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Abstract of the Dissertation

Mathematical Approaches to Color Denoising
and Image Inpainting Problems

hv

v

Sung Ha Kang
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2002
Professor Tony F. Chan, Chair

This dissertation contains studies on using Partial Differential Equations and
mathematical methods for color denoising and image inpainting problems. For
the color denoising method, we study the total variation (T'V) restoration based
on the two nonlinear (or non-flat) color models: the Chromaticity-Brightness
(CB) model and Hue-Saturation-Value (HSV) model. We make use of recent
works on the variational/PDE method for non-flat features to denoise the chro-

maticity and hue components directly.

Inpainting problem arise when we have damaged old photo or art pictures
which we need to revise. Motivated by earlier work by Bertalmio, Sapiro, Caselles
and Ballester [BSC00], we have studied PDE based inpainting problems. From
the variational TV inpainting model suggested by Chan and Shen, we have im-
proved the results by adding a Curvature term to the regularization functional.
In addition, we consider more global inpainting problems in which the missing
region are so large that most local inpainting methods fail. As an alternative to
the local principle, we assume that there are other images with related global in-

formation to enable a reasonable inpainting. As one possible method, we propose

xix




using Landmark matching, interpolation, and inpainting. Finally, we study how
the inpainting error depends on the shape and size of the inpainting domain. In
practice, the error is more local than global and the error can be refined by local
width. The error bound is dependent on the image space assumed, therefore, we
will investigate two cases, first assuming image space is smooth u C C? and using

Harmonic inpainting and secondly for binary image « with TV inpainting.
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CHAPTER 1

Introduction

Image processing is a broad field with many interesting tasks. Typical image
processing task includes image restoration, compression and segmentation. In this
dissertation, we are focusing our attention to image restoration, which includes

denoising and inpainting problems.

As various subject areas are doing research on image processing, there are
various frameworks for processing images. For example, statistical methods for
averaging to texture analysis, Fourier or Wavelet transformations including recent
improved curvelet, ridgele, and bandlets. We are interested in using PDE method
to deal with image processing. There are some good features for using PDE
imaging. It treats images as continuous functions and use PDE concepts like
gradients, diffusion, curvature, level sets and more. In addition to its flexibility
in modeling, it also have some of advantages over getting sharper edges and better
geometric properties. Applications can be widely found in image segmentation,

denoising, deblurring, enhancement, inpainting, and motion estimation

1.1 Image Restoration

Image restoration, particularly image denoising starts from image model like
following,

U, = K*xu+v



where u, is given observed image, u true image, K blurring kernel and v is
the noise term. The restoration problem is to find the true image u, only from

observed image u,. We will assume K = I, therefore, there is no blurring.

It has been known that by properly choosing the right cost or energy func-
tionals in the variational formulation in the PDE formulation, edges in noisy
images can be well restored and enhanced. Among the many possible choices,
the Total Variotion (TV) is the simplest but sufficiently efficient measurement
for enhancement or denocising. Its PDE form (via the Euler-Lagrange equation)
is interestingly connected to anisotropic diffusions and the mean curvature mo-
tion. Ever since the first explicit demonstration of its successful performance in
image restoration was made by Rudin, Osher and Fatemi [RO94, ROF92], the
TV model has been studied by many authors. Given the noisy image u® : ! — R,

Total Variation minimizing is to find u which satisfies the following,

ml}nf(u) = L|Vu!d:cdy+ %L|u—u012dxdy.

Throughout this dissertation, many models are based on this Total Variation

Minimizing method.

1.2 Contributions and Organization of This Dissertation

In this dissertation, we are focusing our attention on color denoising and image

inpainting problems.

Most denoising and enhancement methods for color images have been formu-
lated on linear color models, namely, the channel-by-channel model and vectorial
model. In Chapter 2, we study the total variation (TV) restoration based on
the two nonlinear (or non-flat) color models: the Chromaticity-Brightness (CB)

model and Hue-Saturation-Value (HSV) model. These models are known to be



closer to human perception. We made use of recent works on the variational/PDE
method for non-flat features and denoise the chromaticity and hue components
directly. We present both the mathematical theory and digital implementation
for the TV method. Comparison to the traditional TV restorations based on
linear color models is made through various experiments. The CB model seems
to give better color control and detail control, also separating Hue and Saturation

is not as good as using combined chromaticity.

Inpainting Problem arise when we have damaged old photo or art pictures
which we need to revise. Recently, Bertalmio,Sapiro, Caselles and Ballester [BSCO00]
and Masnou and Morel [MM98| draw our attention to the inpainting problem.
In Chapter 3, we show a couple of results for color image inpainting. From the
TV inpainting model suggested by Chan and Shen [CS01a], we are able o extend
the model to 3-D color space and show some successful results. In Chapter 4, we
improve the TV inpainting model by adding the curvature term to the regular-
ization functional. This is a variational inpainting method withe Euler’s Elastica
term. The curvature term is the functional helps to avoid a sharp edge (kink)
which has very big curvature, and a result in getting connected result or curved
result instead of straight line. With curvature term, the Euler-Lagrange equa-
tion becomes forth order highly nonlinear equation, so we use the normal and
tangent vectors to better represent this Euler-Lagrange equation. We present the
Mathematical Model using geometrical vectors as well as successful results using

min-mod and upwind schemes.

Most existing inpainting algorithms are local in nature and extrapolate infor-
mation from neighboring pixels into the inpainting regions. In Chapter 5, we are
interested in the inpainting problem where the missing region are so large that

these local inpainting methods fail. As an alternative to the local principle, we



assume that there are other images with related global information to enable a
reasonable inpainting. These additional images could be from a movie sequence,
an image of the same object from a different time and a different viewpoint, or an
image of a similar object. We propose a method with roughly three phases: land-
mark matching, interpolation, and copying. For the landmark matching, modi-
fied shape context information is used to exploit the global information. Then
matched information is interpolated {and regularized) using thin plate splines.
Finally, we copy the information from one image to another. Using landmark
matching and interpolation, allows the missing regions to be significantly larger
compared to the local inpainting methods, and can be used when the object is

distorted from one image to another.

There have been many recent developments in image inpainting problems and
most inpainting domain is narrow or small enough to get good results. Therefore,
in Chapter 6, we are interested in getting a local error bound for these inpainting
problems. The error bound is depended on the image space assumed and we
consider two cases, first assuming image space is smooth u C C? and using
Harmonic inpainting and secondly for binary image v with TV inpainting. In
both cases, we get explicit form for the error bound. For the continuous case, we
are able to reduce the error bound specially when the inpainting domain is shape
of an ellipse. For binary case, we use level line to analyze the error bound and
show the error is bounded by the distance between the level lines and the normal

direction of the level lines.




CHAPTER 2

Total Variation Denoising and Enhancement of
Color Images Based on the CB and HSV Color
Models

2.1 Introduction

Any tool that attempts to denoise and enhance digital color images must rely on
two correlated ingredients — the representation of colors (i.e. the color model)
and the restoration methodology applied to the representation. Therefore, this

chapter starts with a brief introduction to these two components.

2.1.1 RGB, CB, and HSV Color Models

In image processing, color has been represented or modeled in various ways [GW92].

In this chapter we shall focus on the RGB model and HSV model.

In the RGB representation of color images, at each pixel p = (z,y), the
vectorial value I(p) = (u1(p), ua(p), us(p)) represents the intensity of the three
primary colors separately. Each monochromatic component u; is called a channel.
The RGB model has led to the CB model, which decomposes an RGB pixel value
I{p) into two components — the brightness component u(p) = ||I{p)| (Euclidean
length), and the chromaticity component f(p) = I(p)/u(p). The chromaticity



component lives on the unit sphere S?. Features that live on nonlinear manifolds
are said to be non-flat [CS00b, TSCO00]. It has been shown by several authors
that this CB model is well suited for denoising, edge detection and enhancement,

and segmentation [CS00b, TSC99, TSC00, TKV96, TVI3].
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RGB system for human perception. The three variables are: hue H, saturation 5,
and value V. The § and V are linear features and take values in the interval [0, 1].
S encodes the “purity” of color: larger S corresponds to purer color. The value
V stores the intensity information; larger V value means brighter color. The hue
component I, though also taking values in [0, 1], is a circular or periodic feature:
as H increases from 0 to 1, the color spectra revolve from red, yellow, green, cyan,
blue, to magenta, and eventually back to red. Therefore, the hue can be thought

of non-flat features [KS02| lives on the unit circle S*. The circularization is easily

made by the exponential mapping H — exp(i27 H).

The precise transition from the [r, g, 8] variables to [H, S, V] is realized by:

V =rvgvb

__ 1 __ ThAgAb
S =1 TVgvh?

where for a pair of real numbers a and b: a V b := max(e,b), a A b := min(a, b).
The formula for H appears to be more complicated, but it is a piecewise linear
function along any iso-S & V line. On the hexagonal iso-S & V line in Figure 2.1,
as point moves from al, a2, - - - to a6, al, the H value increases linearly from 0 to

1. For Example, along the first segment [al, a2] (along which r and g are fixed)

1lg—5b
HﬂH(’,g,-)xg [:r_bjl’

and along [43, a4] (along which r and b are fixed)
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al
n2 a6

a3 5

a4

An iso-V sutface in the RGB space. An isa-8 line on the iso-V surface

consists of three 2-I3 squares. From alal,.to a6, al, H increases from 0 tol,

Figure 2.1: An iso-V surface and an iso-S line on it in the RGB space.
See Eq. (2.1,2.1) for the definition. Notice that an iso-V & S line is a 3-D
“hexagon,” as shown separately on the right panel. From al,a2,--- to

a6, al, the hue value H increases from 0 to 1.

Many classical processing tools for color images are based on the RGB model,
mostly because linear spaces are easy to work with. As a result, despite their
similarity to human color perception, the CB and HSV color models have been less
favored due to their non-flatness. This chapter intends to construct restoration

models based on such non-flat color models.

2.1.2 The Methodology of Variational Restoration

The variational and PDE method has attracted much attention in image process-
ing because of its flexibility in modeling and numerous advantages in numerical
computation. Applications are widely found in image denoising, deblurring, en-
hancement, inpainting, segmentation, and motion estimation (see the two mono-

graphs [MS95, Wei98], for examples).



The general framework of the variational approach for denoising and enhanc-
ing color images based on the linear RGB color models can be classified into two
categories — the channel-by-channel approach and the vectorial approach.

In the channel-by-channel approach, each channel u; is assumed to be contam-

. . . 0 _
inated by noise n; so that the observation becomes u{z, ¢} = u;{x

w\—i—'_n;(g;: 24
bV LY 1 AN

] LR

A typical channel-by-channel denoising model carries the form of

1
min R;(u;) subject to @/ |u; — ul? = oZ, (2.1)
0

Ug
where € is the image domain, || its area, R; the regularity functional, and o;

the noise level. One example of R; is the total variation approach (Rudin, Osher

and Fatemi [RO94, ROF92]),

Ri(us) = f (Vuldady.

The TV measure has been proven both mathematically and computationally to

recognize and enhance edges embedded in noise [CL97, ROF92].

In the vectorial denoising approach, the cost functional is on the vectorial

function I = (ug,ug, us):
1
min Rsp(I) subject to = f |7 - 1% = o?, (2.2)
I 2] Jq

where Rap is a regularity functional for vector-valued functions. Typically in
applications, suppose R; is a suitable 1-dimensional regularity functional for the
i-th channel, then one simply takes Rsp = /R? -+ R% + R3. In the case when
Rap is connected to the total variation and anisotropic diffusions, we observe the

work of Sapiro and Ringach [SR96] and Blomgren and Chan [Blo98, BC98].

