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A PHASE VELOCITY ANALYSIS OF MULTIGRID METHODS FOR
HYPERBOLIC EQUATIONS

W. L. WAN * AND TONY F. CHAN 1

Abstract. In this paper, we study the effects of coarse grid correction (CGC) on multigrid
convergence for hyperbolic problems in one and two dimensions. We approach this from the perspective
of phase velocity, which allows us to exploit the hyperbolic nature of the underlying PDE. In particular,
we consider three combination of coarse grid operators and coarse grid solution approaches: (1) Runge-
Kutta smoothing CGC, direct discretization, (2) exact coarse grid solve, direct discretization, and (3)
Galerkin CGC. For all these approaches, we show that the convergence behavior of multigrid can be
precisely described by the phase velocity analysis of the coarse grid correction matrix, and we verify
our results by numerical examples in one and two dimensions,

1. Introduction. Multigrid has been a powerful and successful numerical technique for fast
solution of elliptic partial differential equations (PDEs). Many different approaches have been proposed
and various sophisticated technigues have been developed for the cases of nonsmooth coefficient PDiis,
complex geometries and unstructured meshes {see, for example, 3, 11, 22, 25] and survey in [6}). For
the elliptic case, multigrid convergence is governed by smoothing of the high frequencies and coarse
grid correction of the smooth frequencies. Classical Fourier analysis [11, 25] and finite element analysis
[11, 2, 27] have been well developed. However, this principle may not hold for the hyperbolic case
since the success of the standard techniques often rely on the intrinsic properties of elliptic PDEs,
for instance, symmetry, decay of Green’s function and dissipation, which are not generally true for
hyperbolic problems.

For hyperbolic equations, one must also take into account the intrinsic wave propagation property
(phase speed) for analyzing multigrid convergence. Phase velocity has been used extensively to analyze
numerical methods for hyperbolic problems 23] but its use in the context of multigrid has not been
much explored. We are advocating such an approach in this paper.

To take advantage of the wave propagation property, Ni [19] and Jameson [13, 14] use multigrid
to accelerate error propagation by taking larger time steps on the coarse grids. The smoothers are
typically time-stepping methods and the coarse grid correction is done by a few smoothing steps. As
a result, errors can be removed rapidly out of the boundary.

Fourier analysis has been a useful tools for analyzing multigrid methods [11, 10, 21, 25, 26] and
more generally, iterative methods [7]. All these analyses concentrate primarily on the spectral radius
estimate. To analyze the efficiency of the wave propagation multigrid approach, the classical Fourier
analysis, however, is not adequate as it ignores completely the phase speeds, which account for the wave
propagation. Gustafsson and Létstedt [9, 18] first analyze the phase speed of this multigrid approach,
and prove that a speedup of 2% — 1 in convergence is obtained using K grids for smooth errors, which
would not be inferred from the spectral radius analysis.

In practice, however, the multigrid convergence can be much slower than the analysis predicts due
to severe numerical oscillations generated by the algorithm (cf Section 2. In the analysis of Gustafsson
and Lotstedt, they focus primarily on the leading order term of the asymptotic expansion of the phase
speed. In this paper, we extend their analysis to include also the first order correction term with which
we can explain the dispersive behavior of the multigrid process which turns out to have significant
influence on the convergence rate.
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We find that the phase velocity analysis is not just useful for the wave propagation multigrid
approach but it can also be used to explain the efficiency of other coarse grid correction methods as
well. One common coarse grid correction approach is to use the discretization matrices as the coarse
grid operators on the coarse grids. It has been shown by Brandt and Yavneh [5] and further discussed
by Yavneh [28] that the resulting coarse grid correction has O(1) error for the Fourier components in the
characteristic direction. Qur phase velocity analysis not only recovers the same result, but aiso proves
that this coarse grid correction is only first order accurate for components in the cross-characteristic
direction due to the phase shift error caunsed by the discretization coarse grid operators.

In this paper, we show that the Galerkin coarse grid correction [20, 29] can be a more efficient
approach from the perspective of phase error. We prove that the phase shift error of the coarse grid
correction is small compared to the previous approach, and hence higher order accuracy of the coarse
grid correction can be achieved. We note, however, that Galerkin coarse grid operators tend to become
central difference discrete operators which may lead to spurious oscillations in the solution. To remedy
this problem, Dendy [8] uses operator-dependent restriction and linear interpolation. Yavneh [28] also
uses interpolation and restriction operators which depend on the flow directions, together with artificial
viscosity. He also pointed out that the order of accuracy of the high frequency components is crucial
to obtain efficient Gakerlin coarse grid correction. Based on our phase velocity analysis, one should
use the Galerkin approach with an appropriately defined interpolation so that the Galerkin coarse grid
operator is stable, for instance, the same as the one by direct discretization. However, how to construct
stich an interpolation requires sustantial investigation and is not the scope of this paper.

In the rest of the paper, we shall study the effects of coarse grid correction on multigrid convergence
for hyperbolic problems in one and two dimensions. In particular, we consider three combination of
coarse grid operators and coarse grid solution approaches. For all these methods, we show that the
convergence behavior of multigrid can be precisely described by the phase velocity analysis of the
coarse grid correction matrix.

In Section 3, explicit analytic formulae for the asymptotic expansion of the phase velocity of the
different coarse grid correction approaches are established in one dimension. In Section 4, similar
results in two dimensions are presented with the emphasis on Fourier components in the characteristic
and cross characteristic directions. Numerical results are given in Section 5 to compare how these
coarse grid correction approaches affect the actual multigrid convergence. Finally, concluding remarks
are given in Section 6.

2. Model problem. The model problem we are interested in is the steady state solution of
linear hyperbolic equations:

. 4 du
Lu(z) = Za,-(m)é—a = fl=) z e,

i=1

subject to periodic boundary conditions. Here, a;(x) are smooth functions, and €2 is a d-dimensional

unit cube.
Discretizing the equation by finite difference methods on a standard uniform fine grid Q" on 2 with

mesh size h results in a linear system
LAt = fh.

We consider solving the discrete problem using K grids, {Q'} -1, where the finest grid is 25 -1 = O,
and Q1 is obtained from £ by standard full coarsening. Denote by p' the prolongation operator
from "', and by r* the restriction operator from Q' to 21,1 =1,2,..., K — 1. Also, denote the
smoothing operator on Q* by §*, and ¢ steps of smoothing by Sl(q). The solution process on the coarsest
grid is denoted by CGC (coarse grid correction).

A standard multigrid V-cycle algorithm with ¢y steps of presmoothing and g4 steps of postsmoeothing
can be written as [3, 11]:

procedure MG(l,u,f)
ifl =10



u = CGC(y, f);

else
w =5 (u, f);
d=r(Lhu = );
v = 0;
MG{ ~ 1,v,d);

we=u—pu;

u= 89 (u, f);
end

u = u";

MG(‘K - 15 U,y .f):

urtl =y

In the approach analyzed by Gustafsson and Lotstedt [9, 13, 19], the coarse grid correction used
s CGO = 5 +‘12)(u, f). The idea is to accelerate wave propagation on the coarse grids. Note that
for hyperbolic equations, it is often useful to interpret the smoothing process as solving a pseudo time
dependent problemn:

1) %“ Il = 1=0,1,...., K —1.

