.7T2N2) = f(msy)? iJ € 2y (5)

see for instance [7, §5.1.3]. Using (5) and ordering the discretized values of f and g in a column-by-
column fashion, the blurring matrix corresponding to the (k1, k2)th sensor can be written as

L{ef,» €],) = L€}, 1,) ® L(€f, 1) (6)

where ® is the Kronecker tensor product and L(ezl,kz) is an My x M circulant matrix with the
middle row given by

1 1 1
00,0, 0,2 4 Lo L5 = g 0o, 01 )

2
K-1

Since we are using the rectangular rule in (3), the entries in (7} are just the area of the high-
resolution pixels which fall inside the low-resolution pixel under consideration, cf. Figure 1. The
Ms x M, blurring matrix L(Ezl,kg) is defined similarly. We note that there are other boundary
conditions that one can impose on the image, see for instance {1, 10]. In this paper, we will only
consider the periodic boundary condition.

The blurring matrix for the whole sensor array is made up of matrices from each sensor:

K1 K-1 K-1K~1
L(Gm_} ey) — Z Z Dkl kZL(ekl,}m’ekhkg Z Z Dk]_,k:z ek1,k2) ® L(Egl,kz)]' (8)
k1=0 ko=0 k1=0 ka=0

Here both €* and € are K X K matrices, and Dy, 3, are the sampling matrices, which are diagonal
matrices with diagonal elements equal to 1 if the corresponding component of g comes from the
(k1, ko)th sensor and zero otherwise, see (4) or [1] for more details. Because of the sampling matrices,
L(e®, €¥) is spatially variant and has no tensor structure or Toeplitz structure. Furthermore, since
(3) is an averaging process, it is ill-conditioned and susceptible to noise. To remedy this, we can
employ the Tikhonov regularization which solves the system

(L€, €")"L(€”, €¥) + BR)f = L(", €)'g (9)

for f. Here f and g are the column vectors formed by f and g respectively, R is a regularization
operator (usually chosen to be the identity operator or some differential operators) and 3 is the
regularization parameter, see [7, §5.3].

The normal equation (9) is derived from the least squares approach. In the next section, we will
derive an algorithm by using the wavelet approach.

3 Filter Design and the Algorithm

Since (3) is an averaging process, the blurring matrix L(ef, . , ekl k,) corresponding to the (ky, k}th
sensor can be considered as a lowpass filter acting on the image f. From (6) and (7), this lowpass
filter is a tensor product of the univariate refinement masks

1.1

1.2 —
K(Z +E) 5 b R} e)? (10)



where the parameters ¢ are different in the z and y directions for each sensor.
For simplicity, we consider K = 2 in this section. The general case can be analyzed similarly.
Recall that a function ¢ in L2(R) is refinable if it satisfies

—EZm (2 —a).

acZ

The sequence m is called a refinement mask, or lowpass filter. The symbol of the sequence m is
defined as M) = ¥, .7 m(a)e ™. The function ¢ is stable if its shifts form a Riesz system, i.e.,
there exist constants 0 < ¢ < C < oo, such that for any sequence gq(a) € £2(Z),

> qla)p(- — a)

acZ

< Cllqll;-
2

cliglly <

Stable functions ¢ and ¢? are called a dual pair when they satisfy

1, a=0;
(¢,¢d('—a)>={ 0, acZ\{0}.

We will denote the refinement mask of ¢¢ by md.

For a given compactly supported refinable stable function ¢ € L2(R), define S{¢) C L*(R) to be
the smallest closed shift invariant subspace generated by ¢ and define S*(¢) = {u(2%.) : u € S(¢)},
k € Z. Then the sequence S¥(4), k € Z, forms a multiresolution of Ls(R?). Here we recall that
a sequence S*(¢) forms a multiresolution when the following conditions are satisfied: (i) Sk($) ¢
SEYL(); (i1) UpezS*(¢) = LA(R) and NgezSP($) = {0}; (iii) ¢ and its shifts form a Riesz basis of
5(¢), see [4]. The sequence S*(¢%), k € Z, also forms a multiresolution of L*(R).

