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Abstract

In this paper we study an Fulerian formulation for solving partial dif-
ferential equations {PDE) on a moving interface. A level set function
is used to represent and capture the moving interface. A dual function
orthogonal to the level set function defined in a neighborhood of the in-
terface is used to represent some quantity on the interface and evolves
according to a PDE on the moving interface. In particular we use a con-
vection diffusion equation for surfactants concentration along a passively
convected interface as a model problem. We develop a stable and efficient
semi-implicit scheme to remove the stiffness caused by surface diffusion.

1 Introduction

Many applications in fluids, materials and biology involves multiphase phenom-
ena. In many multiphase problems the boundary between different phases can be
formulated as a sharp interface. In such problems the interactions and dynamics
of different phases determines the geometry and dynamics of the interface and
vice versa. Tor a certain class of these sharp interface problems only the location
and geometry of the interface is involved in the whole system. For example, for
two immiscible fluids, surface tension is present at the interface and is propor-
tional to the local curvature of the interface. In many other multiphase problems
there is more complicated physics involved on the interface. For example, when
there are surfactants present at the interface between two fluids, the concentra-
tion of surfactants is both advected by the ambient flow and diffused along the
moving interface. On the other hand, due to the presence of surfactants, the
surface tension at the interface depends on both the geometry of the interface
and the concentration of surfactants. Hence the motion and geometry of the
moving interface, the distribution of surfactants on the interface, and dynam-
ics of the bulk fuids are all coupled together. Mass transport along interfaces
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caused by surface diffusion also oceurs in many applications in materials such
as in the study of sintering, grain boundary morphology, electro-migration and
thin films [7, 14, 15, 13].

For multiphase problems, there is usually no uniform equation throughout
the physical domain. Instead physical quantities of different phases are usually
coupled together through some jump and/or flux conditions across interfaces
that can have complicated geometry and topology or can even develop singu-
larities. All these complications can pose great challenges for mathematical
analysis. In numerical simulations of multiphase problems, the usual difficul-
ties include solving PDEs in each phase coupled with jump/flux conditions and
complicated geometry at the interfaces as well as tracking of the moving inter-
face that can develop large deformation and topological changes. Moreover we
may need to solve PDEs along the moving interface. Typical numerical meth-
ods for the representation and tracking of moving interfaces can be classified as
Lagrangian or Fulerian formutation. In Lagrangian formulation, the location of
the moving interface is explicitly tracked using particles or meshes moving with
the interface. When the interface undergoes complicated motion with large de-
formation and/or topological changes, constant remeshing and/or surgery has
to be done, which may become too expensive or intractable in three dimensions.
Solving PDEs on the moving interface can make Lagrangian formulation even
more complicated. In Eulerian formulation the moving interface is captured
on a simple Cartesian grid by a level set function. The motion and geometric
information of the moving interface can be captured in terms of the level set
function. Hence, a geometric problem is turned into a PDE problem for the level
set function and efficient and robust numerical schemes for PDEs can be easily
adopted to deal with discontinuities and nonlinearities. Large deformation and
topological changes can also be handled easily. The level set method, developed
by Osher and Sethian [16], has been applied successfully to a broad range of
problems in fluids, materials, image processing and computer vision. We refer
the readers to the recent review article [18, 22] for more details. However, in
most of previous applications of the level set method to moving interface prob-
lems, the level set funetion is used to capture the location and geometry of the
interface only. No physics or other quantity is involved on the moving interface.
In recent work by Cheng, et al [6], PDEs are solved on a static implicit surface
represented by a level set function. In this paper we develop a general Eule-
rian framework for associating a quantity to a moving interface and solving an
evolutionary PDE for the quantity on the moving interface. In particular we
use the example of advection and diffusion of surfactants on a moving interface
to illustrate the formulation. Based on a decomposition of the surface diffusion
operator, we propose a semi-implicit numerical algorithm to remove the stiff-
ness caused by surface diffusion. We present numerical examples to illustrate
the efficiency of out method. Some numerical studies of the effect of surfactants
using Lagrangian type of algorithms for special cases can be found in [12] and
references therein.