It is well-known that dissipation and dispersion are two fundamental quantities for analyzing time
stepping methods. Consider the one dimensional linear wave equation

{2) U + avg = 0.

(iiven a finite difference scheme, suppose the Fourier transform of the numerical solution at time step
n+ I can be written as

Pt () = glpya™ (u),

where g(p) is the amplification factor and p is the wave number.

Definition: The scheme is dissipative if |g(u)| < 1, and it is dispersive if the phase velocity [23], &(p),
defined as,

arg(g (1))

Kip) = - nrAt

is different for different wave number p, where At is the time step size. The phase velocity, &(u),
measures the propagation speed of the wave with wave number p.

Thus, the classical multigrid analysis using Fourier analysis is deemed to be inadequate since it only
considers the dissipation property. To give a more precise account of the wave propagation property
of the multigrid V-cycle which is considered as one time-stepping method, Gustafsson and Lotstedt
[9, 18] analyzed the phase velocity of the multigrid process by a Fourier analysis of the two-grid iteration
matrix M, which, in the case of m-stage Runge-Kutta smoothing, can be written as M = CS5, where
the coarse grid correction matrix, C, and the iteration matrix of the smoother, 5, are given by

¢ = I-pE*)y I~ (AtylHY T ew)-Drl?
J=1 k=m—7+1
S = I—Z(Aith)j ]:[ Q.
i=1 k=m_j+1

Let M be its Fourier transform. It is well-known [L1, 25] that M is block diagonal with 2 x 2 subblocks
M, where g = 0,...,N — 1 are the Fourier modes (cf Section 3). We summarize the results of the
analysis of Gustafsson and Lotstedt as follows:



ToEOREM 2.1. Let Ay be the first eigenvalue of M#. For frequency p =~ 0,
Alp) =1 — (Aly + Atg)ipr + 0([.1,2).
Consequently, the phase velocity of the two-grid method is

o arg(M(p) . Aty
k(p) = P —1+Ath = 3.

In general, if t; denotes the time step on grid I, then the phase speed of the K-level multigrid method
is given by,

Hence, the smooth errors should propagate out of the boundary with a speed of 2% — 1. However, as
it turns out, the effective speed of wave propagation is much slower than the analysis predicts. The
reason is that their analysis focuses primarily on the leading order terms of the Taylor expansion of
A1 which only accounts for the speed of propagation of smooth waves. However, as noted in Section
3, relaxation smoothing for hyperbolic equations is not as effective as for elliptic dominated equations.
Thus, error after smoothing also consists of nonnegligible higher frequency modes which need to be

taken into account.
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FiG. 1. The numerical solutions given by a J-level multigrid V-cycle at (a) iteration = 0, (b} tteration
= 20, (c) iteration = 40, (d) iteration = 60.

As an example, we take a square wave as the starting vector, which consists of nonnegligible high
frequency Fourier modes. Snap shots of the error in the first sixty multigrid V-cycles are shown in
Figure 1. We use linear interpolation, one step of Euler smoothing, and 3 coarse grids. The number of
fine grid points is 128. For A = 0.5, the single prid method (i.e. only smoothing} will converge in 256
iterations. The analysiz of Gustafson and Lotstedt estimated that the multigrid method should have
a speedup of 2% — 1 = 7, and it should have converged in 36 iterations. However, it takes more than
100 iterations to reduce the initial residual norm by 10~%. The reason is that, as shown in Figure 1,
oscillations are generated as the wave propagates to the right and they delay convergence.

3. One dimension. In this case, we establish explicit analytic formula for the Taylor expansion
of the phase velocity which accounts for the effectiveness of coarse grid corrections. The model problem

becomes:
uy = flz) —1<ze <]

with periodic boundary condition: u{~1) = u(1). On a uniform grid {z#}_y<j<y—1 With mesh size
h, the standard upwinding discretization results in a linear system:

Lhuh — fh,
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where

h h
ult —
(3) (Lhuh),- i ; i 1’
ub = (uh . ul ), ub & u(eh), and f* is defined similarly as w”. As in the classical analysis of

multigrid for linear elliptic PDEs, without loss of generosity, we assume that f* = 0. Thus, we are
interested in how the iteration error converges to zero.

Let the coarse grid points {mf }-n/2<j<nj2—1 be obtained by standard coarsening, i.e. wf = ;c!;j.
For simplicity, assume the two-grid method consists of one pre-smoothing followed by the coarse grid
correction (no post-smoothing). Then the iteration matrix M of the two-grid method can be written
as

M =5,

where C' and S are the iteration matrices of the coarse grid correction and the smoothing, respectwely
Denote the discrete Fourier function (mode) by ¥k

T et
Beohy o iunT
23} ———e"H " —N<pu<N-1.
"ub,u( _7) DN SHS
We note that y’) |#] & 0, correspond to smooth or less oscillatory modes whereas h, || =~ N,

correspond to the most oscillatory modes, The orthogonal Fourier transform matrix Q5 can be formed
by taking 1bﬁ as its columns, For two-grid analysis, it is customary to palr up the low and high
frequency modes as follows [11, 25}:

Qr = Wg ﬁbe 'ﬂbf' "#[)EN+1 s ¢Rr—1 T/)f.a-l]-
Define the Fourier transformed matrix 3 by
M= Qy MQ,

and similarly for other Fourier transformed matrices. For instance,

R 1 - e—,u'rrh,i
b
L,u— 1+e—y.1rhz' })

for the discretization matrix L* in (3).

3.1. Analysis of smoothers. Smoothing by time-stepping methods approach is based on the
discretization of the pseudo-time dependent problem:

(4) U + te = 0.

Any numerical methods for solving (4), in principle, can be used as smoothers for multigrid, for
instance, Runge-Kutta [13, 15], Lax-Wendroff [19], etc. For easy exposition, we consider the first order
Euler’s method where the smoothing step can be written as

At
+1 _ . n
wi T = = (] )

We remark that it coincides with the Richardson relaxation smoothing for solving L*u® = 0. Let
XA = At/Az be the CFL number. The Fourier transform of Euler’s method is given by:

(5) = (1= A+ Ae™F™GN = g(umh)dy,

where g(pnh) is the amplification factor.
The value of Af (or equivalently A} must satisfy the CFL condition so that the Runge-Kutta
smoothing does not diverge. However, the choice of a particular value seems arbitrary. In [13], Jameson
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chose the largest possible Al satisfying the CFL condition locally to maximize wave propagation. The
analysis in [9] used the same choice. We note that the effectiveness of the smoothers in reducing the
high frequency errors depends on the choice of At (or A). For instance, when A = 1, 4**! becomes:

(6) ,&n-}-l —_ e-—,ufrh.i,&n_

That is, error components of any frequency are not reduced at all. In fact, it is well-known that when
A = 1, it is an exact integration of (4), i.e. all waves are propagated exactly without smoothing and
with the same speed. In general, for 0 < A < 1, by direct calculation, we have

) wh
lg(umh)|? = 1 — 4X(1 = A) smﬂ(ﬁ—z—).