The biorthonormal wavelets ¢ and ¢? are defined by

P ::2Zr(a)¢(2-ma), and 7% := ZZT Y} (2 - —a),

ath acZ

where 7{a) = (—1)®md(1 — @), and r¥(a) := (—1)®m(1 — o) are the wavelet masks, see for example
[4] for details. From the wavelet theory (see e.g. [3]), the refinement masks m, m? and the wavelet
masks r, r¢ satisfy the perfect reconstruction equation:

mi + rdi = 1. (11)

The existence of a biorthogonal wavelet pair for a given refinement mask is the basis of our
analysis in [2]. In the next subsection, we therefore first construct wavelet masks corresponding to
the lowpass filters in (10).

3.1 Filter design

Our wavelet algorithm depends on the existence of wavelet masks corresponding to the lowpass
filters of the low-resolution sensors. When there are no displacement errors, the lowpass filters are
the tensor product refinement masks of (%, 1, %) for the 2 x 2 sensor array, and (g, 1,5, 3. 1) for the
4 % 4 sensor array, cf. (7) with €] ;= 0. Thus the filters from different sensors are the same and so
are the corresponding wavelet masks.

When there are displacement errors, the lowpass filters of the sensors are perturbations of the

above filters. They are tensor products of the filter in (10) and are different for different sensors.



However, we can still identify their refinement masks, their corresponding dual refinement masks
and the wavelet masks. We note that since the blurring matrix of the whole sensor array is made
up by adding the individual blurring matrix from each sensor (see (8)), there does not exist a tensor
product bivariate filter corresponding to the whole sensor array.

As examples, we give below the refinement masks and wavelet masks for each sensor for K = 2
and K = 4. Again, for simplicity, we give only the univariate masks. The actual masks for each
sensor are obtained by taking the tensor product.

Example 1. For K = 2, the corresponding mask (10) is

1.1 1

m(=1) = 35+, m(0) = 5, m(1) =

are 3 1 1 e
mi(=2) = =3 + 5, mi(-2) = 3, mi(O) = 3, mi() = 3, mD) = -5 - 5.

The dual pair of the wavelet masks are
ra) := (-1)®mi(l —a), and r4a):=(-1)*m(l —a).

It can be shown, by applying Theorem 3.14 in [11] (also see [8]), that if || < % (i.e. (2) holds), then
m and m? are the refinement masks of a dual pair of stable functions ¢ and % with dilation 2.

When € == 0, Example 1 is the well-known biorthogonal linear spline filter (see [4, p.277]).

Example 2. For K = 4, the corresponding mask (10) is
1,1 11111

Gt prris—9

m{a) =

with m{c) = 0 for all other a. The nonzero terms of a dual refinement mask of m is

1 el b el 5 e 1 1 €

d

1 el s el 1 € . __3 3
@=-t%tyeicters 38 1 &8 ° e

The nonzero terms of the corresponding wavelet masks are

ool =
W] oon
W | bt
[ SN
| =
QO| =

ri{a) = —

()___l__f_li_f__l £ =4k
T T8 T8 816 8 4°16 8 8 16 8
1 e 1 7 € 7 e 1 1 €
_+_7_7_""W“""50:___>__1_—~
16 8’8 16 8 16 8 8 16 8
The dual highpass filters are

r{(@) = (~1)'"r3(1 - a), r§(@) = (-1 *m(l - a), r§(e) = (-1)'"ri(1—a),

for appropriate «. Again, if le| < %, then m and m? are the refinement masks of a dual pair of the
stable functions ¢ and ¢¢ with dilation 4.

r3{a) =



3.2 The Algorithm

In this subsection, we present our algorithm. For simplicity, we let K = 2. Since the blurring matrix
from each sensor is a tensor product (see (8)), it suffices to consider the one-dimensional case, i.e.
the 1 % 2 sensor array. The general case of K x K sensors can be derived similarly by taking the
tensor products. For simplicity, we denote the number of low-resolution pixels by N and the number
of high-resolution pixels by M (= 2N).