We point out that although we assume a fluid velocity field is given and
the interface is passively convected by the fluid flow, our formulation here can



be naturally combined with the immersed interface method (IMM) ( see, e.g.,
[8, 13]) to compute the velocity field of the fluid in real applications. This
combination provides an Eulerian framework that can compute global quantities
governed by general PDEs with jump/flux conditions at the interface.

Here is the outline of the paper. In section 2 we describe mathernatical
formulations for the problem and the Eulerian framework. In section 3 we
develop efficient numerical algorithms to compute the solution. In section 4
we present numerical examples to illustrate the efficiency and accuracy of our
formulations and algorithms.

2 Basic formulations

Suppose I' is a moving interface advected in a given velocity field u(x}. Denote
f to be a scalar quantity, e.g., the concentration of surfactants, defined on
T" and satisfies an evolution PDE on the moving interface. For example, the
surfactants on a moving interface is both advected with the interface by the
fluid flow and diffused along the interface by the concentration gradient along
the interface. Using mass conservation, the transport of surfactants due to the
motion and distortion of the moving interface satisfies the following equation
[24] in a simple divergence form

fet Ve (fu} =0, (1)

where V, denotes surface gradient. Let n be the unit normal to the interface,
then V, = (Il —n®n) - V. If we decompose the velocity u into the normal
component u, = n®n-u and the tangential component u, = u—1u,, the above
equation can be rewritten as

fr+ Vs -(fus) + (w-n)sf =0, (2)

where & is the mean curvature {the sum of the principle curvatures). We see
clearly that V, - (fu,) corresponds to the tangential advection of the fluid flow
and the last term corresponds to surface stretching by the normal velocity. In
[9] the following equivalent formulation was derived

fi+a-Vf-n-Vu-nf =0, {3)

where n - Vu-n = >, jnig—mﬁnj. Although mathematically these formulas
* J

are equivalent, equation (3) fits into our Eulerian framework more naturally
as we will see later. To include the surface diffusion, we just have to plug in
Vo (D{x)Vsf) in the above formulas, where D is the diffusion tensor. Without
loss of generality for our numerical formulation, we assume isotropic diffusion
and normalize the diffusion constant to be one which results in a convection-
diffusion equation for the surfactant concentration on the moving interface, e.g.,

fetu-Vi-n-Vu-nf-Vif=0 (4)



Now we derive an equivalent representation of the surface Laplacian operator
which is very convenient for our Eulerian formulation and is crucial for the
design of the semi-implicit scheme to remove the stiffness of surface diffusion.
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If a quantity f is defined in a neighborhood of I', we have
VEf = Vf—if— g{I:VZf—an(f)n—Aan-n {6)

where V2 is the standard Laplacian operator and D? is the Hessian.

In our Bulerian formulation we use the level set method to capture the
moving interface convected in a velocity field u(x), i.e., I' is represented as the
zero level set of a level set function ¢(x,t) which satisfies

by +u - Ve = 0. )

To capture the evolution of a quantity f on the moving interface, we introduce
another scalar function f(x) in a neighborhood of the interface such that f flx) =
f(x) for x € I, (ie., ¢(x) = 0). Just Iike in the level set formulation, the
definition of a level set function is arbitrary as long as the zero level set agrees
with the interface. The scalar function f is also defined arbitrarily as long as it
agrees with f at the interface. In some applications, the quantity f may have a
natural extension off the interface. For example, if the surfactants have a bulk
distribution. In other applications, f may be a physical quantity only defined on
the interface. Then we can use a numerical extension procedure to extend the
quantity off the interface while keeping its values on the interface unchanged.
The procedure will be discussed in the next section. From the level set function
¢, we can compute geometric quantities of the interface easily, e.g.,