Thus, it is dissipative of order 2 for 0 < A < 1 with maximum dissipation when A = 8.5, in which case,

1. whi wh
ZeTHTh , |(g)u,'n’h)i = COS(‘UT) = ey

1
glpmh) = 5 +

Compared to the smoothing factor of Richardson relaxation smoothing applied to the Poisson equation
where
prh
lo(umh)] = cos®(“5=) = cj,
Euler’s smoothing for hyperbolic equation is less effective in damping high frequency Fourier modes,
pry N,

We remark that Jameson [13] avoids the effect of At on the smoothing efficiency by using a different
set of parameters for high order Runge-Kufta methods in such a way that high frequency components
are damped, assuming maximum Af is used. We also note that Ni [19] and Gustafson and Lotstedt
[9] use artificial dissipation (viscosity) to damp the high frequency components.

Consider again the case A = 1 for our model problem. We have |g(umh)| = le #™| = 1. The
classical Fourier smoothing analysis would have concluded that this is not a robust smoother [25], and
hence would not predict fast multigrid convergence. However, the phase velocity of g(umh) = 1, and
therefore the error is propagated by one grid point, with no dissipation. In general, for 0 < A < 1, the
phase angle, 8, of g{urh) is given by

Asin{pmh)

tanf = —— —
1—2Xsin*(£52)

Tor the low frequency Fourier modes, i.e., prh a2 0, by Taylor expansion, we have

Olumh) = Mumhl] ~ (3 = 2 1 ) (urh)? + O(urh)).

By definition, the phase velocity is:

K(p) = 6)(\Z7;i) =1- (% - % + %)(uﬁh)g +O(umh)™.

Since the correct phase velocity is 1, the method is dispersive of order 2 for pwh = 0.

Hence, in the following, we assume that the smoothers are some time stepping schemes which are
dissipative and perhaps also dispersive. As the main theme of this paper, we shall consider three types
of coarse grid correction approaches for hyperbolic equations commonly ugsed in the literature. The
first one is “Runge-Kutta coarse grid correction” where the coarse grid problem is solved inexactly by
a few Runge-Kutta smoothing steps and the coarse grid operator is obtained by direct discretization.
This is also the same approach considered by Gustafsson and Lotstedt [9], and others [13, 19]. The
other two will be described in Sections 3.3, 3.4.



3.2. Runge-Kutta CGC, direct discretization. The Fourier analysis of Gustafsson and
Létstedt {9, 18] only provides information on the phase speed of the smooth wave propagation. In
this section, we extend the phase velocity analysis to include also the first correction term in the
asymptotic expansions.

Suppose the coarse grid solve is carried out by one step of m-stage Runge-Kutta smoothing with

coarse time step Aty, coarse mesh size H and the same CFL number A as in the fine grid. The coarse
grid correction matrix is then given by [9]:

m m
C=I+Y Athp(?yt [ (—ex)rL
i=1 k=m—ji+1

in particular, for m = 1, Aty = AH, we have
C =1- X HprlL",

where p and r are the prolongation and restriction operators respectively. Let p be the linear interpo-
lation and r = %pT its transpose. Then the Fourier transform of p is block diagonal with each diagonal
subblock, p,, corresponding to Fourier frequency p given by [11]:

.1 [ cos(umh)+117 _ c? .
p#‘—%[COS(ﬂﬂh)—l “"""“/—2_ _Si ) ,U;——O,l,...,N'*”i,

where ¢, = cos(Z2) and s, = sin(£Z%). Similarly, # = 157 is block diagonal with each subblock

Pp = %ﬁf. Hence, the 2 x 2 subblocks of the Fourier transformn of €' are given by

(7) Cu = I~ XHpur,Lh
o2 1 1— e-,uvrhi 0
_ I—,\H[m;‘i][ci 2 ]E{ A

Since M = 'S, the study of € and hence C'# is crucial to the understanding of M. We first have the
following result by direct calculation.
Lemma 3.1. The eigenvalues of O, are:

A= Adg=1=2Xeh (1 — e #™) — 22sh (14 7).

Thus, the largest eigenvalue of C is equal to 1. Hence, in general, there maybe no error reduction.
However, in the context of multigrid, the errors have been smoothed by the smoothing process. Thus,
instead of considering the largest eigenvalues of CA';L, we are more interested in the low-low interaction,
i.e. how the smooth waves are changed by the coarse grid correction. Hence, we focus just on the (1,1)
entry of C’”. By (7},

Cu(1,1) = 1-2Ack(1 - ™)
|Cu(1, 1) [em R,

[

We note that in [9, 18], they considered the spectral radius of the iteration matrix, M, and computed
the leading order term of the asymptotic expansion of it. For higher order terms, we find that the
formulae are tco complicated to be illustrative. As as shown by the numerical results, it turns out that
the convergence behavior can be determined quite accurately by the dissipation and phase velocity
properties of Cqy. A

Here comes our result on the dispersion of €, (1, 1) which is not considered explicitly by Gustafsson
and Lotstedt [9].

THEOREM 3.2. The coarse grid correction is dissipative of order 2 for 0 < A < 1/2, and dispersive.
More precisely, the dissipation and phase velocity of é’p are given, respectively, by

= 1
[Cu(1, 1} < 1 tf and only if 0<A<

— 2’
8A—15
12
7

wlp) = 2+ (umh)? + O(pmh)*.



Proof.

I

Cu(1,1) 12Xk (1 — em#mh)
= 1—2Ac}, + 2Ac} (cos(pmh) — isin(umh))
= [1-Ac sin’(umh)] — i[2)\cﬁ sin(pnh)].
Thus the absolute value of C,(1,1) is calculated as
ICu(L, )7 = [1—Acksin®(urh)]® + [2Ac] sin(prh)]?
= 1-- 2 sin®(urh) + 4375 sin® (umh).

Then |C,(1,1)] < 1 if and only if

—2Xc, sin® (umh} + 4A%cS sin?(umh) < 0
1
A< -
= - 2
By considering the phase angle of C,,(1, 1), we have
2Xcy sin(umh) 4Xc; s,

tan{@ = .
an(®) 1—Acs sin®(urh) 1—4Acks?

Let £ = pwh, By Taylor expansion of ¢, and s,

a1 - £)5(5) +0(e%)
1— 41— §)1(5)2 + 0"

= 2XE+ (22 - 945)@ + O(£®).

tan{f) =

By applying the Taylor expansion of arctan, we have

o) = A+ (N - ZIE)(1 - 5206 + 0(E)

237 5A
= 2X£+4+ (? - “4"1"")53 + O(Es)
Hence, the phase velocity is given by
205
w0 = 2+ (5 — DE + O(E?).

0

There are two implications of Theorem 3.2. First, considering |C)(1,1)|, the CFL condition on A
(< 1) is more restrictive than that imposed by the Euler’s smoothing (A < 1}. Secondly, the leading
order term shows that the coarse grid correction has an effect of propagating smooth waves with speed
2. Purthermore, we note that the second term is negative for 0 < A < 1. Thus, the nonconstant
smooth waves will have a negative phase velocity error, i.e. these modes are propagated slower, which
accounts for the oscillations generated at the tail as the wave propagates to the right; see Figure 1.