For the 1 x 2 sensor array, the blurring matrix for the whole sensor array is given by

L{e) = D1 L{eg) + Dy L{er).

Here D, are the sampling matrices (by factor 2), i.e. Dy = Iy ® diag(es) where e; denotes the fZth
column of the 2 x 2 identity matrix and € = (e, €1). The M x M matrices L{e), k = 0,1 are defined
in (12) below. They are the blurring matrices corresponding to the kth sensor with displacement
error €. In matrix forms, all the matrices corresponding to sensor k& are the circulant matrices
generated by the corresponding masks. They are:

31 1 & 1 e 1

d .
= lant(o. = 24 F g... 0. —= =k 2y
L (Ek) circuian (4?41 8+ 4707 ?OJ 8 4?4)?
Lie) = ircuia,nt(l 1(1 —€),0,---,0 E(E + €x)); (12)
€k =G 279%9 €kt AT kt}s
1 ¢ 1 ¢ 1
d = ci S | SO ¢ PR, St
Heer) = cu‘cula,nt(4 5 ,0,--+,0, 1 + 5 2),
. 311 e 1 e
Hiep) = c1rculant(4, TTE 1 0,040, 0, 3 + 1 )
Here circulant(cy,--- ,cpr) denotes the M x M circulant matrix with {(cg,- -+, cp) as the first row.

For each sensor & (k is 0 or 1), the matrices L%ex), L(ex), H%(ex), and H(e), satisfy
Lex)Llex) + Hex)H{er) =1, (13)

because of (11). Our iterative algorithm starts from this identity. Suppose that at Step n, we have
the nth approximation f,. Then (13) gives

L%ex) Ler)En + H () H(eg )y, = £

Assume that L{e;)f is available, then we replace L{ex)f, by L{ex)f to improve the approximation.
By this, we define

£op1 = Lep) L{ep)f + H (ex) H (ex ). (14)

For the case with no displacement error, i.e. € = €3 = 0, we have L(ey) = L{eg) = L(0).
We have analyzed (14) in [2] through multiresolution analysis by using the lowpass and highpass
filters that generate the matrices L(0), L*(0), H(0) and H%(0). We showed that the blurred image
can be represented by a function in the low resolution space, the reconstructed image is in a high
resolution space, and HF, is the high frequency component of f, which can be represented by a
function in the wavelet space. At each iterate, the term L{0)f is always chosen to be g which is the
low frequency content of the original image and is given by the observed image. The high frequency
content of the original image is updated by the high frequency content of the previous iterate. It
was further shown in [2] that the sequence of functions corresponding to the high resolution images
at each iteration converges to the function corresponding to the original image f in L2-norm. When



g contains noise, then f,, has noise brought in from the previous iteration. To build a denoising
procedure into the algorithm, we further decompose the high frequency component H(0)f, via the
standard wavelet decomposition algorithm. This gives a wavelet packet decomposition of f,. Then,
applying a wavelet thresholding denoising algorithm to this decomposition and reconstructing H{(0)f
back via the standard reconstruction algorithm leads to a denoising procedure for f,. The details of
this algorithm and its analysis can be found in [2].

For the case with displacement errors, the blurred image g has error from the displacement and
the matrices differ from one sensor to the other. To implement (14), we need to approximate L{eg)f,
the first term on the right-hand side of (14). (As we have seen in the previous paragraph, for the
case with no displacement error, L(0)f is simply g). For the case with displacement error, we may
simply ignore the different matrices used at the two sensors and fix on only one set of matrices, say
L¥eg), L{ep), H%(ep) and H(ep). Then we apply (14) with L{e)f = g as the (approximation of) the
observed image. This gives an algorithm close to Algorithm 3 of {2] and it converges independent of
the choice of . But doing this will ignore the displacement errors between the sensors.