Vo (T8
9= o == (o) )

So the surface gradient operator and surface Laplacian operator in (5) are all
well defined and we can solve the corresponding PDE for f such as (4) in a
neighborhood of the interface in an Eulerian framework. Actually n(x) and
#(x) are the unit normal and mean curvature respectively of the level set that
passes through x. Just as all level sets of ¢ are convected in the velocity field u
in (7), instead of solving the PDE for f solely on the zero level set of ¢, which
is the moving interface, we solve the same PDE for f on every level set of ¢ in



a neighborhood of the zero level set. Since the PDE of f is purely tangential
to the level sef, the evolution of f on different level sets does not interfere with
each other.

However for numerical reasons, the best choice of the level set function is the
signed distance function, i.e., |V¢| = 1, to the interface so that the underlying
grid yields the best resolution and accuracy for the level set function. For
the same reason, the best extension of the quantity f off the interface is the
orthogonal extension, i.e., V f+ V¢ = 0. Just as the level set function does not
remain as a signed distance function to the moving interface and we have to use
a reinitialization process to redistance the level set function near the interface,
we need an extension process to maintain the orthogonality between f and ¢. A
PDE based method was proposed in [28] for the extension. We will discuss this
in detail in the next section. We also combine with the local level set method
to reduce computation cost. )

With no confusion, we drop the”for f from now on.

3 Numerical algorithms

Based on the Fulerian formulation developed in section 2, we can capture a
moving interface as well as solving PDE(s) for some quantity f along the moving
interface on a simple Cartesian grid. Start with an initial setup that includes
the velocity field u, the interface (represented by a level set function ¢), and the
distribution of f on the interface (extended in a neighborhood of the interface),
here is the outline of the main procedures in one time step:

step 1: Evolve the quantity f on the moving interface, e.g., by {4).
step 2: Evolve the interface in the velocity field by (7).

step 3: (if needed) Reinitialize the level set function ¢ to the signed distance
funetion and extend the quantity f off the interface orthogonal to ¢.

step 4: Use the updated interface and distribution of f to update the velocity
field.

Here are more detailed descriptions for each step.

step 1: When the evolution of the quantity f on the moving interface
involves surface diffusion, CFL condition for stability would require the time
step At = O(Ax?) for any explicit scheme in time, where Az is the spatial
grid size. This can be the bottle-neck for the whole numerical computation.
For example, in our model problem for a moving interface with surfactants, the
interface is simply convected in a velocity field. The correspending convection
equation (7) allows a time step At = O(Az). Here we design a second order
semi-implicit scheme for the surface Laplacian operator to remove the stiffness
of surface diffusion. According to (5), the surface Laplacian operator V2 can be
decomposed as

& o
s On? dn’



The leading order term can be interpreted as the standard Laplacain minus
the second derivative in the normal direction, i.e., an isotropic diffusion mi-
nus diffusion in the normal. From this structure, we use an implicit scheme
on the standard Laplacian and an explicit one on all remaining terms. Since
the standard Laplacian already includes the diffusion in the normal direction

which is treated impHcitly, the explicit treatment of the term ——g% will not
cause instability. In some sense this decomposition and treatment of surface
Laplacian operator is similar to the idea of T. Dupont for parabolic equations
with anisotropic diffusion, which the authors learned from [4]. By adding and
subtracting an isotropic diffusion term that is large enough to dominate the
anisotropic diffusion term and make the isotropic diffusion term with right sign
implicit and all other terms explicit, the scheme becomes unconditionally stable.