Based on the phase velocity analysis, convergence will be delayed by oscillations unless the the
smoother used is extremely effective in damping most of the high frequency Fourier modes, for instance,
by the use of artificial viscosity, or modified Runge-Kutta methods. Another approach is to use a
different interpolation, for instance, piecewise constant interpolation, motivated by the fact that the
model PDE is first order. However, we note that the resulting multigrid is still dispersive (by a similar
analysis as in Theorem 3.2). Hence, a fundamental change in the algorithm is needed to obtain a
nonoscillatory multigrid method. Recently, Jameson and Wan proposed multigrid methods for linear
and nonlinear wave equation in one dimension which are total variation diminishing and preserve
monotonicity [16], and thus no dispersion.
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3.3. Exact CGC, direct discretization. The dispersion effect discussed in Section 3.2 is
largely due to the inexact coarse grid solve, and it explains that different waves travel at different
speeds which delay the overall multigrid convergence. In this section, we consider exact coarse grid
solve instead. Thus, as in standard multigrid, the idea is to eliminate the smooth errors completely on
the coarse grid while the oscillatory errors are damped by the smoother. The coarse grid operators used
are the same as before; we apply the same discretization scheme to all the coarse grids. An advantage
of using the discretization matrices as the coarse grid operators is that the smoothing property on the
fine grid will be also valid on all the subsequent coarse grids. Also, it saves storage since the coarse grid
operators need not be stored. Linear interpolation is used for intergrid transfer. As an example, we
apply this multigrid with 3 coarse grids to solve our model problem. The numerical solutions obtained
are shown in Figure 2. Although the numerical solutions are converging to 0 (note the change in
scale on the y-axis), the formation of the relatively large error in the middle is unexpected since the
starting solution is very smooth, and the exact coarse grid solve should, in principle, have eliminated
it completely.

2 w ] 0 o ) 2 © [ g 08 = = 4 £ » o0 1w = [ £ 0 g =y

Pra. 2. The numerical solutions given by a 4-level multigrid with exact coarse grid solve at (o} ftevation
= 0, {b) iteration = I, (¢} iteration = 2, (d} iteration = 3.

‘We now discuss this numerical oscillation with the help of several plots, followed by a phase velocity
analysis, We use the same multigrid method to solve the model problem. This time, we use 3 grids,
and many smoothing steps (25, and A = 0.8} to provide a better illustration. In Figure 3(a), we
start with a smooth starting function u(!) (solid line) on the first grid, and obtain @Y {dashed line)
after 25 smoothing steps. We then restrict the residual to the second grid and apply the two-grid
method to solve the error equation on this grid. The initial guess is zero. The initial error, el2), {solid
line) and the error after 25 smoothing steps, &2), (dashed line) are shown in Figure 3(b). We then
restrict the residual to the third grid and solve the error equation exactly. The coarse grid error is then
interpolated back to the second grid as pe(®), (dotted line) in Figure 3(b). In principle, the coarse grid
error pel®) should approximate well the error on the current grid e(?), which seems to be close, but it is
clearly shifted a bit to the left. Thus, after the coarse grid correction, the error of the updated sclution
(dash-dotted line) shows an oscillation underneath £(2) due o the shift. Finally, we interpolate the
solution on the second grid, which is the coarse grid error for the first grid, back to the first grid. The
solution after the coarse grid correction (dash-dotted) is shown in Figure 3(c}). Instead of obtaining a
near zero function, we have two oscillations corresponding to the coarse grid corrections of the second
and third grids, respectively.

Thus, the oscillations cccur immediately after the coarse grid correction and it is due to the dif-
ference in the phase velocity on the coarse grid. We use a phase velocity analysis to explain this
phenomencon for the two-grid method. With exact coarse grid solve, the coarse grid correction matrix
s

C=1-p(L")rLk
As in the previous approach, we are interested in the low-low interaction, i.e. the (1,1) entry of C’,u.
THEOREM 3.3. The coarse grid correction of smooth waves given by the exact coarse grid solve
together with linear interpolation is only first order accurate, with
. umh
|Cu(1, )] = — O(urh)?.
9
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Fra. 3. The initial error (solid line), error after smoothing (dashed line), error from coarse grid

correction (dotied line), error after course grid correction (dash-dotted ling) on (a} first grid, (b) second
grid, (¢} first grid.

Proof. We separate the analysis of C' into two steps. We first consider the term D = p(L¥)~1r L%,
i.e. the effect of exact coarse grid solve. The Fourier transformed coarse grid solve maftrix D is given
by

Dy

i
S
=
gt
)
S
L
3
=
fomes
-

C2 2h 1 1 — emyrhi 0
— Iz e 2 _.2 1= .
= [ —s? } 1 — e—Z2amhi [ch —si ] h [ 0 1 4 e—Amhi

4 2.2 1
= 2[ C, TS ] { Tre-iwht 9 }
T8l S 0 Ta=iwhT
Hence, the (1,1) entry of D“ is
A 64 .
D#(I, 1) = m — c; + isyci — ciemrhzm.
€

As a result,
Cu(1, 1) = 1= Dy(1,1) = 1 — Serm™ir2,
The amplification factor can be easily calculated as
Cut, )P = (1= b + el

and by Taylor expansion, we have the estimate

- h
(1, )] = B2~ + Ofumh)?.

O

Comparing the formula of Du (1,1) and Euler’s smoothing, we can see that f?‘u(l, 1) has the effect
of shifting waves of any frequency by 1/2 grid point (to the left) immediately after the exact coarse
grid solve. In other words, the coarse grid error given by the exact coarse grid solve and the fine grid
error differ by 1/2 grid point. Thus, it explains precisely the slight shift of the coarse grid correction
error (dash-dotted line} shown in Figure 3(b}. As we shall see in the next section, this shift arises
essentially from the discretization of the first order PDE with two different mesh sizes which cause
dispersion to occur.

Due to the shift generated by D,(1,1), the amplification factor of Cu(1,1) = O(pmh), ie. the

coarse grid correction is only first order accurate, instead of the second order accuracy one expects
from linear interpolation.
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‘We remark that in contrast to the Runge-Kuita CGC approach in Section 3.2, the exact coarse grid
correction has no further restriction on the stability condition. Also, by Theorem 3.3, the oscillation
generated by the coarse grid correction has a magnitude of O(h). Finally, in this case, we do not
consider the phase velocity of the coarse grid correction since the wave propagation concept on the
coarse grid is not well-defined when exact coarse grid solve is used.

3.4. Galerkin CGC. In the elliptic case, one often uses Galerkin approach to form the coarse
grid correction operator

GH = rLp,

since the coarse grid error is minimized in the A-norm. For hyperbolic equations, however, the Galerkin
coarse grid operator is less commonly used. In this section, we consider the use of Galerkin coarse grid
operator with exact coarse grid solve and show that it does not have the dispersion effect caused by
the discretization matrix on the coarse grid as in the non-Galerkin approach. We note that in [9], the
Gialerkin coarse grid operator is found to be unstable with centered finite differencing on the fine grid.
However, we found it to be stable when vpwinding is used on the fine grid.