In practice, both constrained optimization problems (2.1) and (2.2) are re-

placed by their unconstrained forms. For example, for the vectorial case, we




solve
A
min (RgD(I) + —f ”I— .[0”2) .
I 2 Q
Here ) is an appropriate penalty weight, which depends on the noise level. In

practice, it is often estimated or chosen a priori [COS01, ROF92].

2.1.3 Variational Restoration for Non-Flat Features

Recently, the variational and PDE method has been generalized to non-flat fea-
tures by Sochen, Kimmel and Malladi [SKM98], Perona [Per98], Tang, Sapiro
and Casselles [TSC99, TSC00], Chan and Shen [CS00b], and most recently by
Kimmel and Sochen [KS02]. Tang et al. and Chan et al. generalize the total
variational model, while Kimmel et al.’s model profits from their previous general
framework of Polykov action and Beltrami operators [SKM98]. All these works
intend to restore edges of non-flat features. Chan and Shen [CS00a] also proved
that near edges, the models in [CS00b] and [KS02, SKM98| are equivalent. But
the differential equations based on the total variation norm are much simpler and

thus easier for computation [CS00b, TSC99, TSC00].

This chapter is the extension and completion of the works of [CS00b, TSC99,
TSC00] on the total variation approach for enhancing and denoising non-fiat im-
age features. We study in details the TV model and its numerical implementation
for restoring color images based on the CB and HSV color models. Previous works
on general non-flat features enable us to work with the chromaticity feature f
(on the sphere S?) and hue feature H (along the circle S') directly. Detailed
comparison to the channel-by-channel and vectorial approaches are illustrated
through numerical examples. Our results show convincingly the advantages of

the CB and HSV color models over linear ones.

The chapter is organized as follows. Section 2.2 introduces the mathemati-



cal models, and Section 2.3 details their numerical implementations. Numerical

experiments and comparison are explained in Section 4.

2.2 The TV Formulation on CB and HSV Models

In this section, we explain the total variation formulation for the two nonlinear

color models.

2.2.1 TV for the CB model
In the RGB representation, a color image is a mapping
I:Q— R ={(r,g,b):r,9,b>0}.

I can be separated into the brighitness component u = ||I{|, and the chromaticity
component f = I/||I]| = I/u. The brightness u can be treated as a gray im-
age, thus any scalar denoising model can be applied. However, the chromaticity
component f stores the color information, and takes values on the unit sphere
52, We need to apply the general framework of non-flat models to denoise the
chromaticity, here we have used the non-flat TV model studied by Chan and
Shen [CS00b).

The idea of Chromaticity and Brightness approach is, from the RGD rep-
resented image, we first separate it to brightness and chromaticity components,
then denoise those separately; using gray scale TV model for brightness, and non-
flat TV model for chromaticity component. Finally, we assemble two component

to get restored image I;

I(p) = u{p) x f(p).

For the Brightness denoising model, from the given a noisy image 1%, let

10




u® : @ - R be its brightness component. The scalar TV restoration model

applied to u? is

min /|Vu§ drdy + if(u"—uﬂ)2 dz dy,
u Q 2 Ja

The associated Fuler-Lagrange equation (in a formal level) of this cost functional
is

Vu
[Vl
Since | Vu/ is in denominator, in order to avoid possible singularity, we condition it

to |Val, = y/|Vul® + a? for some small constant @ in numerical implementation.

This is equivalent to minimizing directly

V(Y A - u®) =0, (2.3)

f|Vu|admdy + i[(u—uo)z dz dy.
o) 2 Jo

The total variation as a cost functional legalizes the existence of edges or sharp
jumps in the brightness component, which usually correspond to the real physical
boundaries of objects [ROF92]. (As in the literature, if a = 1 (or after being

linearly scaled), the first term measures the total area of the graph of z = u(z, y).)

For Chromaticity Denoising model, let f :  — S? be a chromaticity feature.
Assume f is smooth. This f lies on the unit sphere, so let d,f(p) and 9, f(p)
be two tangent vectors in the tangent space Tjp,S? of 5% Let || - || be the
induced Riemannian norm of T,y S* in R®. Then the tolal variation model for

chromaticity becomes [CS00b],

() = [[etrin) o= [ VoI + 18 F DIy, do = dmay

Moreover, since the unit sphere S? is embedded in R® and f = (fi, f2, fa) € R,

we can express the energy with ordinary differentials of vectors in R3,

e(f;p) =IVfll = \/Ilfm(p)ll2 + @2 = VIIVAIR + VAP + [V fs][

11



For the constrain term, let d be any appropriate distance function on S* [CS00b).

One can choose the embedded distance, the cord distance

d(f,9) =If —glles = V(f -9 f g€5" (2.4)

or the geodesic distance, the arc distance

d(f, g) = arccos ([, g),

where (f,g) denotes the inner product in R®. Here we have used embedded

distance (2.4). The TV restoration model is
min ETV(f) subject to L f d2(f°, f)dp = o*
! !Q| Q
and the fitted TV energy is

. TV A 0
min €7(5) +5 [ EU Dy

The Euler-Lagrange equation for this unconstrained form becomes:
Oy f ) ( Oy f ) 2/ £0
—8*( a, —grad, d*(f", f) =0,
o)~ \wm) sl )
where grad;d*(f°, f) denotes the gradient vector of the scalar function d2(f°, f)

on 52 and &% and 9 the covariant derivatives acting on vector fields on the sphere.
According to [CS00b], when the chromaticity sphere is naturally endowed with
the restricted metric of R, the covariant derivatives are the ordinary derivatives
(in R?) followed by an orthogonal projection onto the sphere. As worked out step
by step in [CS00b],

% (1) + 4 (o) =¥ (wgm) + w05

Furthermore, since we choose the distance (2.4) which is d = \/(f — g)?, as shown
in [CSO0b],

1

Egradfdz(fo,f) = II(f — ) = —TIef°

12



Where I1; is the orthogonal projection from T;R? onto the tangent plane T S%:

;g =g—{g,f)f, foranyvector ge&TsR".

The projection operator appears due to the fact that we are working exclu-
sively on the chromaticity sphere, thus “blind” to any changes occuring p
dicularly to the sphere. Combining the two equations, TV energy and fitting

term,the restoration equation for the TV model becomes:

v (Y
folor 0 =V (o) #IVAI A ©5)

We shall explain in Section 3 the numerical implementation and the digital
version of the nonlinear restoration equations (2.3) and (2.5). In particular, our
numerical scheme works directly on the steady equation, thanks to the digital
TV filter recently proposed by Chan, Osher and Shen [COSO01]. It avoids the
complexity of keeping the nonlinear flow (2.5) strictly on the chromaticity sphere.

Numerical methods for the direct flow are also discussed in [TSC99, TSCO0].

2.2.2 TV for the HSV model

In the HSV color model, the hue H is a non-flat feature lives on the unit circle
S' while the other two, S and V/, are both linear features. As for brightness
component in CB model, for saturation S and value V, we apply the scalar
TV denoising model (2.3). For the circular feature H, we used equation for

chromaticity (2.5) with the straightforward modification from S* to S*:

H=(H,H)eS CR and |[VH| = /I|H2+ |1,

However, our experiment (Fig. 2.6) shows that denoising the hue H and the

saturation S separately does not produce satisfactory visual results. A possible

13




explanation for this deficiency is that to human visual perception the two compo-
nents, H and S, are highly correlated. For example, for color 'pink’, H should be
around Red (H = 0) and S around 0. Therefore, a better approach is to restore
the combination of H and S, which is also called chromaticity in the classical

literature of color image processing.

To combine H and S components, let’s consider a disk transformation. From
the RGB color space (Fig. 2.1) for a fixed value V, the two other variables H and
S span the iso-V surface which are three 2-D squares; Figure 2.2, surface ABGF,
BCDG and GDCPF. This iso-V surface is piecewise smooth with a corner and
three folding lines, thus we apply the disk transform to “straighten” this folded
surface as follows. For each point on the iso-V surface with the hue and saturation

(H,S), define a complex number
Z = 8 x exp(i2n H). (2.6)

Since both H and S take all values in [0, 1], the image of each iso-V surface is
the unit disk in the complex plane, Figure 2.2. Under this disk transform, each

iso-V & S lines (the 3-D hexagon) is mapped onto a circle centered at the origin.

The unit disk is a smooth and convex domain, thus much easier to work with.
To restore th combination of H® and S? in the HSV color model, is equivalent
to restore a complex-valued scalar feature Z°. As a conclusion, from any given

noisy image under the HSV model

(H(z,9),5%=,y), V' (z,9), (z,9)€Q,

we denoise two scalar components — the real-scalar-valued V%(z,y), and the
complex-valued Z°(z,y) which is the color component; combination of H and 5.

We apply the scalar TV model (2.3) for both V' and Z separately. The numerical

14



(z=1)

D (z=1)

An iso-¥ surface in the RGB space. The iso-V surface is mapped onto the wnit disk.

Figure 2.2: The disk transform of an iso-V surface: Z = Sexp(i2nH).

results show the advantage of working with the combination of # and S than

separating H and S.

2.3 Numerical Implementation

To digitally implement the nonlinear differential equations, we have applied the
approach of digital TV filtering as proposed in [COS01}. The digital TV filter
can be considered as the finite difference realization of the differential equations,
but is simpler and more self-contained in the general framework of graph the-

ory [COSO01].

Let Q be a discrete digital domain or a graph. Pixels in {2 are denoted by
a, 3, -+ In the conventional rectangular setting, it is also denoted by o = (ij).

Denote N, the neighbors of the pixel a. For instance, in the rectangular setting,
Nc\c = N(z_;l) = { (3+ 1Jj)1 (?’ - }-:j)a (?’1.7 - 1)7 (Z)J + 1) }

There is much freedom in defining the neighbors, for example one may include

341,75+ 1) in Nyjs. Here we used above definition of neighbors and if § € N,
(i)
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we also write as 8 ~ a.

Let u :  — R be the brightness component. We define its local variation

to be |Vaul = \/Eﬁwa(uﬁ — u,)?, and its conditioned form to be {Vyul, =

V[V au]|2 + a? for some small a (Sec 2.1).

The digital form of Euler-Lagrange equation (2.3) is a system of nonlinear
algebraic equations, Chan, Osher, and Shen [COSO01],

Zwag(u) (ug — ua) + Az —u’) =0, ac

Broc
where the weights are wyg(u) = va&“i: + m. The techniques of linearization
and iteration scheme lead to the so-called digital TV filter [COS01]. The digital
TV filter F is nonlinear data dependent filter F : v — v. For the given noisy

image u°, at any pixel a € Q,

Ve = Folu) = Z hag(u)ug + haal{t)up, (2.7)
Broa
where the low-pass filter coefficients are
Wap () heatt) = A

S D ST ) S SRy
Apply this digital TV filter in an iterative fashion. To restore and denoise the
brightness component u®, one starts with a initial guess u(® (for convenience
u©® = 49, and the TV filter generates u™ = F(u"!) for n = 1,2, u()
converges to the optimal restoration u.