For example, to solve
w =V - {a(x)Vu), where C >a(x) 2c>0, (9)
which is mathematically the same as
ue = AVZu + V - (a{x)Vu) - AV, (10)

the foliowing semi-implicit scheme, which is stable as long as 4 > C, can be
used:
™t — ™

At

where m is the time step. In our semi-implicit scheme we add and subtract
the diffusion in the normal direction (plus some lower order terms) to make the
surface diffusion operator a standard Laplacain operator. In order to achieve the
second order accuracy in time, we use the following second order semi-implicit
Crank-Nicholson scheme in time for the convection diffusion equation (4) for f
on the interface,

= AVZ™H 4 V- (a(x)Vu™) ~ AV, (11)

m+1l _ rm v? m+1 +V2 m 3 a 82 "
! Atf - 2 : +§[W'ﬁa_i"é?{§"“'vf+n'vu'nf}
2 m—1

For the spatial discretization, central difference schemes are used to compute
Vo V¢ 9f & f

2 T ssn — [ —_ = . -} 2 . .

Vf,n—|v¢l,m Vv Ve’ on n-Vf, e nD*(fin,and n-Va-n,

Denote u = (u,v), the following upwind scheme is used for the convection term

u- Vf at grid point (4, 7),

(uyt D fij + (W)™ DF fi5 + ()T Dy fi; + (v)~ DY fij, (13)

where (z)* = max(z,0), (z)” =min(z,0), and DF fi;, DE fi; are the one-sided
divided differences for which we use the third order weighted essentially non-
oscillatory (WENOQ) scheme derived in [10, 11]. For example, the third order



WENO approximation to g—i— at z; using the left-biaged stencil {zg, k = {—2,i—

1,44+ 1} is

[(Atgi + ATg) —w_(ATgis — 2A%g 1 + AT gi)]
(2Ax)

where we use the notation A%, A~ for the forward and backward difference
operators respectively. And w_ = 1/(1 + 2r?) with

— A+ 2
po (B ATg) (15)
€+ (A~ ATg;)?
where € is a small positive number. The third order WENO approximation to
g% at z; on the right-biased stencil {zz, k =¢—1,7,4+1,i+ 2} is
Dt = [(Atgiy + Atg) +wi(Atgiyy — 24879 + Aty )]
@ (2Ax)

where wy = 1/(1 + 2r?) with

Dy gi= (14)

(16)

A A+ i 2
= €+ ( - g +1) (17)
€+ (A~ Atg)?

The linear system for f™+! from (12) is symmetric positive definite as for the
standard heat equation. Tt can be solved easily by conjugate gradient method
or even SOR method [20]. If the quantity f is extended orthogonal to the
. d 02 .
interface approximately, i.e., Vf - V¢ ~ 0, then mfw = 0, ——é =2 0. Since our

n
semi-implicit scheme is a two-step method, we use the following one step semi-

implicit scheme,

A 0
L =V ﬂﬁwﬁ——n——u-Vf+n-\7u~nf : (18)

for the first time step. We will use numerical examples to show that our semi-
implicit scheme is of second order accuracy and the CFL condition is At =
O(Ag) in section 4.

step 2: Evolving the level set function according to the linear convection
equation (7) with a given velocity field u is straight forward. The same upwind
scheme using third order WENQ described as above is used for the discretization
of u- V¢. For time discretization we use the following total variation dimin-
ishing (TVD) Runge-Kutta scheme of third-order devised in [23]. Consider the
following time dependent PDE,

il (Q), (19)

with initial data g(0) = go, where L is some spatial operator. We march from
mth step to {m + 1}th step by

g1 = g™+ AtL(g™)
92 = :E:q‘“ +ig + j‘é—L(gl) (20)
g™t = 4™+ e + 27 L(gs)



step3: As we discussed before, reinitialization for the level set function ¢
to the signed distance function and extension of the quantity f off the interface
orthogonally may be needed for numerical reasons. In particular, if we use the
local level set method to save the computation cost, these two procedures have
to be done at every time step. To reinitialize the level set function, we use the
PDE based approach which was proposed in {25] and was discussed in detail in
[19]. After the evolution of the level set function at step m, we reinitialize it by
the equation:

{5 Sz - =0 o
$(x,0) = go(x} = ™ (x)
Where 7 is the pseudo time and S{z) is the sign function of & defined as
-1 if =<0
S(xy=4¢ 0 it z=40 (22)