We start with a similar numerical experiment as in the previous section. This time, we only use
two grids. In Figure 4(a), it shows the smooth starting function and the solution after 25 smoothing
steps. An exact coarse grid solve is used where the coarse grid operator is formed by Galerkin. The
interpolated coarse grid error {dotted line) and the error after coarse grid correction (dash-dotted line)
are shown in Figure 4(b). We see that the coarse grid error approximate well the error on the fine
grid, and hence the error after the coarse grid correction is essentially gone; thus, there is no visible
oscillation.

0.8}

04|

20 4 &0 B 100 [ 20 a0 68 B0 100 120

F1G. 4. (a} The initial error (solid line) and error after smoothing (dashed line), (b} The error from
coarse grid correction (dotted line) and error after coarse grid correction (dash-dotted line) on the first
grid.

We explain the numerical observation by the phase angle analysis. Since the coarse grid operator
is obtained by the Galerkin process, its Fourier transform can be calculated as follows:

GE = #,Alp,
1 — e—#mhi 0 c?
— 2 2 ,
- [cil Su] ] 1%_6—,urh'z][__f;2}-

After simplification, we have
cos?(pmh) — e~ 2T
2h
" THEOREM 3.4. The coarse grid correction of smooth waves given by the exact coarse grid solve
together with Galerkin coarse grid operator is third order accurate, with

G =

) 1
|Cu(1, )] = g (wh)® + O(urh)?.
1



Proof. We consider first the Fourler transform of the coarse grid solve matrix, D:

D, = pu(LEy 7L
_ [ ] 2h 2 ]1 1 — e—HThi o
= E_ _sﬁ J cos?(ﬂﬂh)mewz,mrhi L e Ig 0 1o gmwmhi |
Thus the {1,1) entry of Du is
9 1— —unhi 3
Du(t,1) = :#( e—2 )ﬂu' =5 5le i+252)-
cos?(umh) — e~ 5+ 45

By direct calculation, the amplification factor of D, (1,1) is

3
R C
ID.M(L 1}|: -

[6 1 o6
Cp S,

Thus, dissipation is small for 4 s 0, which is necessary for an effective coarse grid correction. A more
important issue is dispersion. The phase angle # of D, (1,1} is given by

B(pumh) = arctan( } = -;—(mrh)3 + O{pmh)®.

nmltm

Now, we consider the Fourier transform of the coarse grid correction matrix, C’, in particular, its
(1,1) entry:

Cu(1,1) = 1-Du(1,1)
3
i7)

By Taylor expansion, we have

G, 1) = ——i—
1/cf‘+sg
= S (umh) + Oumh)’.

O

First, we see that the phase angle of f)ﬂ(l, 1} in the Galerkin approach is two orders of magnitude
smaller than that in the non-Galerkin approach, implying that essentially no shifting occurs after the
exact coarse grid solve. Consequently, the coarse grid correction operator is 2 orders more accurate.

4. Two dimensions. We extend the phase velocity analysis of Section 3.2 to two dimensions.
Consider the convection dominated problem on a unit square:

—eAu+ a(z, y)us + ble, Yuy = f e Q=(-1,1}x (-1,1),
with periodic boundary condition. In particular, we focus on two model problems:
(1) Entering flow (constant coefficient}:

a(z,y) =a, blz,y)=0>

(2) Recirculating flow (variable coefficient):

a(e,y) = 4x(e - (1 -2y), blz,y) = —4yly —1)(1 - 22).
12



We discretize the equation using the first order upwind scheme on a uniform fine grid { (w;-‘, )} N<jh<N-1
with mesh size h, resulting in a linear system

Lhuk = fh
where
(Lhuh),; = P ¥l =W “?;12,3' — Ufjm1 = i
+(—a - !a|)”?—1,j + 2;“'”?,3' + (e~ Iﬂl)ufﬂ,j
2h
N (—b— ]b;)u,ﬁjml + 221“?& + (b - |b|)uf-‘1j+1;

see, for instance, [5]. Since our primary focus is on the limit € — 0, we shall ignore the elliptic term
in the analysis. As in the one-dimensional case, we are interested in the convergence of the iteration
eITor,

We remark that Gauss-Seidel smoothing with "downstream ordering” is often used in multigrid for
convection-dominated problems [1, 4, 12, 17, 24]. In this approach, the role of Gauss-Seidel is not only
a smoother but also, at least in part, as a solver. In this paper, however, we only concentrate on the
effect of coarse grid correction, and hence we do not take into account the ordering issue.

Denote the two-dimensional discrete Fourier functions by wﬁ,y where

1. .
’{‘bﬁv"(m;k) = ieaﬁww? elpwyﬂ - N g ¥ g N - I)

which form an orthonormal basis with respect to the usual discrete I inner product. The functions
¥k, with ||, [»| & 0, correspond to low frequency modes where P4, with |pl, [v] & N, correspond
to high frequency modes. In two dimension, we also have mixed low-high and high-low modes.

As in one dimension, we group corresponding low-low, high-low, low-high, and high-high modes
together as:

Qh = [ . 'd’z,,/ '{bz,yr '!l’ﬁf'u 1‘/).“;,”, .. .},

where u' = p — N, v/ = v — N. We state the standard Fourier results as follows [11, 25].

LeMMaA 4.1, Let L, p* and #% be the Fourier transform matrices of L*, p* and r*, respectively.
Then L is block diagonal with 4 x 4 subblocks ﬁﬁ,u. p" is block diagonal with 4 x 1 subblocks pl, . #
is block diagonal with 1 x 4 subblocks f'z,u'

For the entering flow problem, the 2 x 2 subblocks of the Fourier transform discretization matrix is
given by

- . b .
By = (1= e ™) 4 2(1— ™),

Suppose the first order Runge-Kutta smoother is used. The Fourier transform of the iteration
matrix is given by:

ik Th
Sﬂ'u = 1=~ AtLu,V | .
(8) = 1 ar(l ~ e HM) L BA(T — eTVTRY,

Unfortunately, even for this constant coefficient case, the formula (after simplification) given by (8)
does not provide much insight into the qualitative behavior of S'W,. We demonstrate the propagation
behavior of the smoother by a numerical experiment. We take @ = b = 1 and the CFL number A = 0.4.
The mesh size is A = 1/16. The plots of the spectrum of 5" are shown in Figure 5(a) and (b). For the
21) constant coefficient case, we define the phase velocity to be:

arg(Su,v)
Atpm(ap + dr}’
13
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Figure 5(a) shows that dissipation is small for low frequencies (g, v & 0), and around 0.6 near the high
frequencies. It is interesting to notice that the frequencies corresponding to the largest dissipation is
in the middle of the spectrum. Figure 5(b) shows that the phase velocity of low frequencies is about
1, which is consistent with the differential equation.’