For the Numerical implementation for Chromaticity component, we have used
digitized version of TV minimizing Model. Let f°: © — 5% be the noisy chro-
maticity. Taking the embedded distance d(f,g) = \/ﬁ for any f,g € S2,
we define the local variation at a pixel ¢ of a chromaticity feature f:  — 52 to

be:

=13 (s, fa)]E.
Breae
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The digitized total variation with the fitting constraint becomes [COS01]
1
EV(SN =Y elfsa)+A Y sd (o f),
a€lln acfl,
which provides the digital cost function for optimization. Then the digital Euler-

Lagrange equation is shown to be [CS00bl:

1 1
0= IIf (fs) — + —— + M1 (fY), aeQ. (2.8)
ﬂZ:a e (e(f,os) e(f,ﬁ)) ’

Where II; is the orthogonal projection defined in the previous section. This
II; is needed to insure the chromaticity to lie on the unite sphere. By setting
wapl(f) = ?;—57 + e(flT)’ the restoration equation (2.8) can be rewritten as
7, (O wasfs +Afa) =0, ack.
Bra
Chan and Shen {CS00b} showed that this equation on the unknown optimal
restoration f : §2 — S? can be similarly solved by the digital TV filter F.
Since the feature lives on the unit sphere, g = F(f) now needs an extra step

of normalization (projection to sphere) :

Ja =2 gna Popfs + hao o
Jo = ga/”.aa“-

(2.9)

One starts the iterative filtering process with an initial guess f ©) then generate
#m = F(f=1). Chan and Shen [CS00b] showed that the limit of f( indeed

solves the restoration equation (2.8).

In the HSV color system, for denoising H, S and V separately, we have used
scalar TV filter (2.7) for S and V, and for hue H, we used simple modification of
Chromaticity TV filter (2.9) from $? to S*. For denoising Z and V, where Z is
a combination of H and S, we used scalar TV filter (2.7) for both the real scalar

function V9, and the complex scalar function Z°. Since the both unit interval and
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unit disk are convex domains, the mazimum principle of the TV filter [COS01]
guarantees that the restored V takes values in [0,1], and Z on the unit disk.

Thus, the restored H and S can be well reconstructed from Z.
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2.4 Numerical Experiments and Compariso

This section summarizes the performance of the TV models based on the CB and

BSV color models.

TV restoration based on the CB model: In Fig. 2.3, we demonstrate
the result of TV restoration applied to the chromaticity-brightness representation.
The top image is the original noisy image, the middle panel is the image with
only chromaticity restored and at the bottom, the image with both chromaticity
and brightness restored. After denoising chromaticity, the visible noisy red and
green dots have been swept out and the eyes and dark lines resume their original
black color. In the final result, the nose and lips become smoothly red as they

should be.

Comparison of TV’s on the CB and linear models : In Fig. 2.4, we
compare the restoration results by the CB-based TV and linear TV; channel-
by-channel TV and vectorial TV. The images in the first column (left) are the
original image and the two right columns are zoom-in to show the details of the
first column. Compared to the channel-by-channel TV and vectorial TV, the
chromaticity-brightness TV restoration seems to give better color control. Inside
the white arrow, while channel-by-channel TV and vectorial TV have some red,
green, and different color dots left, the chromaticity-brightness TV is closer to

white and closer to human color perception.

Fig. 2.5 shows another example for the comparison between the linear TV's

18



Figure 2.3: Spherical TV on the chromaticity component and scalar
TV on the brightness component. (a) is original noisy image. In (b),
only the chromaticity is restored, while in (c), both the chromaticity and

brightness components are restored.

and the CB-based TV. The first column is the original image and second column
is zoom-in to show the letters at the bottom right corner of first column image.
We see that the the designer’s name has been best restored by the chromaticity-
brightness TV, again showing better color control. The channel-by-channel TV
and vectorial TV have blurred the letters, mostly due to their inefficiency to deal
with the chromaticity component. The third column of Fig. 2.5 is an example
showing that the CB model is better at recovering details. While channel-by-

channel TV and vectorial TV lose details to recover color, the CB model can
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control both by denoising separately.

TV restoration directly based on the HSV model : In Fig. 2.6, we
show the restoration result from the direct application of the TV models on the
three components of the HSV representation. We are denoising H with non-flat

r

(5') TV model, S and ¥

2 ) MPRN [ S S, Ry o
1116 ZOO0In-1l iidiage shows the

with scalar TV models.
unsatisfactory behavior of such an approach of the approach. The underlying
reason, we believe, is the high correlation between the hue component H and the

saturation S for human perception.

TV restoration on HSV and its disk transform : The preceding sections
and the previous numerical example lead us to considering Z, the combination
of H and S via the disk transform (2.6). In Fig. 2.7, we display the restoration
result from the scalar TV on both the real function V' and the complex function
Z. From the zoom-in image, it is clear that such combination is much closer to
human perception and results in better color restoration then denoising H, S and

V separately.

TV on CB and HSV with the disk transform : The disk transform Z in
the HSV representation encodes both the hue and saturation, and thus is sirnilar
to the chromaticity information in the CB representation. Meanwhile, the “value”
component V apparently plays the same role as the brightness component in the
OB model. As a result, in Fig. 2.8 and Fig. 2.9 the performance of these two
approaches are very close. However, CB model result have sharper and clearer

black recovery.
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{a) Original Image
s R

(b Noisy Image : Channel by Channel noise

(c) Channel by Channel TV

{d) Vectorial TV

(8} TV on Chromaticity and Brightness

Figure 2.4: Comparison of the CB based TV and linear TV’s (I). The
first column is original image and right two columns are zoom-in of the

first column to show details. CB leads to better color control.
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(a) Original Image

anters” by
Adaenin Rl

(e} TV on Chromaticity and Brightness

2

Figure 2.5: Comparison between the CB based TV and linear TV’s (II)
and (ITT). (II) The middle column is the zoom-in of bottom right corner
of first column. (III} The third column is another image. CB leads to

better color control and better detail recovery.
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Noisy Image TVonH,SandV A Zoom—in

Figure 2.6: Circular TV on H, and scalar TV’s on S and V. The
unsatisfactory performance shows the inappropriateness of treating the

H and S components separately.

Noisy Image Scalar TVonbothV & Z A Zoom—in

Figure 2.7: Scalar TV’s on both the real function V' and the complex

function Z, where Z is the disk transform of H and 5.
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Nolsy Image TV onV & Z {under HSV} TVenC&B

o

Figure 2.8: TV’s based on the CB and HSV (using V' and Z) color

models have the similar performance.

Noisy Image TV on V & Z(underHSV) TVonCa&B

10 G h ) 10
20 20
30 [ ' 30

40 . _ 10 8

10 20 30 40 10 20 30 40

Figure 2.9: TV’s based on the CB and HSV (using V and Z), CB model

seems to have better result.
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CHAPTER 3
Color Image Inpainting

3.1 Introduction

The color image denoising can easily be extended to color image inpainting prob-
lems. Inpainting problem arise from restoring the image with a crack which

needed to be filed in. More detail about inpainting will follow in Chapter 4.

Inspired by Bertalmio, Sapiro, Caselles and Ballester [BSCO00], Chan and Shen
proposed TV inpainting (Total Variation minimizing inpainting) method. This
TV inpainting is closely related to Total Variation denoising suggested by Rudin,
Osher and Fatemi [ROF92]. Let D be the region with missing information, this
is called Inpainting Domain. Then, the TV inpainting model is to find image u
which minimizes Total Variation on the domain §2 while fitting the information

only from outside the inpainting domain, {2\ D,

A
J(u) = f |Vu|dzdy + 5 -/.Q\D |u — u,|*dzdy.
Q

Here, u, is original image, Vu is the gradient and constraint is only on Q\D with

A as the Lagrange relaxation parameter.

In this chapter, we extend this TV inpainting to RGB color space. From
3-D RGB color vector, we use channel by channel inpainting as well as vectorial

inpainting. In following sections, we present the model and numerical results.
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3.2 The Model and Numerical Implementation

For a given image u :  — RY = {(r,g,b) : 7,g,b > 0}, in channel-by-channel

inpainting, each channel »; is inpainted separately using TV inpainting [CSO01a),

min = [ IVu,|dzdy + é f |y — ulPdady.
v Jo D

For the vectorial inpainting, the cost functional is on the vectorial function

u = (uy, Ug, u3),

. A
min = f | Vullspdzdy + = f flu — u°||3pdady
u Q 2 Jop

where || - ||ap is for vector-valued functions, typically in applications, ||ullsp =

VIuil? + Jual? + Jual.
For numerical implementation for channel by channel inpainting, we use digital

TV filtering as proposed in [COS01]. Similar to Chapter 2, We define local

variation to be |Vyu;| = \/ Zﬁe w, (Uig — Uie)? + a2, where a is a small constant,
and Ny = Ny ={ (i +1,7), (i —1,5), (4,5 —1), {i,5+1) }. The digital form

of Euler-Lagrange equation for inpainting becomes,

> wap(us) (uig — wia) + Ap(ws — 1) =0, a€Q.
BEN.

where the weights are wag(u;) = IVoltual + ]-gﬁl-gﬂ, and Ap is,

A ze\D
0 ze D

Ap =

Then, the digital TV filter F is F : u; — w;,

Vie = Falus) = Z hog (i) uig + haa(ui)u?ﬁa (3.1)
B
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similar to denoising filter (2.7), however, the low-pass filter coefficients with Ap

are,
Ap

haﬁ (uz) _ Wap (’U,z) haa (uz) — AD n E o (uz) .

B AD + Z’ywa wa'Y (’u‘i) ’
The digital TV filter is applied in iterative fashion.

For Vectorial inpainting method, we also use digital TV filter. The digital

form of Euler-Lagrange equation is,

Z wap(t) (ug — ua) + Aplu —u®) =0, ae.
,GEN&

where the weights are w,g(u) and

_ 1 1
= [Waulon T TWpulln’

IVatillan = [ D (u1p —wia)? + Y (uzp — uza)? + D (usp — ga)? + a?.

BeNy BeNa BEN
Then, the digital TV filter F is F : u — v,

Vo = Falt) = D has(w)ug + haa(u)ug,

G
with low-pass filter coeflicients,
Waps (u) A D
htl u) = 3 haa Uy = .
ﬁ( ) AD + Zqﬂva wa’)‘ (u) ( ) /\D + Z-‘y-—va wfl")‘ ('U,)

3.3 Numerical Results

We present a couple of results demonstrating the result of channel by channel
inpainting and vectorial inpainting. Fig. 3.1 is an image of Kyung Bok Palace
in Seoul, Korea. Both channel by channel inpainting and vectorial inpainting
show successful results. The yellow letters are successfully removed while leaving
the complicated texture. Fig. 3.2 is an image of White house and the pink
letter are the inpainting domain. The results looks better for the vectorial case,
since vectorial model is closer to chromaticity control than channel by channel

inpainting.
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Original

Channel by Channel TV Inpainting

Vectorial TV Inpainting

—

Figure 3.1: In the top image, the yellow letters are the inpainting do-
main. The middle image is channel by channel inpainting and bottom
image is the vectorial inpainting. Both, channel by channel inpainting

and vectorial inpainting show successful results.
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Original Channel by Channel TV Inpainfing Vectorial TV Inpainting

Figure 3.2: In the top image, the pink letters are the inpainting domain.
The middle image is channel by channel inpainting and bottom image is

the vectorial inpainting. Vectorial inpainting has better result.
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CHAPTER 4

Euler’s Elastica and Curvature Based

Inpaintings

4.1 Introduction

When you have damaged image, e.g. scratched or some portion is missing, we
try to refill the gaps to reconstruct the better image. This is called retouching
or inpainting. In Fig. 4.1, couple of example of inpainting is shown. From many
subjects in image processing, this is a part of image restoration, reconstruction

problems which is also related to disocclusion problem from vision analysis.

The Digital inpainting, instead of manual re-touchings, was proposed by
Bertalmio,Sapiro, Caselles and Ballester [BSC00]. In their paper, they use trans-
portation mechanism which is from the boundary of the missing region, it extends

the information from boundary to inside, step by step.