In order to take into the consideration the displacement errors and use our algorithm (14), we
modify it by updating the approximation of L{eg)f through exploring the available information at
each iterate. More precisely, we divide the (n + 1)th iteration into the following two steps:

e Choose g, 1= Dyg + Dy L(ep)f,, and define
fn+% = Ld(ea)gn+% + HYeg) H{eg)En.
e Choose gny1 = D1L{e1)f, 1+ Dyg and define
for1 = LHer)gnr1 + H () He1)f 1

Since L{eg)f = DiL(eg)f + DoL{ep)f and Dig = Di(D1L(ep) + DaL{er))f = DiL{eo)f, we only
need to approximate Dy L(eg)f in order to get an approximation of L(ep)f. Thus, in the first step
of (n + 1)th iteration, we use DyL{eg)f, to approximate DyL{eg}f. Similarly, in the second step of
(n + 1)th iteration, we use Dy L{e1)f, 1 to approximate D L(e;)f.

When g contains noise, the wavelet thresholding algorithm can be built in naturally again as in
[2]. To do it, we first introduce a truncation operator:

'D)\((QS}, cee g By )T) = (mEX]$1|>)U SRS 417 SRR )T'

Here x> equals to 1 if [#] > A, and 0 otherwise. Then for any given L(e), L4(e), H{e) and HY(e)
satisfying (13), and a data vector v with noise, we define the thresholding operator:

J—1
Tre(v) = (L) L)V + Y (LX) HYe)Dx (H(OL ()v), T=1,2,....
4=0

The thresholding operator 7. consists of three steps. The first step is a translation invariant
wavelet transformation with L(e) and H{e). Let v be a function at certain level of multiresolution
analysis representing the data v. The operator 77, transforms the data v into (L(e))”v, which is
the coefficients of the representation of a coarse approximation of v at J-th level down and contains
mainly low frequency content of v; and H(e)L?(e)v, j =0,...,J — 1, the detailed parts of v at level
7 that are the wavelet coefficients of v and contain high frequency contents of v.



The second step in T, is noise removal by thresholding. To guarantee that the thresholded
Dy (H (€)L?(€)v) keeps the original information of v, a proper A must be selected. Iere we choose
A = 0+/2log(M) which was shown to be an optimal threshold from a number of perspectives [5, 6],
and ¢ is the variance of v estimated numerically by the method in [5].

The third step is the inverse transformation of the translation invariant wavelet transformation
with L%(¢) and H%(). The thresholding step enables us to discriminate the information between
signal and noise, and therefore obtain a good approximation of v with less noise from the original
data v after applying the third step.

Our algorithm is now given as follows.

Wavelet Algorithm:

(i) Choose an initial approzimation fy (e.g. fo = g);

(1i) Tterate on n until convergence;

(1) take il = Dyg + DoL(ep)f, and do

fury = LU0}y g+ H () Too (H(0)Ee).

k3

(2) take gni1 = DlL(el)fm_% + Dog and do

£ = Le1)gni1 + HYe1)Tre (H(El)fn-;_-%) .

(3} increase n to n+ 1 and go to Step (1).

(iii) Let £,, be the final iterate from Step (4). The final solution of our Algorithm is

fc = Tf,U(fno)‘

The computational complexity of our algorithm depends on the number of iterations required
for convergence. In each iteration, we essentially go through a J-level wavelet decomposition and
reconstruction procedure K times, therefore it needs O(M) = O(K N) operations. As for the value
of J, the larger it is, the finer the wavelet packet decomposition of £, and £ 1 will be before it
is denoised. This leads to a better denoising scheme. However, a larger J will cost slightly more
computational time. From our numerical tests, we find that it is already good enough to choose J fo
be either 1 or 2. The variances o, are estimated by the method given in [5] which uses the median
of the absolute value of the entries in the vector H(ex)f, k- Hence the cost of computing o, is

O(M log(M)), see for instance [12]. Finally, the cost of Step (iii) is less than one additional iteration
of Step (ii). As a comparison, each iteration of the preconditioned conjugate gradient method used
in [9] would require the same amount of work, i.e. O(M log(M)) operations. One nice feature of our
algorithm is that it is parameter-free if we choose A = o+/2log(M). We then do not have to choose
the regularization parameter § as in the Tikhonov method (9).