F1G. 5. Spectrum of the Fourier transform of Euler’s smoother for the entering flow problem. (a)
|Sﬁ,yi, (b) Phase velocity of Sﬁ,u (only the low frequencies are shown).

4.1. Runge-Kutta CGC, direct discretization. In the one-dimensional analysis, we con-
clude that the multigrid V-cycle convergence is delayed by the oscillation generated as a result of the
dispersive effect caused by the coarse grid correction. In the following, we shall show that similar
oscillations occur also in the two-dimensional case. As in 1D, we start with the wave propagation
approach, i.e. the coarse grid solve is done by a few smoothing steps. The interpolation, p, and the
restriction, r, is bilinear and full weighting, respectively; hence r = 1/4p”. The smoother is the same
as in one dimension — first Fuler’s method, which is also Richardson smoothing.

Assuming a ,b constant, the Fourier transform of the coarse grid correction matrix C is given by

~ _ s . 2

OIJ!V = I- AHP#:'/TFL;VLLL,V
2 2
by
wséc
_c”‘;
Sy

[

Ty

= I—2Xh

b2

2
Su

In particular, we are interested in the (1,1) entry of CA'W,,
a
h
To get more insight into the formula of €}, (1,1), we consider the special case where a = b = 1 and
frequencies in the characteristic direction, L.e. v = p.

THEOGREM 4.2. Assume ¢ = b = 1. In the characteristic direction, i.e. v = p, the coarse grid
correction is dissipative for 0 < A < 1/4, and dispersive, i.e.

. b X
Cu(1,1) = 1= 22hehob[2(1 = e7#7H) 4 (1 — &™),

ICu(1,1)] < 1 if and only if 0< A<

¥

e

W) = 2+ (2h— D) (pmh) + Ofurh)

Proof. Under the assamptions,

2 X
1- zAhcﬁ[Eu — e HThY]

1 — 2AcS sin® (umh) — i4Ac, sin(urh).
14

éﬂ:”(]‘! I‘)

I



The desired results follow from a similar calculation as in the proof of Theorem 3.2. O

Figure 6(a) shows max,, |C,,(1,1)| for different values of A, @ = b = 1. We note that the
stability requirement for the coarse grid correction is 0 < A < 1/4 whereas that for smoothing is only
0 < A < 1/2. Thus, a more restrictive CFL number is needed, which is consistent with the one-
dimensional result (cf. Theorem 3.2). For A = 0.25, Figure 6(b} shows that C},,.(1, 1} is dissipative for
all values of y,v. Figure 6(c) shows the phase velocity of Cyu(1,1). Tor g, v & 0, the phase velocity
is approximately 2; thus smooth waves propagate at a speed of 2 on the coarse grid. Moreover, as y, v
increases, the phase velocity decreases from 2, suggesting that dispersion also occurs in the 2D case.

@ 005 G1 B1F 02 6326 B3 B3 04 B&S 05

FIG. 6. Spectrum of the Fourier transform of the inevact coarse grid correction for the entering flow
problem. (a} maxy, |Cy (1, 1)| with CFL number 0 < XA < 0.5, (b} |Cy0(1,1)], A = 0.25, (c) Phase
velocity of Cp (1,1} '

As an example, we solve the model entering flow problem by multigrid, and snap shots of the errors
in the first 15 V-cycles are shown in Figure 7. We use bilinear interpolation, one pre-smoothing, and
3 grids. The mesh size is k = 1/32, and A = 0.25. We observe that oscillations are generated at the
tail as the square wave propagates from (-1,-1) to (1,1), which agrees with our phase velocity analysis.

Fi¢. 7. Numerical solutions given by a 3-level multigrid for the entering flow problem at (a) ileration
= 0, (b) iteration = §, {c) iteration = 10, (d) iteration = 15.

For the recirculating flow problem, Fourier analysis is not feasible, and yet we still observe a similar
wave propagation phenomenon as in the entering flow problem; see Figure 8. The same parameters
are used as for the entering flow problem. We can see that the wave rotates around the dormain with
oscillations at the tail generated by the dispersion of the coarse grid correction. Thus, the results of
the phase velocity analysis for constant coefficient problems appear to hold also for variable coefficient
problems.

4.2, Exact CGC, direct discretization. Instead of applying a few steps of smoothing on the
coarse grid, we solve the coarse grid equation exactly. Direct discretization is used for the coarse grid
operator. Thus, the coarse grid correction matrix is

C=1-p(LH)y trL?,
15



Fra. 8. Numerical solutions given by a S-level multigrid for the recirculating flow problem at (a)
iteration = 0, (b) iteration = §, (¢) iteration = 10, (d} fteration = 15,

and its Fourier transform is given by

- _ . SH v—1. SR
GMV - I_p.U}V L ,V) T#,VL,u,u
2.2
L
I —sgcﬁ 1 {22 2,2 2.2 SzZ]ih
= I- cicl  —shen  —cps 5
_ 2 _ ; b - ; [Tl [Ty v [Tt v
(2:#.;:) “29;“;(1—5 #Wth)_I_ﬁ(}___e V'n'Zh'L) Hy
S,uSV

Therefore,

%(1 - eu;ur}u’) + %(1 _ e—wrhi)
%(1 _ e——,uerM) + _2%(1 _ e—yﬂzhi)

Cup(1,1) =1 chel
To better understand the formula of éﬂ,y(l,l), we consider two special and yet important cases:
frequency components in the characteristic direction, i.e. (i, v) such that
bp —av =0,
and, cross-characteristic direction [3, b, 28], i.e. (g, v) such that
ap + b= 0.

TUEOREM 4.3, For the components in the characteristic direction and assuming a = b,

A h
(1, )l = 552 + O(pmh).

For the components in the eross-characteristic divection and general a, b,
lim G ,(1,1) 1
m = =,
f,sI—HJ A 2

In particular, for a = b, then €, ,(1,1) = 1 — /2.
Proof. As in the corresponding one-dimensional case, we are also interested in the effect of the
exact coarse grid solve, i.e. D = p{L#)~1rL*, whose Fourier transform is given by

— i b - i

DA 1/(1 1) - 34 4 g(l € ,u'.'rfn) h(1 € v )
1 * ¥ g — ; - i

[ 1€ ﬂ(l —e ,mr?hz) - "ﬁgff(l —e yrzhz)

In the characteristic direction, and a = b, then

- 2a(l — e #*h) prhi
_ .8 _ 7
Do (L, 1) = ¢y a(l — e—2amhiy — € *
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As a result,

rhi

C'p,y(l,l) =1 —c;';e 7 =1 wci - is,ucz,.

Then, we have |C.,(1,1){2 =1 — 2¢% + ¢, and hence

. h
|G (1, 1)] = 5=+ Oumh)*.