Another approach based on solving PDEs from vision analysis is Masnou and
Morel [MM98]’s level line based disocclusion. They use dynamical programming
to to interpolate the level lines from boundary level lines. Closely related ap-
proach based on using PDE from Inpainting point of view, is TV minimizing
inpainting suggested by Chan and Shen [CS0lal. This Total Variation minimiz-
ing inpainting is in spirit very similar to the classical restoration model of Rudin,

Osher and Fatemi [ROF92] and also reduces good results for inpainting problems.
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Original Inpainted
i

Figure 4.1: Inpainting problem examples. In the first row, the cracks
in old photo is inpainted and in the second row, the black letters are

inpainted.

The TV inpainting model (4.1) is to find image v which minimizes Total
Variation on the domain £ U D. As shown in Fig. 4.2, D is the inpainting
domain with piecewise smooth boundary, and E be extended outside domain of

D where only the boundary of D lies in.

A
Ju(w) = f Vuldady + f fu — 1y 2dzdy (4.1)
EUD E
where u, is original image and Vu is the gradient and constraint is only on £

with X as the Lagrange relaxation parameter. The Fuler-Lagrange equation is,

A zeFE
-V (&) + Ap{u—u,) =0 where Mp=
IVl 0 zeD

This model is very close to Total Variation Minimizing denoising model except

for Ag which only enforces the information from £, outside D, rather then from
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E (Extened region)

D (Inpainting Domainy

Figure 4.2: Inpainting Domain D

the hold image F U D. This TV inpainting is very useful when we have small
inpainting domain D or we want to recover a straight line. However, it will get a
straight line or disconnected results, even when the missing region looks connected
or curved. As in Fig. 4.3, the gray noisy portion is the inpainting domain D, it
is reasonable to think the black line is connected. However, TV inpainting will
result in disconnected result (b). This is because at the boundary of inpainting
domain D the black line is much narrower then the white background, therefore,
TV minimization will restore the inpainting region as white, the same color as

background.

To get connected result, Chan and Shen [CS01¢| suggested Curvature Driven
Diffusions (CDD). By having the diffusion coeflicient which depends on the cur-

vature of the isophotes, this can give connected results.

1 ckE
G2 Gu) 4 Ap(u— o) =0 where (s, ) = Z

-7
.z g(lkl) ze€D

above g(s) is appropriate function that reduces the large curvature and stabilized
small curvatures inside the inpainting domain, for example one can choose g(s) =
s® for some a > 1,

In this chapter, we are following Masnou and Morel’s [MM98] proposal of
variational model to improve the TV inpainting. By adding the curvature term
to the regularization functional, it will try to avoid a sharp edge (kink) which

has very big curvature, and get connected result for Fig. 4.3. Also this allows to
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(a) Image with Noisy Inpainting Domain {b) TV Inpainting Resuit

Figure 4.3: Disconnected result.

get curved result instead of straight line. However, with curvature term, Euler-
Lagrange equation becomes forth order highly nonlinear equation, so here we use
Normal and Tangent vectors to better represent this FKuler-Lagrange equation.
Using Normal and Tangent vectors representation, this result in requiring only
simple Numerical Schemes. In following sections, we’ll present the Mathemati-
cal Model with detailed derivation of Kuler-Lagrange equation, show numerical

implementations and present some results.

4.2 Mathematical Model

In [MM98], Masnou and Morel proposed the disocclusion functional,
f [Dv](1+ |curv olP)dz, p>1 v =u outside D
0

where 2 is the entire image domain, and D the occluded image. Using this

functional with TV inpainting, we use regularization functional,

A
Jr(u) :/E N [Vu|(a+bnz)dmdy—i—§L|u-u0!2d9§dy (4.2)
U

where E U D is the extended inpainting domain, Vu is the gradient, constraint

is only on E with A. Here « is curvature, x = V - (%). a and b are constants

for TV term and curvature term respectively.

A curve v is said to be Fuler’s Flastica if it is the equilibrium of the elasticity
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energy,

/ (o + b&2)ds
Here, ds is the arc length elemen:, x(s) the scalar curvature, and a, b are two
positive constant weights. Euler obtained the energy while studying the steady

shape of a thin and torsion free rod under external forces [Lov27].

A naive derivation of Euler-Lagrange equation, using gﬁ = a% aifm + 3%% is,
Vu
(V- Vu I){t:r,-i— br? + 20| Vu|(x)} — Ag(u ~ u®) =0 (4.3)

() = Al — 12 (k) + o255 (25) + o)

82 u2 2 " (92
= Ba? §Vu|3) + Bmdy( §Vu1ir|?; ) + (IVu|3)

The curvature « is second order feature of v, Wthh leads to fourth order highly

nonlinear Euler Lagrange equation. This is not trivial to drive and the resulting
Euler-Lagrange equation is very complicated and highly nonlinear. This deriva-

tion is also done independently by Masnou [Mas00}.

Here, we analysis this better by using normal and tangent vectors. This will
reduced to simple Euler-Lagrange equation representation only with V and V-

avoiding second or higher order derivatives. From equation (4.2}, let
Rlu] = f \Vul(a+ b6¥)dady  and  Flu f = u,|2dzdy
BUD
Denote < f >= [,, fdzdy and compute its variation,
SR =< §{|Vul(a+bs?)} >=< a §(|Vu]) + b 6(s*|Vu|) >
= a < §|Vu| > +b < 5%6|Vu| > +2b < k{Vuldr >
=< (a+bk?) 6|Vul| > +2b < &|Vu| dx >
=< (a+ br;:z)i 8- Vu > +2b < k|Vu| ok >
=—<V-[(a+ an)ﬁ] du > +2b < 5|Vul 6k >
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here 77 = (IVHI ) 9 ul) To work out the second term, first compute the

IVﬂI

variation of k i.e. dx. Using k =V -7 and 77 = W’

Sk = §(V - ﬁ) =V. [§ V(du) + Vu 5(|Vu|)]
= V- [V (0u) — (Vu (F5)V (6u)]
=V - [jgg {1 - T 7}V {6u)]

<KVl 5 > =< 8|Vl V- [Eo{l— 76 7}V (0u)] >
=< ~V(r|Vu)) [[gm{l - 7® 7}V (du)] >
=< ~{I- 7@ TH gz V(sIVu)}V(u) >
=< V- [ - 70 N{gg VVuD}] (6u) >

Combining all above for R, we have

8 = V- [(a+br?)if — 2b(1 — 7 ® 7) g V (] V)]

= -V - [(a + br?)if ~ Ié{;l a(’ﬁu”ﬂ

aF
du

= /\E (u —_ ’U.o)
Here i = (IWI , o) 1s normal vector and 7 = (T%i {oi7) is tangent vector. For
2D image domain, Fig. 4.4, ] = 7 ® 7+ 7 ® 7 and using the fact 7-V = ﬁ, we

get above result. Here V is represented by two orthonormal vectors 77 and 7.

Thus Euler-Lagrange equation becormes,

8 = SR OF - V.V 4 Ap(u~ u,)

(4.4)

V= (a+be?)i— 2l
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Figure 4.4: Vector field of Normal and Tangent vector

This equation is better to work with then equation(4.3), since it only has V- and
Vs instead of second or higher order derivative terms. This enable us to use only
simple numerical schemes (next section).

Theorem The vector field V is morphologically invariant. (i.e. V does not

depend on relative intensity.)

Proof For a morphological transform g:
u->g(u) where ¢(0)=0, g{l)=1
g'{u) >0 uwe(01)
We have to show, V(g(u)) = V(u).

In (4.4), the first term is invariant since both 7f and £ = V - 7 are morpholog-

ically invariant. For example,

7= Vg(u) _ g'(u)Vu _ Vu
IVg(u)l g’ w)|IVu]  [Vu|

For the second term,

1 kve(ul e _ 1 8¢ (wk|Vul) o

[Va(u)i a7 7 i)Vl &7

since in the tangent direction 7, u, g{u) and ¢'(u) are all constants U
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4.3 Numerical Implementation

For the numerical implementation, let u : £2, — R be digital gray scale image.

From the equation (4.4), we used time marching,

\ (X zeB
— Ap(u —u,) where Ag=
10 zeD

Bu o
.

a ¥

(4.5)

¥ el & Vul) =
1% m(a—l-bnz)n—l—%'-’ﬂ s 7

This Euler-Lagrange equation is nonlinear and ill-conditioned, and both terms
in V have |Vu| in the denominator, therefore, we multiply the magnitude of the
gradient of u, suggested by Marquina and Osher [MO99]. This allows the level
contours to move faster and the gradient regularizes the mean curvature term.

atl_n
i) " Chsd)

a o = |Vl Flugy) — [VugplAetugy, — ug,)
where  Flug ;) =V - Vg,

For the [Vuf; 5| in front of F(uf ),

ar o —ult 3. T
- {i+1,7) {i—~1,5) (6,5+1) {(4,j—1)
[Vufipl = \/ 5 + 5 (4.6)

For the |Vuf, 5| in front of Ap(uf; ;) — uf; ),

Vg, 5| = /(upwind dyu)? + (upwind dyu)?

LR T ; Uisr iy Wi, .
£i,4) 2( 1,4) ﬁf ( (-1-13)2 ( 13))(,“&:’;) 'U’?i,j)) >0
Uhind) Y0y p (P01 %19 .

gt Al (TR, — ) <O

upwind dyu =

Similar for upwind dyu, this work is from [MO99].

This Euler-Lagrange equation (4.4) has advantage of only having V- and V
and for which we used half steps. For F' (u?;, j,.)) =V- f/’(?’ iy this V is a vector i.e.

37
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Figure 4.5: Grid for finite different scheme
V = (V',V?) and taking half steps for the difference, ( dropping index n )

Fluggy) =V -Vig =DV, + DV,

1 1 2
‘/('H'Q:J) I/(?' 21.?) + ‘/(2 3+2) V J_“)
Here this V! is,

VE = (a+ b)) = Bl (De(6lVul), Dy(s|Vul)) - (71, 7)} (1)
= (a+bs")(n") — @ (Dalr|Vul) 7 + Dy (k| Vul) 72)(r")

= (a+b:)(R)) — 2 (Da(kIVul) (=) + DylslVul) () =y)

we used iﬂ = 7.V and 7 is normal vector and 7' is fist component of it, 7 =

(nt,n?) = (IVul ) ) and 71, 72 are first and second component of tangent vector
7 o= (71, 72) = (]:leﬁ IVHI) Notice the index here is at point (i + 3,7), so for

K14 We took min-mod between (¢4 1,7) and (4, 7),

Kiyl gy = mAnmod(K(r1g), £.5)

where minmod(q, obeta) = Mﬁmﬁ—)mmﬂa{, 181)-
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For u, and D, at point (i + 1, 7), we used difference of points (i + 1,7} and (%, 5),
shown in Fig. 4.5,

— Bi41,9) TUG)
Unlor i) = = 7

D, (x| Va))] sy Vel ) - {86, 1Vale,)
e\ VU gt (i+d,5) T 2

For |Vu|;,; we used central differencing in z and y-directions as (4.6).

For u, and D, at point (i+ %, 7}, Fig. 4.5, we used central differencing of point
(3-+1, j+1), (#+1, j—1) and central differencing of points (¢—1, j+1), (i—1,7—1).