+1 it z>0

We use the following spatial discretization for the Hamiltonian S{(¢o){|Ve¢| — 1)

s (VP G+ (@R ¥ (@7 - 1)

- , (23)
i (V@ R+ 02 + (P + @ - 1)
where s;; is the numerical approximation to S(¢;):
0
- (24)

RN TSy

a,b,c,d in (23) denote the following one-sided difference quotients, which are
computed using the third order WENO method as before:

a=D; i, b= Dl
C:D;(ﬁij, dﬁD;qﬁw

To extend some quantity f off the interface so that it is orthogonal to the level
set function ¢ at least in a neighborhood of the interface we use the following
simple linear convection equation

[+ S@m-Vf=0
{ Fx0) = fo(x) (25)

where S(¢) is again the sign function of ¢ and n = g s the unit normal.
So f(x,7) = fo(x) if #(x) = 0, i.e., for x on the interface. The orthogonality
condition, V¢ - Vf = 0, becomes true very guickly near the interface and then
propagates further away. The above extension method was first introduced
and analyzed in [28] and later discussed in more detail in [19]. K has been
successfully applied to the Stefan problem in [5]. In [2], a discrete version of



the scheme was also proposed. Numerically the second order central difference
scheme is used to compute n, and the upwind third order WENO scheme is
uwsedfor Viinn-Vf.

In practice we do not need to solve equations {21) or (25) to steady state.
At each time step since the solutions does not change much from the previous
ones, which are supposed to satisfy these equations, we only need a few number
of iterations or pseudo time steps for the reinitialization or extension. However
in the local level set method, in order to get the correct distance values for
the level set function ¢ or the extended values for f at points newly added to
the moving tube from outside, the number of iterations or pseudo time steps is
proportional to =5, where w is the width of the narrow tube that follows the
moving interface, because the information propagates with speed one in both
cases. In our computation we use the third order TVD Runge-Kutta scheme
(20) for (21) and (25) in the pseudo time with A7 = 0.2Az.

step 4: In this paper we mainly address the numerical framework and
algorithms for solving PDEs on a moving interface. We assume the velocity
field u(x) is a given function. In our future study we will combine our numerical
methods with the immersed interface method with applications to real physical
problems.

Remark. We present the method here in two dimensional formulation, the
extension to three dimensions is straight forward.

Local level set method For the level set method, instead of solving the
PDE for the level set function, e.g., (7), in the whole computation domain, we
only need to restrict the computations in a small neighborhood of the interface.
Similarly, we only solve the PDE for the quantity f, e.g., (4), in a neighborhood
of the zero level set. In our computations we adopt the PDE based local level set
method discussed in [19]. A narrow tube is constructed and updated following
the moving interface. The size of the tube is fixed and can be just a few grid
size wide. There is also a different localization technique introduced in [1]. The
difference is that the PDE based local level set formulation involves PDEs and
values of the level set function only, not the explicit location of grid points in
the domain.

In our numerical algorithm, we construct three tubes around the interface
with widths 0 < 71 < 72 < -y3 respectively,

Ty o= {ly) e,y <l
Ty = {(zsoy;) 16z, v5)] < 12}
Ts = {(zs,y;) : minge=—1001|0(Tipr, w01} < 73}

The widths, ;’s, and their differences are usually a few multiple of grid size. The
choice of parameters v;,vo,~s depends on the stencils of the spatial discretiza-
tion. For instance, the widest stencil used in our numerical algorithm is the
third-order WENO. So we can choose 73 = 3Ax, 2 = 71 + 3A%, v3 = 11 + 3Az
for instance. These tubes have to be updated following the moving interface by
adding and deleting neighboring grid points appropriately.