As shown above, one of the key facts used in our algorithm is {(13), the matrix form of the “perfect
reconstruction” identity from the masks. The equation was derived under the periodic boundary
assumption we imposed on the images. Since the masks, which are determined by the lowpass filters
of the sensors, are not symmetric, one cannot obtain {13) if one imposes the symmetric boundary
condition instead.



4 Numerical Experiments

In this section, we implement the wavelet algorithm developed in §3.2 and compare it with the
Tikhonov least squares method (9). We evaluate the methods using the relative error (RE} and the
peak signal-to-noise ratio (PSNR) which compare the reconstructed image f. with the original image
f. They are defined by
f—f 2552 N*?
RE = ﬂ—% and PSNR = 10logyg | 5

2
4 ;f - fCHZ

where the size of the restored images is N x N.

We use the “Boat” image of size 260 x 260 shown in Figure 2 as the original image in our numerical
tests. To simulate the real world situations, the pixel values of the low-resolution images near the
boundary are obtained from the discrete equation of (3) by using the actual pixel values of the “Boat”
image. No periodic boundary conditions are imposed on these pixels. For the Tikhonov method (9),
we will use the identity matrix I as the regularization operator R. The optimal regularization
parameter 3* is chosen by trial and error so that they give the best PSNR, values for the resulting
equations. For our algorithm, we stop the iteration as soon as the values of PSNR peaked. We
use J = 1 in our algorithm as it incurs the least cost and the result is already better than that of
the Tikhonov method. In case that PSNR is not available, we stop the iteration, when the two
consecutive iterants are less than a given tolerance.

Figure 2: The original “Boat” image.

4,1 2 x 2 Sensor Array

For 2 x 2 sensor arrays, the bivariate filter for the blurring process is the tensor product of the lowpass
filter given in Example 1. By applying the matrix La(e®, €¥) of size 260 x 260 on the true “Boat”
image and then adding white noise, the resulting image is then chopped to size 256 X 256 to form
our observed high-resolution image g. We note that the four 128 x 128 low-resolution frames can be
obtained by downsampling g by a factor of 2 in both the horizontal and the vertical directions.

In what follows, all images are viewed as column vectors by reordering the entries of the images
in a column-wise order. The blurring matrices and the wavelet matrices are formed by the tensor
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product, see (6). In particular, we have

L(eii,h) ® L(eil ,k2)7
L(egi,kg) ® H(Ez11k2)7
H(e,mchkz) ® L(Egl,kz)’
H(Eil ,k2) ® H(€%1 ,k2)7
Ld(eﬁl’kﬂ) ® Ld(ezl’h),
Ld(fﬁl,kz) ® Hd(fii,kz),

Ly kg (fﬁl Jen? fgl,kz)

Hiey ko, (0,1) (€5, 0 € i)
Hiy k(1,0 (€8 kg1 €k )
fIcIICI Jke,(1,1) (eftlﬁkz’ 6%1 ,kz)
Lk1,kz (6%1 K2 ke ko )

H k1,k2,(0,1) (65121,k2’ 6;1 ,kz_) | .
Hﬁl +k2,(1,0) (EE Yeg)? 6;1 ka2 ) H? (6;1 oz ) ® L* (eii ko ) *
H o 1) (R S k) HYe, 1) ® HY(eR, 1),

for k1, ke = 0,1. Here L{e), L%e), H(e), and H%e) are given by (12)-(13). In our test, the 2 x 2
parameter matrices €* and €¥ are randomly chosen to be

{ 0.4751 0.3034 } 0.4456 0.2282

T

0.1156 0.2430 0.3810 0.0093 |~

Table 1 gives the PSNR and RE values of the reconstructed images for different Gaussian noise
levels, the optimal regularization parameter 5* for the Tikhonov method and also the number of
iterations required for Step (ii) in our algorithm. We see that our algorithm is better than the
Tikhonov method. Figure 3 depicts the reconstructed high-resolution image with noise at PSNR =
30dB. The values of the parameter A used in our algorithm are given in Table 2 for reference.