For better approximation of D,, we min-mod of these two central differencing,

Ulit1,5+1) ™ Bi+1,-1) U(i-1,j41) — U(i—l,j—l))
2 ’ 2

Uylat (i41,5) = manmod|(

and

Dy(”|vu|)|at (i+1,9)

(£lVul) 1,540 &V, i—1) (”IVHD(iu1,j+1)“{"|v“|)(1’—1,j—1))
2 ) 3

(4.7)

= minmod(
For V2, do the same for half point (4, j -+ %)

We used min-mod to get better results. Fig. 4.6 shows the comparison be-
tween different schemes which can be used for approximation for D, at point
(i + £,7). Original image without inpainting Domain is (a), this is the opti-

mal image for the result. Forward for (b) means using Central Differencing at

i+ 1 for Dy at point (i + 1,7), e, ZCHWEZEHLI=D - Apother commonly used

method is using average of ¢ + 1 and ¢ for point (i + £, j), this is shown is (c)

: . — . s + . . o . N .
average, —-tuH) SEILI-DTREIN 6D () min-mod is what was have used for

this chapter and the result shows, this has best edge recovery compared to other

methods.
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Original witheut D Forward

Average Min-Mod

Figure 4.6: Reason for using Min-Mod : (a) Original image without
inpainting Domain i.e. optimal case for the result. (b} using Central
Differencing at i + 1 for uy and D, at point (i + 3,7), (c) Using average
of Central differencing at ¢ + 1 and 7. (d) Using min-mod of Central
differencing at ¢ + 1 and ¢ equation (4.7). Using min-mod give much

clearer and closer to optimal case result.
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4.4 Analysis and Results

In Fig. 4.7, we analyze the results intuitively. The image in the left, Image 1, has
disconnected object, the image on the right, Image 2, has connected object and
the dotted line are the inpainting domain. Total variation of image 1 inside the

Image 1 Tmage 2

2wl

Figure 4.7: Comparing Total Variation and Curvature value to under-

stand why we get different results.

inpainting domain (dotted box), is (4w + 2d)M; where this M is the difference
between two color values (background color and the strip color). The same way,
Total variation of image 2 is (4w + 21)M;. So, (4w + 2d)M; < (4w + 20} M, if and
only if d < {. This means, if d < [ than Total variation for image 1 is smaller than
image 2, so T'V inpainting prefers result as image 1 then image 2. Now considering
the curvature, the curvature term [Vu|x? for image 1 is (4w + 2d + 4v) M,y where
M, is the curvature around the straight line and v is the value for the square
edge (circle in Fig. 4.7, image 1). And curvature term |Vu|x? for image 2 is
(21 + dw) My, ie. (dw + 2d + 4v) M, vs (21 + 4w)M,, this is same as 2d + 4v vs
21. If I is small (two bars are close), then (2d + 4v) > 2I, therefore, by enforcing
curvature it will try to connect the result. And if 1 is vary large i.e. (2d+4v) < 21,
then even with curvature term the result will be disconnected. However, this v
value is very big so minimizing curvature will try to circle out the sharp square

edge to circular edge.
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Original Image TV inpainting ; bfa =0

bla=10 bfa=20

Figure 4.8: Ratio b/a : (a) Original image with Inpainting domain, (b)
TV Inpainting (b/a = 0} (c¢) b/a ~ 10 (d) Curvature Inpainting b/a ~ 20.
Ratio b/a tell how close you want to get your result either closer to TV

or curvature Inpainting.

We can also see similar result by changing values for constant ¢ and b from the
equation (4.5). There are three constant to choose, Lagrange multiplier A, TV
inpainting term o and-curva,ture inpainting term b. X is the amount for enforcing
outside information of the inpainting domain, therefore, when there is no noise
we can use as big A as possible and if we do have some noise outside I we can
enforce A less. The constants o and b is for the amount we are enforcing TV
term and curvature term. Let’s consider the ratio b/a. If this b/a is close to 0, it
is TV inpainting, and if b/a is big, it is more like curvature inpainting. For our
experiment, even for curvature inpainting, we’ve used small ¢ instead of ¢ = 0.
This speeds up the convergence and gives better results, since minimizing Total

Variation helps getting ride of the noisy gray inpainting domain D. For most of
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our experiment we have used same a, b and )\, the ratio was about b/a ~ 20.

Fig. 4.8, 4.9 shows, relation between a and b i.e. ratio b/a.

Original image with Inpainting domain bfa=0

Y

bfa=20

Figure 4.9: Ratio b/a (a) Original image with Inpainting domain, (b)
TV Inpainting (b/a = 0) (¢) b/a ~ 5 (d) curvature Inpainting b/a ~ 20.
Ratio b/a tell how close you want to get your result either closer to TV

or curvature Inpainting.

We have improve TV inpainting by adding curvature to our minimization
function. First, we can recover the result connected, as in Fig. 4.10. Using TV
inpainting, it will take the values of the bigger area connected to the inpainting
domain. By enforcing the curvature term, we can recover the image connected,
since the curvature is very large near the shape edge (Kink), so by minimizing it
will try to avoid having sharp kink. Another result can be seen in Fig. 4.11, from
the original image, the result could be three triangles but also one big triangle.
Freedom of choosing constant a, b allows to get two different results depending

on the original image Fig. 4.12
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Original image with inpainting demain Inpainting demain

TV inpainting Curvature Inpainting

Figure 4.10: From the original image it is reasonable to think the black
line is connected, but TV inpainting will recover to disconnected result.

But curvature inpainting will recover as what we expected.
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Secondly, adding curvature gives better results in recovering circular images,
Fig. 4.13. Using TV inpainting, it prefers straight results which minimizes Total
Variation. However, by curvature inpainting, it tries to keep the curvature for

the inpainting domain, recovering circular image as we expect.

Finally, Fig. 4.15 and Fig. 4.16 shows more challenging images, recovering a

curve instead of straight line or disconnected image.

4.5 Conclusion

By adding the curvature term to the functional, and using Fuler’s Elastica model,
we are able to get connected and curved results, as shown in previous section.

This is a variational inpainting method improving TV inpainting.

We are able to express the Euler-Lagrange equation using Tangent and Normal
vectors, which allows to use simple numerical methods. However, the numerical

computation is very slow, and improvements can be farther studied.
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Original Image Inpainting Demalin

TV Inpainting Curvature Inpainting

.
e 2k

Figure 4.11: From the original image the result could be three small
triangles but also one big triangle. By TV inpainting, you'll get three

small triangles and by curvature inpainting, one big triangle.
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{a) Originat Image (b} TV Inpainting
N T E T d ok ¥ F R 1

T T R 1 F O T T %

A & & 4 &k o A b Ak &
A & & & A s & A&

(c) Original Image d} Curvature Inpaintin
p: 9

A A A

Figure 4.12: We can choose to use T'V inpainting or curvature inpainting
for Fig. 4.11, depending on what Original image is. If (a) is given, we
use TV inpainting to get result (b), and if (c) is given, we use curvature

inpainting to get result (d).
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Criginal Image Inpeinting Domain

TV Inpainting Curvature tnpainting

Figure 4.13: From the original image we expect the results to be circle,
but by TV inpainting it recovers to straight line. curvature inpainting,

gives circular result closer to what we expect.
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Original kmage inpainting Domain

TV Inpainting Curvature Inpainting

Figure 4.14: From the original image we expect the result as perfect
square. By using curvature inpainting, the results is improved then TV

inpainting.
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Original Image Inpainting Damain

>

TV tnpainting Curvature inpainting

TANA

Figure 4.15: By using second order inpainting we improve the result.

Result is connected with curve as expected.

(a) Original Image Inpainting Domain
s,
TV Inpainting Second order Inpainting

/NN

Figure 4.16: Even for thin curve, second order inpainting works. Also

gives better result then first order disconnected result.

50



CHAPTER 5

Landmark based Inpainting from Mulitiple

Views

5.1 Introduction

Inpainting refers to the specific image restoration task of reconstructing an image
with missing or damaged regions. For example, when part of a painting is dam-
aged with a crack or a part of a photograph is covered by some letters, inpainting

algorithms use local information to fill in the crack, gap and undesirable letters.

Digital inpainting was first proposed by Bertalmio et. al. [BSC00], and many
approaches followed. There are some approaches based on solving PDEs including
Masnou and Morel’s level line based disocclusion [MM98] and Chan and Shen’s
TV minimizing inpainting [CS01a]. More literature can be found in [BBCO1,
CKS01a, CS01b, CS01c].

These inpainting methods only make use of local information. Therefore, the
missing region needs to be small enough to have good results. Iig. 5.1 is one
of the results from curvature based inpainting [CKS0la}, which is an improved
version of Total Variation minimizing inpainting [CS01a]. With Fig. 5.1 (a), it is
reasonable to think the object is a perfect square, however, even with curvature
inpainting in (c), it is not possible to recover the square corner. In order to

recover the corner, global information or additional shape information is needed.
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These are the problems we are interested in this chapter.

(a) (b (c)

10

20 20 20

30 30 30

40 40 a0
10 20 30 40 10 20 30 40 10 20 30 40

Figure 5.1: (a) is the original image with the square noisy area as the re-
gion to be filled, (b) is the result using Total Variation inpainting [CS01a)],

and (c) is the result using curvature based inpainting [CKSO01a).

We are proposing a problem with large missing domains such that it is not
enough to recover the region only using local information. However, the recovery
process does assume there is additional information available. This is reasonable
since when humans look at an image with a missing domain, we automatically
recover image without any difficulty. Asin Fig. 5.2, it is reasonable to think that
(a) is an image of a checkerboard box, therefore, (b) can be used as the reference.
In addition, when there is a damaged image of a known object or a building,
similar photo can be used as a reference. An image of reconstructed building (d)

can be used to retouch the same building in image (c).

There are some restoration and inpainting studies done for movies (image se-
quence). Guichard [Gui98] introduced AMG model to deal with movie images to
successfully denoise and inpaint movies. Kokaram et al. [KMF95a, KMF95b| have
studied detection and interpolation of missing data in image sequences. Chanas
et al. [CCBO1] proposed using 3D diffusion for recovering image sequences, con-
sidering time as the third axis. However, in our proposed problem, the reference

image and the damaged images are not assumed to be in any sequence. We are
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Figure 5.2: (a) has a gray missing region, and (b) is an image of the
same object in different scale. (b) can be used for inpainting image (a).
(c) and (d) are images of the same building taken at different times. In
(c) the building is under construction and (d) is after the construction is

completed. {d) can be used as reference image to replace the building in

(c)-

allowing the additional image to be distorted, image from any different viewpoint,

or image of similar object, not the same.

As one possible method, we propose using Landmark matching, interpolation,
and inpainting. Landmark matching is often used in image registrations, image
morphing, and shape matching. In this way, we can enforce the relative position
information explicitly, allowing the objects to move far and to be distorted. After
identifying high variance points, the matching of these landmarks is achieved
by using modified shape context information [BMP01]. After the (matching)

correspondence is assigned for each extracted point, we interpolate the transform
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information to the whole image by thin plate spline [BMP01, Pow95, Wah90]. For
the final step of inpainting, we copy the information from one image to another

using the interpolated transformation.

One alternative method in the literature for point extraction to affine trans-
formations is RANSAC [FB81]. RANSAC will automatically extract points, pick
a small number of points from that set of extracted points, get the affine trans-
formation, and then choose the best affine transformation which minimizes the
difference. This method is useful for the case with a small number of outcast
points and for affine transformation. However, with RANSAC, many different
affine transforms need to be tested to get the best match. We carefully looked
into each steps, points extraction, matching and interpolation to better under-
stand the image information and carefully take care of the inpainting region. In
addition, when the object is deformed it is better to add spline interpolation

together with affine transformation.

The outline of the chapter is as follows. In Section 5.2, we present the model
formulation and explain why optical flow analysis is not used. In Section 5.3, we
describe the method in detail. Examples of reconstructed results are shown in

Section 5.4, followed by concluding remarks in Section 5.5.