Since the semi-implicit scheme for the surfactant concentration f is a two-
step method, we apply the backward Euler method (18) at the first time step.
Suppose we have initial data: ¢°, ¢, %, f*, and initial tubes 13,77 and T3. We
use steps 1-3 described above to evolve from time ™ to time t™*1. Due to the
use of local level set method there are a few more implementation technicalities
to be clarified here.

Step 1: Solve the equation (4) for f using the semi-implicit scheme {12) to
get f™*1in tube T3. The spatial discretization in (12) involves not only points
in tube T1 but also points outside of Ty but near the boundary of Ti. Since
the extension process for f is done in a larger tube T3, we can interpolate the
boundary condition for f™*1 as follows:

fptt =255 - £ e € - T (26)

step 2: We introduce the following cutoff function ¢, (¢) used in [19]

0 if o™ >
my_ 2 m — .
em(9) = ¢ WP llblim=tn) iy < g < (20)
1 if |¢™| <m
and solve
¢ +emu- Ve =10 (28}

for the level set function in tube Th. The reason for the intreduction of the
cutoff function is to prevent discontinuities in the coefficients and numerical
oscillations at the tube boundary. Since we use explicit scheme in time and the
reinitialization for ¢ is done in T3 (which includes 7%}, no boundary condition
is needed for points near the houndary of 15.

step 3: Reinitialize ¢™*" using (21) in tube T3 and then extend f using (25)
in tube T3. In both equations information propagates away from the interface,
and hence we do not need explicit boundary conditions using the upwind scheme.

The reconstruction of the three tubes around the new interface from the
previous ones is done by

T {(zoys) 105 < 7 (30,95) € To}
I« {("Ei,yj) : |¢';;z+li < a2, (Iivyj) € TB}
Ty {{mo, i) 005 < s, (@, y5) € Ti}
U (@it gien), bk = =10, 12 |97 <oy, (0, 93) € T5}

4 Numerical results

In this section, we present numerical results for the model problem for surfactant
concentration to demonstrate our Eulerian framework. We are going to show
that the numerical algorithm we developed is stable with CFL condition Af =
O(Ax) and can achieve second order accuracy. Another important property we

10



monitor is the mass conservation. The total mass of surfactants on the interface
is conserved due to the divergence form of the equation

fi+ Vs {(fu—-V.f) =0

The volume (area) of the interior region enclosed by the moving interface is
also conserved since we use a divergence free velocity field. In the level set
formulation, the surface integral of a function g(x) on the interface I' represented
by the level set function ¢ can be written as [28]:

f o(x)ds = f a(x)5(¢)| T dldx. (29)
r

And the integral of g(x) in the interior of ', denoted by € and in which the
level set function ¢ is defined to be negative, can be written as:

[ﬂ s = [ 9O (=) (30)

Here §(x) is the 1D §—function and H (z) is the 10 Heaviside function. Numer-
ically we approximate the Heaviside function and d-function by the following
formulas:

0, if =< —w,
SE(eresn(Z), i —w<a< 05
=) =i (14 Z +sin (22)
H(z) = +%“(2+5{§”+%S;n 2ra)y, if — 05w <z < 0.5,
~t+Z+isin(Z=))+3  if OSw<az<w
1.0, if z>w
0, i |z > w,
N ~ gk (1 + cos (22})
6
—z= (1 4cos (£}, if 05w <|z{<w

We use w = 1.5A71 and a simple quadrature rule o compute these integrals. Our
approximate é-function satisfies [ §(z)z? =0, p=10,1,2 and -;—mﬂ(a:) = §(x).
Example 1: Here we make up a simple but non-trivial example with explicit
analytical solution to check the accuracy and stability of our algorithm. Assume
the interface is a stationary circle centered at the origin with radius ro. Then

. . . 2
the surface diffusion operator on the circle becomes V% = ;136%5, where f =

arcsin( \/;g+_zﬁ) denotes the central angle with z-axis. If the initial distribution

of f is a function of #, then the solution depends on & only at any later time
t. The surface diffusion equation becomes the standard heat equation with
periodic boundary condition,
af(6,t) _ 1 0%f(68,%)
ot 71 op  osésm
[(8,0) = fo(8) '
F{0,8) = f(2m, 1)