In the cross-characteristic direction, and general @, b, by PHospital’s rule,

A . 2a{l- e—mrhi) + 2b(1 — e%_u,'rrhi)
31—5.'%0#:-!)(1: 1) = 1~ .LI‘I_IE(]} (]'.(1 o em2p1rhi) -} b(l _ eZ-g-pmhi)
= 1~ lim 2a(while™#™M — 9a(rhi)e TATA

- a0 2a(mhi)e~21mhi — 9q(rhi)e? v #Thi

1
= 1-lim ———pos
p-r0 g—hThi 4 o fpwhi

I3
-Qr-.
For ¢ = b = 1, the explicit formula for C’H,V(i, 1} follows from direct substitution. 0

We note that our analysis for the cross-characteristic direction is consistent with the result of Brandt
and Yavneh [5] in which they also showed that limy_y0 )y (1,1) = 1/2 for the special case b= 0, and
so they concluded that the coarse grid error is not a good approximation to the fine grid error for
components in the cross-characteristic directions. In [28], Yavneh proposes the use of higher order
interpolation and restriction operators and more accurate discretizations of the coarse grid operator
to improve the accuracy of the coarse grid correction.

In hoth [5, 28], the phase error is not discussed which has been shown by Theorem 4.3 to be relevant
for components in the characteristic direction. Specifically, in the characteristic direction, magnitude
of these components is accurate: |D,(1,1)] = ¢, i ~ 0. However, it has a phase error of urh/2.
QQualitatively speaking, the coarse grid error is shifted by h/2 in the characteristic direction, and hence
the accuracy of C'u,v(l, 1) is only first order.

F1q. 9. Spectrum of the Fourier transform of D *_”Ap(LH)'lth where LE is obtained from the direct
discretization of the entering flow problem. (a) |D,.(1,1)|, (8) |Duu(1,1)|, = v (solid line} and
p = —v (dashed line} (c) Scaled phase angle of D, (1,1}

Figure 9(a} shows that ]Dy,y(}, 1| & 1, for p,v & 0 and having the same sign, but significantly
below 1 for other values of p and v. In Figure 9(b), we plot the values of |D, (1,1} for the case
i = v (solid line) and g = —1 (dashed line), Both agree with the results of Theorem 4.3. Figure 9(c}
shows the scaled values of the phase angles, m, which measures the amount of shift in the coarse
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grid error along the flow direction. In the characteristic direction, the amount of shift is negative and
relatively constant. In the cross-characteristic direction, the amount of shift varies. Thus, we expect
the coarse grid error is slightly shifted from the fine grid error.

a.5 < 0g
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FiG. 10. Contour plots of the fine grid error (dashed line} and the interpolated coarse grid error (solid
line) for (a) the entering flow, and (b) the recirculating flow,.

Figure 10(a} and (b} show the contour plots of the fine grid error {dashed line} and the interpolated
coarse grid error (solid line} for the entering flow and recirculating flow, respectively. Both resulis
agree with the phase analysis that the interpolated coarse grid errors are shifted behind the directions
of the flow. We note that the amount of shift depends on the mesh size and hence it get more serious
on the coarser mesh which occurs when many levels of multigrid are used.

4.3. Galerkin CGC. To avoid the shifting phenomenon, we use the Galerkin approach to form
the coarse grid operator, i.e.

GH = rLp.
Thus, the coarse grid correction matrix is given by
C=1I-p(GH)y trL?,
and its Fourier transform is:
C'.u,v = I- ﬁ#w(égv)_lﬁn,vﬁﬁ,u
= I‘ﬁmlf(’:#,v—tﬁ,uﬁmnu)_1’:u,uiﬁ,u-

We again consider the characteristic and cross-characteristic components.
TurorREM 4.4. For the components in the characteristic direction and assuming constant a = b,

G 1,11 = E 4 o(pumy.

For the components in the cross-characteristic direction and general a, b,
im €, .(1,1) = 0.
.3!1_1;1-{1) Cp,,y( 1 ) 0

In porticular, if a = b, then

Cuut, 1)1 = LT 4 Ofumnt,
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Proof. First, consider D = p(G#)~1rL%. Fourier transform gives

Th
(9) Dyu(1,1) = cted L
Hyr i W u@,fya

where the Fourier transform of the GGalerkin coarse grid operator is given by

\ b : b :
Gl = cicﬁ[%(l —eHThY 4 (1- eV 4+ sicﬁ[%(z 4 eTHERY 4 7= e V™Y
: . o .

bl (1= e + %(1 e 4 shsh (2 (1 eTH ) 2 (14 e ).

In the characteristic direction and a = b, {9) becomes

7

- c
Dy (1,1} = 4 S +isS).
i‘x'/( ) (Cﬁ +3ﬁ)(cﬁ '3‘5?1)( 2 ,u)

Let D, ,(1,1) = |D, (1, 1)}e’, and by direct calculation

7

. ¢
D) = e,
(cf +sphfe + 4

9

1
5 umh)® + O(pmh)®.

Thus, the coarse grid error is accurate in magnitude and the phase shift is negligibly small. Moreover,
we have

C‘I-‘vl’(lﬁ 1) = 1- ﬁﬁ,u(l% 1)
cf‘si - sﬁo o isi ’
(c‘ﬁ + sﬁ)(cﬁ -+ sﬁ)

7
Cu

and Taylor expansion of which gives the result.
In the cross-characteristic directions, general a, b, we obtain the limit result by a similar calculation
as in the proof of Theorem 4.3. Finally, if in addition, @ = b, then

2.2 | 6
CuSy 5,

Cop(i,1) = 1— —#8T%n
w D g

w(p?;h)z + O(pmh)t.

O

In the Galerkin approach, the magnitudes of smooth coarse grid errors are 1 for both cross-
characteristic and characteristic components. Furthermore, there is essentially no phase shift in both
directions as opposed to the non-Galerkin approach. As a result, the coarse grid correction is second
and third order accurate in the characteristic and cross-characteristic components, respectively.

Figure 11(a) shows that | D, ,(1,1)| & 1, for p,v ~ 0 in all directions. In particular, Figure 11{b)
shows the values of |D,,(1,1)] in the characteristic (solid line) and cross-characteristic directions
(dashed line) which verify the results of Theorem 4.4. Figure 11{c) shows the scaled values of the
phase angles, m%m' Again for p, v /2 0 in all directions, there is essentially no phase error.

Figure 12(a) and (b} show the contour plots of the fine grid error {dashed line) and the interpolated
coarse grid error (solid line} for the entering flow and recirculating flow problems, respectively. Both
results agree with the phase analysis that the interpolated coarse grid errors match accurately with
the fine grid errors.
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F1a. 11. Spectrum of the Fourier transform of I} = p(GH)‘LrL"‘ where GH is obtained from the
Galerkin approach to the entering flow problem. (a) |D, . (1,1)|, (b) 1Du{1, 1)}, p = v (solid line)
and p = —v (dashed line) (c) Scaled phase angle of D, (1,1).
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Fia. 12. Conlour plots of the fine grid error (dushed line) and the interpolated coarse grid error (solid
line) for (a) the entering flow, and (b} the recirculating flow,.
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4,4, Summary. In practice, the Runge-Kutta CGC approach is appealing since it is simple and
the same smoothing method can be used on all the coarse grids. However, such coarse grid correction
is dispersive and oscillations generated can slow down multigrid convergence. For the exact CGC,
direct discretization approach, the same smoothing method can also be used on all the coarse grids.
Since exact coarse grid solve is used, the dispersive effect is much improved. However, the coarse grid
correction is only first order accurate, leading to siower convergence. For the Galerkin approach, the
coarse grid correction is more accurate, and hence the resulting multigrid convergence should be like
the elliptic case.