5.2 Problem Formulation

In this chapter, we assume there are only two images: one image, [, with missing
information and another, Iy, with the information missing from ;. Let 11, I :
0 — R, be those two images, where @ C R? is the image domain. I, has a
domain D representing the missing information. This D is called the inpainting

domain, and we assume it has already been identified (Fig. 5.3). I, is the second
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image (reference image), supposedly undamaged.

(a) )]

Q Image Demain

Figure 5.3: Setting of the problem : (a) is I, the original image with D
as the inpainting domain. (b) is I, with a complete object information,

which can be used to inpaint [;.

We are looking for a map g : Q — R¥ which satisfies,
L(Z) = L(g(Z)) YzeQng(Q). (5.1)

We can find this g as the minimizer of a functional for measuring how well (5.1}
is satisfied. Adding the regularizing term to the minimizing Total Variation of g,
the functional becomes

g{-) = arg minf

o\D

L) - L(e(@)]du(@) + f Vildu@  (5.2)

One approach to solving (5.2}, when the images come from a movie sequence,
is optical flow. Equation (5.1), and the first term in equation (5.2),can be seen as
the brightness constancy constraint in computer vision. When the two images are
from a movie sequence and are consecutive, we can define Iy, I to be I, = I(#, 1)
and I, = I{g(Z),t+1), where ¢ is time. In the simplest case when g is of the form
g{#) = E+1, the vector field @ is called the optical flow field [BB95, BIK01, HS81,
KTB96|, and it satisfies the following optical flow equation : VI-#+1; = 0. One

approach to this problem can be computing u outside the inpainting domain D,
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and enforce the smoothness of « throughout the whole domain

#(:) = arg minf |V -4+ L|du(Z) —|—/ |Vildu{E).
O\D Q

Then, once the vector field @(z) in 2\D has been filled in, the restored image
can be obtained as I(t, %) = I{t + 1,7 (z)), V = € D where ¢(Z) = T + 4(Z).

Using optical flow might work for movie sequence, when [; = I(t} and I, =
I(t + 1) are not very different. However, optical flow is not very useful for large
domain inpainting problems when the two images are very different. One major
disadvantage is the local aperture problem: “Flow” related methods depend only
on local information, not on global position information (see Fig. 5.4). If the
object moves too far, even with multiscale analysis [KWM99, LKW94], it may be
difficult to capture the right positions. In addition, in order to get the directional
information with discontinuities, sophisticated numerical schemes like min-mod

or Eno-like scheme are needed to better capture the accurate flow estimation.

{a) () (e}

10

20

BT

a0 3¢

0 20 3 10 20 30 10 20 30

Figure 5.4: (a) is I, (b) is Iy and (c)} is optical flow. From I; to Iy,
the ideal directional field should be uniform arrows of length 10v/2, in
down right direction. However, calculated optical flow result (c) is far

from what is expected.

In addition, the g from equation (5.2) could be a finite-dimensional group,

therefore, there may not be a need to regularize with respect to g. The second
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term from the cost functional, equation (5.2), can introduce a bias towards small

displacements.

In our approach, instead of using the optical flow model, we directly use the

translational model and minimize

[1(Z) — L(g(2))} (5.3)

and get g independently. To find the appropriate g for equation (5.3), we use
landmark matching, and spline interpolation for regularization (thin plate spline
approximation). Landmarks are the points extracted from the images which
have the directional information and thin plate spline is needed to extend those
directional information to the whole domain. This is equivalent to minimizing

the following functional:

L&) — L{g(®)ldE + [ [02.(8) + 62, (&) + 62, (5)]dE.
(5.4)

g(-) = arg min/

Landmarks
The first term is the fitting term for landmark matching, and the second regu-
larizing term corresponds to thin plate spline interpolation. In our actual im-
plementation, instead of directly finding ¢ by solving the minimization problem
(5.4), we decouple the two terms and first identify the landmark correspondence

separately and then use this information for the spline interpolation.

5.3 Description of the Method

In this section, we describe each of the three main phases of our method: land-

mark matching, interpolation and inpainting.

First, any method for extracting points can be used for landmark extrac-

tion. After the landmark points are extracted, we carefully match the landmarks
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between I, and [,. We use shape context information as well as intensity in-
formation to match the points. The shape context information contains global

position information for each point relative fo all the other extracted points.

The number of extracted points are small compared to entire discrefized image
domain; yet, these are the only points with correspondence information. There-
fore, we need to interpolate the directional information to the whole domain.
This is similar to sparse data interpolation, for which radial basis functions are

commonly used. We use thin plate spline for this interpolation.

After determining the interpolation, which gives the transformation for every
points in the image domain, we finally copy the information from one image to
another. When there are more than one object or the object and the background
are moving in separate direction, mask of the object is needs to be identified to
get better results. Also, local inpainting methods on I; can be combined with

the copying information from I; using interpolated transformation.

5.3.1 Landmark Matching with Modified Shape Context

Landmark Extraction : There is a significant literature on landmark extrac-
tion, and any effective method can be used for this purpose. We tried to use
salient features like corners, intersections and high curvature points by finding
high local variance points and thresholding it with some constant. However,
points near the inpainting domain D of the damaged image I; can be mistaken
as salient features. Therefore, we set the values on I to be zero which prevents
the points next to the inpainting domain from being extracted as feature points.

We extract the high variance points by thresholding the following V' with some
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constant,

Vi, ) =/ Spen Xk, D) - x( 3) - Tk, 1) = L6, 5))?
L (4,7) € Q\D
where Yy = )
0 (4,5} D

and N={({+1,7),(i—1,7),(,7+1),(j— 1}

Shape Context : After the landmark extraction, we need to incorporate the
global positional information to match landmarks. Therefore, we assign corre-
spondence using modified Shape Context profiles. Shape context was introduced
by Belongie et al. [BMP01], to incorporate global information of shape to better
match and compare shapes. First the shapes are represented using points along
the boundary. Then for each point p, the shape context is calculated storing
relative positions of other points to itself. The simplified version is illustrated in
Fig. 5.5. From the sectors in (a), the number of points contained in each sectors
are stored at each corresponding cells in (b). By using histogram comparison
of these profiles for all the points, the authors were able to find correspondence

between the points from two shapes.

Modified Shape Context : Despite the heavy amount of calculations and
much information to be stored, using relative position information is useful in our
problem. Therefore, we modify the shape context to better serve our purpose.
First, since we are using only salient features, for I; and I the numbers of points
extracted are much smaller than in [BMP01]. Therefore, instead of 60 cells in
a sector, we only use 6. In addition, we add intensity for better matching the
correspondence. (Belongie et al. [BMP01] did not use the intensity information.
The points are representing the boundary of the shape and intensity information

is not necessary for shape matching.)

As an illustration, let H, be the shape information for a point p = (%, j);
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Figure 5.5: (a) sector used in [BMPO1]. Each sector in (a) corresponds
to one square cell in (b). The number in each cell in (b) is the number
of points in each corresponding sector. (In [BMP01], histogram is used
instead of the number of points.) (c) is the sector used for our shape
context, for point p, the profile vector is H, = (I(p), Av(p),0,0,1,1,1,0).
(The third through eighth components store the number of points in the

each sectors.)

H, is a vector of size 8. The first component stores the intensity at point p,
Hy(1) = I(p), and the second component H,(2) = Au(p) stores the intensity
average of 8 neighborhood %Z(k,z)eA Ty where A= {(i—1,7-1),(i = 1,5),(t —
Li+1),(5,5 =1}, +1),G+1,5—-1),(E+1,7), e+ 1,7+ 1)}. The remaining six
components are shape context like information storing the number of points from
each corresponding sections. For example, from Fig. 5.5(c), the profile for point
pis H, = (I(p), Av(p),0,0,1,1,1,0).

After each profile H,, for all extracted points p from Iy, and each profile H, for
all extracted points ¢ from I, are calculated, we find the best match by comparing

the vector profile and comparing the distance. For each point p; from 77, we find
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the point ¢; from [ which minimizes the following energy:

1| Hy(pi) — Hy(gi)| + callpi ~ gsl| + eallf(pi) — flay)ll
(5.5)

1
Pi~ w5 2N, P

Mamje:\rp{pj—;%; 2wy pi}

where f(p;) =

The first term is an L'-norm for comparing vector profile, the second term is a
regular Euclidean distance L? for keeping the points from moving very far between
I; to I;. The third term! is for comparing the relative distance of points in I;
and ;. The constants ¢1, co and ¢z are weights chosen to prevent the problem of

having more than one minimum for each point.

After the best match is found for each point p; in Iy, it is stored as Maich =
{(pi, q;)}, 1.e. point p; is matched with point ¢; in J5. The number of correspon-
dence is small compared to the whole image domain, since we only extract a small
number of salient features, and not all the points extracted are matched between
I, and I,. Therefore, we need to interpolate the information to the whole domain
(next section). Defining U(p;) = ¢; — p; to be the transformation from point p;

in I; to point g; in Iy, the transformation U(p;) is assigned.

Remarks

1. Depending on the size of the image, 'block’ instead of landmark point may
be used. Size of the block needs to be determined, which will guarantee all
the points inside the block move to same direction. In addition, when the

two images are taken from movie sequence, information of extracted points

1 f(p1) is the relative distance from point p; to the center of all p;s, i.e. NL,, > W, Bi- This is
scaled with maximum distance from center to furthest extracted points. Therefore, 0 < f < 1.
This term is effective when the object moves very far, i.e. all the points move far, yet, keeping
the similar distance relative to each other. The scaling term Maz;en, {p; — NL,, > N, P} in the

denominator is for scale invariance.
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from I can be used to better extract the points from 1.

2. Since I; have a large inpainting domain D, it is efficient to work with a
smaller number of extracted points. For example, in Fig. 5.6, let the point
p in I; be the same point with point ¢ in I,. If we extract many number of

I R ¥ SRS, Y. SO S SUSU . SRS N e~ tan . R, [ S | P
points, {1 is missing many points around the inpainting domain, thus, t

Kt
o
(2]

point p and ¢ will have very different shape context profiles and result in
the point p not corresponding to the right match g. Therefore, it is best to

work with a smaller number of points.

(a) )] (c) (d}

P q
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Figure 5.6: (a) is I; with a gray inpainting domain and (b) shows land-
marks extracted from Iy. (c) is I and (d) landmarks from I. The poing
pin (b} and ¢ in (d) are the same point from the object, therefore, need
to be matched. However, with too many landmarks extracted, the shape
context information will be highly different from point p to point ¢. It is

better to extract a smaller number of landmarks.

3. For the matching landmark correspondence, in some literatures, the Hun-
garian method is used. From two sets of same number of points, by trying
possible permutations, the method looks for the best match which mini-
mizes a certain energy functional. However, in our problem the number
of points extracted from the two images I) and I are most likely different

due to the existence of D, also adding dummy points will result in unstable
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solutions. Therefore, instead of using permutation, we pick the best match
for each landmark p for I, that is, for each p, all landmarks g from I; is
compared and get only the best match. Not all points will necessarily be

assigned but only the best match.