(31)

11



which can be solved using Fourier series. In particular, if fo(#) = sin(nf) + ¢,
where ¢ is a constant, then solution on the interface is

n2¢

f(8,8)=e "5 sin(nf) +e¢ (32)

In our computation, we use the level set function ¢(z,y) = /z* +y? — 1y,
whose level sets are concentric circles. Denote 7 = /2% + y2, then

flz,y,t) = e sin(nd) +c, (33)

is a global solution to the PDE

2
UED 22,0, = 9 1(wt) - GHEED - @y it
¥ 1 34)
e gy THED o elE)
o8 = g OV Y Fe

In another word, f diffuses along every level set of ¢ according to f;, = Vif,
where s is the arc length. In our first numerical test, we choose ro = 1 and
fo(B) = sinf + 2 and fix the level set function ¢(z,y) = /22 + > — 1. In order
to avoid singularities in the diffusion coefficient &, we solve the PDE (34) in
the domain [~2,2] x [-2,2] — {{z,¥) : /2 + ¥ < 0.8} using the semi-implicit
scheme (12) with Dirichlet boundary condition from the exact solution. Neither
reinitialization nor extension is used here.

Errors in different norm and the order of accuracy at time ¢ = 2 are presented
in Table 1. Here errors are measured over the entire computational domain. This

example clearly shows that our semi-implicit scheme is second-order accuracy
and is stable with At = O(Az).

Table }: Errors for surfactant concentration at time ¢ = 2.0, with At = Az /4

Grid Size | Lo order | Ly order Lo order
40 x 40 | 6.20D-3 9.60D-3 5.37D-3

80 x 80 i 1.87D-3 1.73 | 2.53D-3  1.92 | 1.49D-3 1.85
160 x 160 | 5.48D-4 1.77 | 6.60D-4 1.94 | 4.06D-4 1.88

EXAMPLE 2. In this example we put the above example in a simple velocity
field u = (1,0). We compute the evolution of the interface as well as the surfac-
tant concentration on the moving interface by (7) and (3) respectively using the
algorithm described in Section 3. Local level set method is used in our compu-
tations. The computational domain is [~3,5] x [—3, 3}, the initiai distribution
of surfactants is f{z,y,0) = sinf +2 = ﬁ = 2, and the initial level set

12



function is ¢(z,y,t) = /22 + y? — 2. The exact solution is a simple translation
of the solution in example } with speed 1. However, since we use the reinitial-
ization and extension procedure in the local level set method, the solution at
the interface is extended to a neighborhood of the interface. So we compare
our numerical solution to the following function in a small neighborhood of the
interface.

fz,y,t) = e sin(8(2)) + 2, (35)
where 8(¢) = arcsin{ (

Y
T

Let fi, ¢n be the numerical solutions for surfactant concentration and level
set function for the moving interface respectively on a grid with grid size h.

Denote ey, = |fi, — f| the numerical error. We measure the error by three
norms:
Crllb. = MNOT|G,1<1.5A2{Ch
liex|] {en} (36)
felles = [ ends (37)
) 3
lealiza = ([ chas) (39)
r

The surface integrals in || - ||, and |||z, are computed according to (29). The
errors and order of accuracy at time ¢t = 2 is shown in tables 2.

Table 2: Errors for surfactant concentration at time ¢ == 2.0 with At = Az /4

Grid Size | Lo order | In order Ly order
20 x 15 5.20D-2 1.88D-1 6.91D-2
40 x 30 1.58D-2 1.72 | 8.51D-2 1.14 | 2.98D-2 1.21
80x 60 | 5.10D-3 1.63 | 3.32D-2 1.34 | 1.12D-2 141

Remark 1: There are a few issues need to be clarified for the degeneracy
of accuracy in this example. Since the local level set method is used, we have
to use the reinitialization and extension procedure at every time step. There
are two possible contributions of errors by this procedure. One is due to the
discontinuous sign function in both (21) and (25). The other one is because we
may not reach the steady state solution of (21) and (25} for just a few iterations
in our computation, i.e., f may not be constant in the normal direction. So
(35) may not be the exact solution we should compare to. We use the following
example to illustrate our points here.