Least Squares Model Our Algorithm
SNR(dB) | PSNR RE B#* | PSNR RE  Tierations
30 28.00 0.0734 0.0367 | 30.94 0.0524 2
40 28.24 0.0715 0.0353 | 31.16 0.0511 2

Table 1: The results for the 2 X 2 sensor array with the periodic boundary condition.

SNR(dB)=30

SNR(dB)=40

First Iteration

First Tteration

(1,1) sensor
(1,2) sensor
(2,1) sensor
(2,2) sensor

7.895506 8.207295 10.129142 | 6.874447 7.152288 8.553909
7.279207 7.996708 7.429606 | 6.580909 7.285088 6.449729
6.294780 6.636084 5.206178 | 5.644065 6.150834 4.560466
5.456852 6.134216 4.610481 | 5.044906 5.6155056 4.107130

Second Iteration

Second Iteration

(1,1) sensor
(1,2) sensor
(2,1) sensor

(2,2) sensor

6.092229  6.646058 4.689150 | 5.533156 6.070886 4.193728
5191947 5.777596  4.444771 | 4.795744 5.417667 3.983984
5.250779 5.795288 4.169715 | 4.785113 5.407161 3.746287
4.979601 5.730307 4.129098 | 4.614156 5.288188 3.676112

Table 2: The values of X used for the 2 x 2 sensor array with the periodic boundary condition.

4.2 4 x 4 Sensor Array

We have done similar tests for 4 x 4 sensor arrays. The bivariate filters are the tensor prod-
uets of the filters in Example 2. The observed high-resolution image g is generated by applying
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Figure 3: (a) Low-resolution 128 x 128 image from the (0,0)th sensor; (b) Observed high-resolution
256 x 256 image (with white noise at SNR=30dB added); (c) Reconstructed 256 x 256 image from
the least squares method with periodic boundary condition; (d) Reconstructed 256 x 256 image from
our algorithm with periodic boundary condition.

the bivariate lowpass filter on the true “Boat” image. Again, true pixel values are used and no
boundary conditions are assumed in generating g. After adding white noise, the vector g is then
used in the Tikhonov method and our algorithm to recover f. The matrices Ly, k,(€f, ., ei’l ko )s

Lﬁhkz(eﬁl,kz,eihh), Hkhkz,v(ﬁil,kzaezl,kg) and thkz’y(eﬁhkz,e%hkz), v e Zi \ {{0,0)} can be gener-
ated by the corresponding filters in Example 2 like what we did in §4.2. In our test,

0.4751 0.4456 0.4107 0.4609 0.4677 0.0289 0.0694 0.1361
- | 0.1156 0.3810 0.2224 0.3691 ¥ — 0.4585 0.1764 0.1014 0.0994
1 03034 0.2282 0.3077 0.0881 |’ ~ | 0.2051 0.4066 0.0994 0.0076

0.2430 0.0093 0.3960 0.2029 0.4468 0.0049 0.3019 0.3734

From Table 3, we see that the performance of our algorithm is again better than that of the least
squares method. Figure 4 depicts the reconstructed high-resolution image with noise at SNR = 30dB.
Since the problem is more difficult than the 2 X 2 case, we see that the algorithm requires few more
iterations to get to the solution.

12



Least Squares Model QOur Algorithm
SNR(dB) | PSNR  RE g* | PSNR RE  Iterations
30 2463 0.1084 0.0492 | 27.80 0.0752 5
40 24.67 0.1078 0.0505 | 26.81 0.0751 6

Table 3: The results for the 4 x 4 sensor array with the periodic boundary condition.
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Figure 4: (a) Low-resolution 64 x 64 image from the (0,0)th sensor; (b) Observed high-resolution
256 % 256 image (with white noise at SNR=30dB added}; (c) Reconstructed 256 x 256 image from
the least squares method with periodic boundary condition; (d) Reconstructed 256 x 256 image from
our algorithm with periodic boundary condition.
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