A 9. % & TR, S 1. ~ o~ [ S, Iy -~ - . o e e e e an
. YY1EI PICKINE the best match for each lc ndums.nb, there are cases when

3

one point p; from I; corresponds to multiple ¢’s from I (or vise versa) or
due to occlusion, the appropriate match gpigne from I is hidden and an-
other point gypong is matched for the best correspondence to p. Therefore,
we also match the points from I, to I, as well, i.e. get both MaichP =
{(pi,2;)} and Match@ = {(gx,p1)} and use the correspondence which in
both sets of matches (I to Iz, MatchP and from I to I, Match@). For
example, when the set MatchP includes multiple correspondence and a
wrong correspondence {(pi1,q1), (P2, 41), (P3) Gurong) }» the set MatchQ in-

cluding {(g1,P1), (Guwrong, P4)} Will help eliminate the incorrect correspon-

dence (p2, q1) and (P3, Gurong)-

. From I; to I5, when the object and background are moving independently,
the object and background points need to be separated to get better trans-
formation. When the object moves far away in a non-uniform background,
one transformation is not enough, Fig. 5.7 illustrates this point. Therefore
after the landmark extraction, we need to separate the points into two
classes : object points and background points. One way is to use intensity
similarity and group the them to object points and background points, then
find the correspondence only from each group (of same or similar intensity).
For some cases, when the objects and the background have similar intensi-

ties, the landmarks may need to be manually identified and separated.
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Figure 5.7: (a) is I; with the irregular gray area as the inpainting domain
and (b) is I5. The checkerboard is the object and the gray bar with
horizontal strips is a part of the background. (c) is the recovered I; using
(d) and (e) as the landmarks for I; and I respectively. (f) shows the
transformation /. Since the background is not uniform, if we use one
transformation for all the extracted landmarks, the spline interpolation

(f) gets highly distorted and the result in unsatisfactory recovery of I7 in

(¢).

5.3.2 Affine Mapping and Interpolation

Compared to the image domain {2, the number of extracted landmarks is rela-
tively small, yet only the matched landmarks have directional information U{p;).
Therefore, we need to interpolate the matched point directions to the whole im-
age domain. This is similar to sparse data interpolation, for which radial basis
functions are commonly used. In particular, we used thin plate spline for this

interpolation.

Thin plate splines [BMP01, Pow95, Wah90] are commonly used for smooth
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interpolations. They minimizes the bending energy of the embedded function:
E = [o[fo(Z) + f2,(&) + f7,(Z)]dZ. Solving this thin plate spline is equivalent to
interpolating with bi-harmonic radial basis functions [Pow90]. We used K(r) =
r?logir+7| for the radial basis function. Since U(p;) is a 2D directional vector, thin

plate spline interpolation is applied twice to each x and y coordinates separately.

The known information is U(5;) : B2 — R? which have directional information

from point p; in I; to I;. The interpolation function is given as :

ki3

UZ) = AZ+t+ ) wK(E - pl),

=1
where n is the number of correspondence, # is the point (z,%) in I; and A, t,
and w; are unknowns. We first calculate A and t, independent of w;, i.e. solve
U(p;) = Ap;+t using only the known values of U(p;) and p;. ( We used Gaussian
elirnination and, when the matrix is not square, the solution in the least squares
sense.) Then the weights w; are calculated using A, t, K and U(p;) for x and y
coordinates separately [BMP01, Pow95, Wah90!.

5.3.3 Inpainting - Filling-in The Information

Once the transformation U/ is found, what remains is copying the information from
I, to I,. This U is the transformation from 7 to I, defined by the interpolation

of U(p;). The new recovered image is

Ingw(Q) = (1 —x») L1 + x» L{-U)

0 (i,5) € O\D
1 (,5)eD

where xp =

Xp is the characteristic function of D. The first term is to keep the information

of Q\D from image I; and second term is to copy the missing information using
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inverse transformation —U from image I;.

In some cases, the recovered image might have some intensity discontinuity
due to simply copying the information. For such cases, combining local inpainting
techniques will help improve the results. We can incorporate Total Variation(TV)
inpainting in addition to the transformation interpolation by minimizing follow-
ing:

alf V1| +a2/ -1 +a3f I = L(~U@))].
s} Q/D D
The first term is the TV minimization enforced in the whole image domain .
The second term is the fitting term so that the image outside the inpainting
domain /D will be close to the original I;. The third term is the transformation

inpainting, which copies information from I, to I;.

As in Remark 5 of Section 3.1, when the background is non-uniform and mov-
ing independently to the object or there are multiple objects moving in different
directions, one transformation is not enough to capture the different movements
of the object and the background. For these cases, we need to consider the
object and the background {or multiple objects) separately. We first separate
the extracted points into background points and object points, then get two or
more different transformations. In this way, we can insure better transformations
corresponding to appropriate movements of the objects and the background sep-

arately.

With two (or more) different transformations, when we fill in the information,
extra caution is needed. The inpainting domain should be separated into two re-
gions, corresponding to the object and the background, see Fig. 5.8. Some tech-
niques like optical flow segmentation or motion estimation [KD92, PD99, SB95]
can be used for this purpose. However, these techniques are computationally very

expensive and we prefer to use a heuristic method that gives good experimental
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Figure 5.8: (a) is I; and (b} is ;. When the inpainting domain in
(a) covers both the object and the background, extra caution is need
to fill-in the region with appropriate information either with the object

transformation or the background transformation.

results. We use, segmentation [CV01] or masks of the object in f,. With this
mask of the object, we use the object transformation Uy; and inverse transform
this mask back to I,. This transferred mask shows the approximated object re-
gion in Iy, also inside the inpainting domain D. Therefore, the transformation

inpainting for the inpainting domain D becomes,

INEW(D) - Xobjecsl’lD 12(_Uob3) + Xbackg'roundﬂD IZ(—_UMC)

copying the information from the object and the background separately — using
two separate transformations Us,; (object transformation) and Uy, (background

transformation).

5.4 Experimental Results

We presents sonme experimental results in this section. Some results are simple
synthetic objects over an uniform background, some are objects in non-uniform

background, and some examples using real images are presented.

Fig. 5.9 shows a couple of results when Iy, (a) and (f), are a textured box

with a large inpainting domain. The large inpainting domain covers most of the
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texture as well as one corner of the box. The first row shows results using (c) as
reference image and the second row using (h). This object in (c) is in different
position and the object in (f) is in different scale and position. The recovered
results (e) and (j) show that the method can recover the checkerboard texture as
well as the missing corner. By using modified shape context information without

distance sectors, the scale change is automatically taken care of.

(a) (b} (c) {d} &)
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Figure 5.9: (a) is I; with the gray inpainting domain covering most of
the texture and one corner of the box. (b) is the landmarks from I,
Using (c) as reference image I, and (d) as landmarks of I, the recovered
result is shown in (e). Images (f) to (j) shows another results using (h)
as Iy. The method successfully recovers the texture and the corner of the

box.

Our method can alse be used for missing shape matching. Fig. 5.10 shows
an example of how a given image is restored using the reference image 7. From
Fig. 5.10 (a), if we use local inpainting method, the result will look like an arrow
heading up to the right corner. Instead, by using additional information from 15,

star shape can be recovered, even though the star in I5 is different from the star
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in I;. However, as in Fig. 5.11, when the reference image, I», is very different

from I, landmark matching fails to find a good correspondence. Fig. 5.11 (c)

shows a different result compared to Fig. 5.10 (c¢). This is reasonable, since I

and I, are very different, and hard to be seen as the same object.
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Figure 5.10: {(a) I; can be
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60

{c)

80

recovered relatively similar to I; in {c). (e}

is the recovered result. (b) and {(d) are landmarks from I, I respec-

tively. The star in I; is different from the star in 5, however, the method

recovered the result (e) as a star shape.

In Fig. 5.12, 5.13,and 5.14, it shows results for images with object and back-

ground. After the landmarks are extracted, the points are separated into object

points and background points. {The black dots are from the background and

the O’ points are from the object.) In Fig. 5.12, the checkerboard is in different

position {c) and in different scale (h) in steady background. Using two separate
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Figure 5.11: (a) is the same I; as in Fig. 5.10. However, due to the
highly different f; in (c), the result (e) is unsatisfactory. (b) and (d) are

landmarks from I, I respectively.

transformations for the object and the background, the results successfully re-
covered the checkerboard texture and the corner. The stars in Fig. 5.13 (a) and
(¢) are different, and the background in more complicated. However, the method
recovers the object similar to star in [, and the text background is success-
fully recovered using information from I,. In Fig. 5.14, the stars in (a) and (b)
are very different and the background is also shifted independent to the object.
Both the object and the background are successfully recovered, using object and

background transformations.

Next, we show some experiments using real images. Fig. 5.15 shows images of

UCLA Royce Hall, (a) with couple of white disks as inpainting domains. Using
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Figure 5.12: Two results are shown for inpainting an object moving in
a non-uniform steady background. In the first row, (c) shows I with the
checkerboard box moved, and the second row, (h) shows the I, with the
object moved and scaled. In Iy, (a) and (f), the large inpainting domain
covers most of the checkerboard texture, one corner of the box as well
as some part of the background. Using separate transformations for the
object and the background, the inpainted results successfully recovered

the texture and the corner.

(b), an image of Royce Hall taken from different time and different viewpoint,
as reference image, (c) shows the recovered result. Missing windows at top left
corner of the building is recovered and the three missing pole in front of the
building is also added using information from f,. In Fig. 5.16, I; and I, are
two photo of same person taken at different places and at different times. With
local inpainting methods, the missing eye can not be recovered. However, using
information from [, the missing eye and the teeth are successfully recovered. In
addition, in Fig. 5.17, two photos are of two different people, taken at different

time and place. However, using the information from the other photo, I; can
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Figure 5.13: The result with deformed objects are shown. (a) Iy, (c)
L, (b) and (d) the landmarks from I; and Ip respectively, and {c} is
the recovered result. The object in I; and I, are in different positions
and deformed. The method recovers the object according to the given
object in Iy, and text background is successfully recovered as well, using

information from I5.

recover the shape of the eyes. However, due to the intensity difference between
I, and I,, the recovered results show some discontinuities, post processing with

local inpainting method will help improving these results.

We can apply this method to modify the undesirable photos. In Fig. 5.18, [;
and I, are taken in the year 1998 and 2001 respectively (at Yonsei University,
Seoul, Korea). I; has friends but the building is under construction. Using the
whole building as inpainting domain D, I; is recovered using the more recent pic-

ture, fy, of the completed building. The two images are taken from two different
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Figure 5.14: (a} I1, (b) L5, (¢) recovered result, and (d),(e) the landmarks

from I, and I, respectively. The object is in different positions highly

deformed and the background is also moved in a separate direction. Both

the object and the background are successfully recovered.

time and positions. In Fig. 5.19, 5.20, I} and I, are taken consecutively. In I,

the person in the middle has an odd facial expression and in I, the person in the

middle is slightly occluded by a person from left. Using [ as reference and using

the whole face as the mask to be inpainted, /; can be modified.

5.5 Conclusion

This method allows the missing region to be significantly larger compared to

local inpainting methods, since there is additional information available. Using

the modified shape context method [BMPO1]| helps to incorporate the global

shape information. Thin plate spline includes affine transformation with spline
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interpolations, which help to find transformations for distorted objects from one

image to another.

Given a good set of landmarks, this method will work well, even when the
two images I and I, are quite different and with significantly large inpainting
domains. The method is scale invariant and rotational invariance can be also

achieved by rotating the shape context sectors.

One shortcoming of the method is in getting appropriate landmarks. Identify-
ing feature points may not be easy, and sometimes manual identification may be
needed. Our method is as accurate as the landmark matching is accurate. How-
ever, when the points are detected, using our modified shape context method
gives good correspondence making use of the global information about the object

and image.