EXAMPLE 3. In this example we use the same setup as in example 2 except
that we introduce an extra forcing term,

1 _eylle—t) +3°—4)

g(a:,y,t) = _—4'6 ({.’E i t)2 ¥ '92)3/2 ’ (39)
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in the equation for surfactant concentration
,=V2f~u-Vf+fn-Vu-n+g, (40)

where 1 = (1,0). At the interface g{x,y,t) = 0. The purpose to add g is to
make the exact solution f(z,y,t) to be a constant along the normal direction
of the interface, i.e,,

N ) y
flo,y,t) =e 1sin(f(t)) +2=¢ 4~m+2 (41)

is the exact solution. So the extension process for f does not play a significant
role near the interface. The errors at time ¢t = 2 is shown in tables 3. Second
order accuracy is observed.

Table 3: Errors for surfactant concentration at time t==2.0 with At = Az/4

Grid Size | L., order | In order Lo order
20% 15 | 5.21D-3 1.94D-2 7.06D-3
40 x 30 | 8.65D-4 259 | 507D-3 194 | L.55D-3 2.19
80 x 60 | 1.40D-4 2.62 | 8.78D-4 253 | 2.68D-4 2.53

Remark 2: In examples 2 and 3, we fix the widths of tubes for different
grid sizes in order to check the accuracy.

EXAMPLE 4. We consider the same model problem in example 2 except
that the initial level set function is changed to ¢(x,y, 0} = /x? + y> —1 and the
computation domain is changed to [—2,8] x [~2, 2] with Az = 0.04, At = Az/4.
We choose v; = 3Az, v = 6Az and v3 = 9Az, and the number of iterations
for both re-initialization and extension is 3.

We present the picture of the moving interface as well as the surfactant
concentration on it at different time in figure 1. The exact sclution for the
surfactant concentration on the moving interface is f{8,¢) = e~*sinf + 2, where
6 is the central angle. In figure 2 we show our numerical solution of the surfactant
concentration as a function of ¢ at different time. Figure 3 is another plot
corresponding to the initial surfactant concentration f(x,y,0) = sin{38) + 2.

EXAMPLE 5. In this example we use a velocity field like a shear flow,

wen={ W0 8 V20 (12)

in which the interface moves and deforms. The computation domain is {} =
[~3,3]2, the initial interface is given by the zerc level set of ¢(z,y,0) = /z2 + y*—
1, and the initial surfactant concentration on the interface is f(z,y,0) = sinf +
2 = y/+/x? +y? + 2. The grid size is Az = 0.04, and At = Ax/4. We choose
7 = 3Az,72 = 6Az and 3 = 9Az, and the number of iterations for both

14



Figure 1: The moving interface and surfactant concentration at different times
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Figure 2: Surfactant concentration as a function of the central angle at different
times
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re-initialization and extension is 3. The moving interface and surfactant con-
centration on the interface at different time are shown in figure 4. Figure 5 and
6 show the relative change of the total mass of surfactants on the interface and
the area enclosed by the interface respectively.

EXAMPLE 6. In this example we change the velocity field in example 5 to

u(z,y) = ((1"—’;230) . (43)

The initial setup is the same as in example 5. The computation domain is
0 = [~2,6} x [~2,2] and the grid size is Az = 0.04. Due to the increase of the
magnitude of the velocity field we use At = Ax/8. Figure 7 shows the moving
interface and surfactant concentration on the interface at different time. Figure
8 and 9 show the relative change of the total mass of surfactants on the interface
and the area enclosed by the interface respectively.
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