We note that although our analysis suggests that the Galerkin approach has the least phase error, in
practice, however, there are several issues to be addressed. It has been observed that the Galerkin coarse
grid operator on the coarse grids become more and more like the central finite difference discretization
and hence leads to stability problems. To remedy this problem, carefully designed interpolation is
needed, for instance, operator-dependent interpolations [8, 29], such that the resulting Galerkin coarse
grid operator is stable. An ideal case would be that the Galerkin coarse grid operator coincides with
the one by direct discretization. The construction of such interpolations, however, requires further
research.

5. Numerical results. In the following, we compare the effects of different coarse grid correc-
tions on the convergence of multigrid V-cycle. The first example is the steady state solution of the
one-dimensional linear wave equation:

ty -+ gy = 0.

Fuler’s method is used as the smoother for the approaches with CFL number A = 0.5. Linear inter-
polation and full weighting restriction are used between grids. The multigrid V-cycle iterations stop
when the relative residual norm is less than 1075, To obtain convergence, zero boundary condition is
used.

h Inexact | Non-Galerkin | Galerkin
1/32 31 (35) 13 (16) 8 (11)
1/64 44 (52) 9 (16) 5 (12)
1/128 | 73 (83) 6 (17) 3(12)
1/256 | 141 (144) 5 (17) 3 (12)

TABLE 1

Number of two-grid V-cycles for the 1D linear wave equation using Runge-Kutta CGC (inezact), Ezact
CGC, direct discretization (non-Galerkin), and Galerkin CGC (Galerkin).

The number of multigrid V-cycles are shown in Table 1. We denote the Runge Kutta CGC, Exact
CGC with direct discretization and Galerkin CGC by inexact, non-Galerkin and Galerkin, respectively.
To verify the results of the previous sections, we use two multigrid levels and consider a smooth initial
guess and a square wave Initial guess (in parenthesis). The results show that the number of multigrid
V-cycles taken by the inexact coarse grid correction increases as mesh size decreases; thus we do not
observe the classical mesh-independent convergence. Moreover, the convergence is slow due to the
dispersion of the inexact coarse grid solve. Both non-Galerkin and Galerkin approaches, which use
exact coarse grid solve, show much better convergence. However, due to the phase error occurred at
coarse grid correction, the non-Galerkin approach is not as efficient as the Galerkin approach. We also
note that the square wave initial guess, which consists of more significant intermediate high frequencies,
has more severc dispersive effects on the muliigrid convergence. QQualitatively speaking, both initial
guesses give very similar results and hence we will show only the results using the smooth initial guess
in the following tests.

The same qualitative results hold when more coarse grids are used. Table 2 shows the multilevel
convergence of the inexact and non-Galerkin coarse grid correction approaches. The Galerkin approach
vequires different smoothing parametera on the coarse grids since the coarse grid operators are changed
from grid to grid, and hence it is not tested in this case. For the inexact coarse grid correction approach,
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Inexact Non-Galerkin

1/128 | 73 | 52 | b8 | 61 | 61
1/206 | 141 [ 83 | 64 | T2 | 72

TABLE 2
Number of multigrid V-cycles with 2 to 6§ number of coarse grids for the 1D linear wave equalion using
inexact and non-Galerkin coarse grid corrections.

13 |31 : 49 | 55
9 ] 1940 | bY

h 2 3 | 41566 2134|516
1/32 1 31 | 3539 13125 | 34
1/64 | 44 |43 45| b1 9 1221|3746
6
5

the convergence should, in principle, have been improved by using more coarse grids based on the result
of Gustafsson and Lotstedt (cf. Theorem 2.1). This is indeed true when the mesh size is very small
(h = 1/256) since the small wave number components are more dominant in the initial guess. But when
the coarse grid gets smaller, the convergence starts to deteriorate. For the non-Galerkin approach, the
multigrid convergence also starts to deteriorate on the coarser grids due to the shift of the coarse grid
errors which is more serious with larger mesh size, Thus the phase errors in the coarse grid correction
cause a more serious damage to the multigrid convergence with more coarse grid levels.

We next consider the model entering flow and recirculating flow problems in two dimensions (cf.
Section 4). For the entering flow problem, 2 pre and 2 post Euler’s smoothing are used for all the coarse
grid correction approaches and the CFL number, A = (.25. For the recirculating flow problem, we
find that the smoothing effect of Euler’s method is very poor. Thus, we use Gauss-Seidel for the pres-
moothing and backward Gauss-Seidel for the postsmoothing. As noted in Section 4, special orderings
are often used to enhance convergence. But here, our primary focus is on the coarse grid correction
part and therefore natural ordering is used. Linear interpolation and full weighting restriction are used
for all cases; except for the singular point (0.5,0.5) of the recirculating flow problem, injection is used
mstead [5].

Entering flow Recirculating flow
h Inexact | Non-Galerkin | Galerkin || Inexact | Non-Galerkin | Galerkin
1/32 28 13 7 63 14 6
1/64 41 13 b 72 14 6
1/128 70 11 ) 34 14 7
1/256 134 9 ) > 160 14 8
TABLE 3

Number of two-grid V-cyeles for the 21 entering and recirculaling flow problems using inezact, non-
Galerkin, and Galerkin coarse grid corrections.

The two-grid results are shown in Table 3. As in the 1D case, the convergence of the Runge-
Kutta coarse grid correction approach is slow because of the dispersion effect. The convergence of the
non-Galerkin and Galerkin approaches are shown to be insensitive to the mesh size. We also remark
that although our phase velocity analysis cannot be applied to variable coefficient cases, the numerical
results of the recirculating flow indicate that the same conclusions hold for the different coarse grid
correction approaches.

6. Conclusions, We have demonstrated that phase velocity analysis is a useful tool to analyze
multigrid methods for convection dominated problems, and brings more insight into the efficlency of
different coarse grid correction approaches. In confrast with the elliptic case where multigrid conver-
gence is governed by smoothing of high frequencies and coarse grid correction of the smooth frequencies,
we have shown that it also depends on phase velocity accuracy on coarse grids for hyperbolic problems.

For Runge-Kutta coarse grid correction, the propagation of smooth waves is accelerated by using
coarse prids. However, dispersion occurs in the coarse grid correction process, which slows down
substantially the multigrid convergence. The exact coarse grid solve approach does not relv on wave
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propagation and hence dispersion is not an issue. However, for the use of the discretization matrix
as the coarse grid operator, there is a phase shift error in the coarse grid error which deteriorates
the multigrid convergence. The Galerkin approach has the advantage of maintaining small shift error
in the coarse grid correction. However, one needs to form the coarse grid operators on every grids,
and hence to determine new sets of parameters, e.g. time-step size, for the smoother to obtain good
smoothing efficiency.

We have addressed the issue of phase velocity analysis of multigrid methods for convection dom-
inated problems. However, the design of new multigrid methods which possess good phase velocity
property require further investigation.
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