For further studies, we can combine this method with segmentation to better
capture the texture of the copied quality. When copying the information, the two
images’ texture or lighting may be different, therefore, by segmenting the objects
in both images and modifying the intensity information inside the region, better

restoration may be possible.
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Figure 5.15: Application to a real image. (a) I, with white inpainting

domain, {b) I3, (¢) recovered result, and (d),(e) the landmarks from I

and I, respectively. Note that, J; and Iy are taken in different time and

from different viewpoints. However, the missing windows at the top left

of the building are recovered and three poles are recovered.
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Figure 5.16: Application to a real image. (a) I, (b) I, (¢) recovered
result, and {d),(e) the landmarks from I; and I, respectively. Note that,
I, and I, are taken in different place and different time. However, the

missing eye and the teeth are successfully recovered.
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Figure 5.17: Application to a real image. (a) I, (b) I3, (c) recovered
result, and (d),{e) the landmarks from I; and I5 respectively. Note, I
and I, are photos of two different people. However, information from 7,

can be used to recover .
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Figure 5.18: (a) I, (b) I, (c) recovered result. /; is from the summer
of 1998 when the building was under construction, and [, was taken in
the summer of 2001 when the construction is completed. By keeping the
people from the old photo, only the building is successfully replaced by
the new building. We used the whole building as inpainting domain in

L.
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Figure 5.19: Some photos with odd facial expression can be modified.
The middle person in Iy (a), is modified using the other image with
smiling face Iy in (b). (c) shows the result which is modified from Iy
middle person is now smiling. We used the whole face as inpainting

domain in [;.
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Figure 5.20: This is a close-up of Fig. 5.19, showing detailed recovered
result. The mask refilled was the whole face. Comparing I;(a} and (c)

result, the eyes are opened and the mouth is modified according to I, in

(b).
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CHAPTER 6
Error Analysis for Inpainting Probiems

6.1 Introduction

Ever since digital inpainting was proposed, many successful studies followed on
different approaches and new methods. However, most inpainting domain is
narrow or small enough to get good results and the the local inpainting results
depend on the shape of the inpainting domain. As shown in Fig. 6.1, the two
images (a) and (b) have same total area of inpainting domain (10875 pixels for
each inpainting domain), however, the result for the local inpainting results are
quite different. (c) is successfully recovered, while {d} is blurry even after many
more iterations. (This experiment is done using TV inpainting method (4.1).)

The inpainted results are depended on the local shape of the inpainting domain.

In addition, the error bound is highly dependent on the image space « is
assumed to be in. We investigate two cases, first assuming image space is smooth,
u C C?, and using Harmonic inpainting and secondly for for binary image u with
TV inpainting. For the smooth function, we use Green’s function and show the
error is depended on the local thickness. For the binary function u, we use level
line analysis to show the error bound is depend on the distance between the level

lines.

The outline of the chapter is as follows. In Section 6.2, we investigate the the

case for smooth function, # C C? and harmonic inpainting, with review of some
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Figure 6.1: {(a) and (c) gray area are the inpainting domains, both have
exactly same area of inpainting domain (Pixel of 10875) (c) and (d) are
the inpainted result of (a) and (b) respectively. {d) needed much more
iteration than {c), still the result is not as good as (c). This due to the

shape of the inpainting domain.

properties of Green’s function. In Section 6.3, we will consider binary image u

by level line analysis, followed by conclusion in Section 6.4.

6.2 Smooth Function u € C?, Harmonic Inpainting

Let u be a smooth image function defined on a 2-D domain 2, and D be the
inpainting domain. Let A be the Laplacian operator, Au = % + ng";‘. Then for

C? functions u and v, the Green’s Second Formula on D is

/D('U,Av — vAu)dzdy = / (u% — va—n)ds (6.1)
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where, 7 is outward normal direction of D, and s arc length parameter of 9D.

Let G(z,2z) = —v(2) be the Green’s function for the grounded Poisson

equation on D). Then G satisfies,
—AG = 8(z — 2,), G\ =
8D

Then by (6.1), Green’s second Formula,

/D (WA(-G) - (~G)Audsdy = [ (ua(gf) - (—G)g—Z)ds

aD

w(z,) = /a e (s))%dw f Gla 2)(—Au(z))dz  (6.2)

For smooth function u, we assume we use Harmonic inpainting, which is using

variational model with H! regularization,

minf IVv||%dz such that wv|,p = ulgp.
D

On the other hand, the first term in (6.2) is exactly the harmonic extension
of u along the boundary 9D, which is equivalent to harmonic inpainting result.
Therefore, for harmonic inpainting in 2D, the first term doesn’t have any error
and the error bound only comes from second anti-harmonic term [CS01a]. Using
the Lemmas and Theorem from [CS01a], we farther investigate the property of

the second term, [, Gz, 2)(—Au(z))dz.

Lemma 1 (Comparison Lemma) Suppose D C Dy, and G1(z,, z) and Ga{z,, 2)

are their associated Green’s functions. Then for all z,,z € Dy,

G1(20, 2) S G20, 2).
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Lemma 2 Suppose B is the unit disk centered at 0, and G1(z,,2) its Green’s
function. Then

1- |30|2

[ G1(2o, 2)dxdy = —
B

for all z, € B;.

Theorem 1 Let d denote the diameter of a domain D and G(z,, 2} the associated

Green’s function for the Poisson equation. Then
2

/ G(z,, z)dzdy < ff__
D 4

This theorem is proved using Lemma 1, 2. In addition, since v is smooth function,
there exits M such that [Au(z)] £ M, for all = € D. Therefore, for harmonic
inpainting in D, Chan and Shen [CS01a] showed, for any z, € D,

2
llup — ]| < M f G20, 2)dz < Mf . (6.3)
D

However, this d in equation(6.3) is the diameter of the inpainting domain
which is big enough to cover whole inpainting domain. Therefore, for the case
like Fig. 6.2, image (b) have bigger d then that of (c}, while the inpainted result
(d) looks better in (e). (d) is after 10 iteration, while {e) is after 2000 iteration.

(2392 pixels for each inpainting domain.)

Therefore, we refine the error depending on the local shape of the inpainting
domain. First, by using ellipse, we prove when D can be covered with ellipse, the

error bound can be reduced.

Lemma 3 Suppose By is an ellipse centered at 0, %‘; 4 %25 =1, where b > a

(otherwise rotate), and Gy(z,, 2) be it’s Green’s function. Then

2.2
Galzo, 2)dady < Ve
B2 2
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Figure 6.2: Example of Harmonic extension: (a) Original image. In
(b) and (c), the white area are the inpainting domain. (d) and (e) are

inpainting results for (b) and (c), respectively. (d) have better result than

(e) compared to original image in (a).

/'Tk
nd

Proof 1 Consider a Poisson equation on ellipse Bs,

—Au=1, u = (.
8B;

Then the unique solution becomes,

z? 2 e%. 2 2
l—b—g—a—z_a —b—g.’l’: -y

u(z) = = 6.4
() Z+2 28 +2 6.4)
Meanwhile, from Green’s function,
u(zo) = GQ(zD,z)(_Au(z))dmdy = G2(20:z)d$dy-
Ba Bg
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Therefore,

2%
1-3% % < 1
+Z =

£l
Ll

GQ(ZO) Z)dﬂ?dy =

o] |

By

(12—

In addition, as b - oo, from Equ. 6.4, u{z) — 2?"3, and as b — a, ellipse

: P_lp? L.
becomes circle, u(zo) — =2 which is as Lemma 2.

The solution u(z) in (6.4), decreases faster in y direction than in  direction.

Since b > a and

dr  H+% Oy AH+5
Thus, 1 decreases faster in y-direction by factor of g«; Therefore, the value u(z,)

(where z, = (Z,,¥,)) 18 more depended on the y, then value z,.

Therefore, for the bound for the ellipse shape inpainting domain, the bound

is as follows.

Theorem 2 Given inpainting domain D, for any p € D, find the ellipse which

covers D with mazimum aspect ratio between a and b, (b > a). Then,

2

Gz, 2)dody < 5

Proof 2 Let B, be an ellipse covering D with mazimum aspect ratio between a
and b, (bsa). Let Green’s function for B, be G,, and assume p = 0 for simplicity,

then
Jp G20, 2)dzdy < f, G(z,, 2)dxdy(by Lemma 1)

< 2= (by Lemma 3)
. g

HA
w}%

Therefore, with |Au(z)] £ M for all z € D, the error becomes
M a

hup — || < M f G20, 2

For inpainting domain D like ellipse the error is bounded by O(a?).




6.3 Binary Function u, TV Inpainting

The image is generally thought to lie on Bounded Variation with discontinuities
and jumps. This case, the error bound is always the area of the whole inpainting

domain, since there could be an object totally hidden by the inpainting domain.

However, not considering the hidden factor, we can consider an error bound
which could be reduced from information around the inpainting domain. Let

F be extended domain outside of D, such that N D = 9D, Fig 6.3. We are

—)

Q

Figure 6.3: Inpainting domain D and extended domain F

interested in getting a bound, £(F), which is not considering the hidden factor,

and depended on information from domain F.
”uinpainted(D) - utrue(D)” é g(F) g (Ima:c - Imm)|D|

| D| is the area of the inpainting domain, and (L — Imin )| D| i8 error of the hidden
factor. Notice, that the error is no longer point-wise, but for whole image, i.e.

difference in inpainting domain D.

For the TV inpainting method [CS01a], the error is the area from the shortest
distance to the intersection of the two lines following the curvature of the level
lines. Since, minimizing total variation will result in getting shortest distance,
however, the original object and extend as far as the intersection of two level
lines. It is illustrated in Fig. 6.4, dashed triangle is the area of error.) Some of

analysis for the perception can be found at [CS01a]. In Fig. 6.4, (a) and (b) have
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Figure 6.4: Example of the error in inpainting domain for piece-wise

constant function.

same inpainting domain, however, unlike the case for smooth function, (a) and
(b) have different error.

The error of the inpainting domain is from shortest distance to the intersection
of the curvature extension. For straight line case, the area of error is calculated
using vectors and distance. In Fig. 6.5, n} is unit tangent vector from point p,

o for point ¢, and [ be unit vector in g — p direction.

Figure 6.5: Dotted triangle is the possible error.

Then the area of the triangle is,

abiny x 12|

(tngn) (tsagh)|m x 733

%absin@ =

1
2
1
2

£F . a _._. b
by o= snds sinﬂl)

] [ by
hiﬁiﬂﬁgﬁm)lﬁi X 1|

-

1
2
%(]n“le n;xﬂ)tz
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Therefore, the error becomes,

1 |y x Qimz x ]

2( |TZT1 > ng' tz)(Imax 8D — Imin BD)

§ (Imam - Imin)|Dl-

E(F) =

For the case, when vectors 7i; and 7 have the same direction as {, then
|77 X ﬂ = 0, therefore £ = 0. And for the case, the two level lines at the
boundary is the same if the distance between the two level lines are far, big ¢,
then the error is bigger. The error term for binary function v is bounded by
O(t?), where this ¢ is the minimum distance between two level line. In addition,

the error depends on the direction n7 and 7.

6.4 Conclusion

We study the error bound for the inpainting domain for two space, for smooth
function v € C?, Harmonic inpainting and binary function u, TV inpainting. We

show the explicit form for each error bound.

First for the smooth function, harmonic inpainting case, when the inpainting
domain can be covered by ellipse, the error is bounded by the minimum axis
a with O(a?). The error term have been reduced for general case using d and

specially for inpainting domain with narrow region.

As for the binary image » and TV inpainting, the error is bounded by the
shortest distance, ¢, between two level lines and and nj, n; direction of the two
level lines. Even if the inpainting domain is narrow with big aspect ratio, if the
distance between two level lines are large, the error could be bigger. The error
is bounded by ©O(¢*). However, for binary case, there always could be a hidden
factor, therefore, the error term can not be any smaller than total area of the

inpainting domain.
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