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Abstract

The pivoted QLP decomposition, introduced by G. W. Stewart [14],
represents the first two steps in an algorithm which approximates the
SVD. The matrix AIl, is first factored as Ally = @R, and then the ma-
trix RTTI; is factored as RTTl; = PL”, resulting in 4 = QI LPTIIY,
with @) and P orthogonal, L lower-triangular, and Iy and II; per-
mutation matrices. Stewart noted that the diagonal elements of L
approximate the singular values of A with surpriging accuracy. In this
paper, we provide mathematical justification for this phenomenon. If
there is a gap between o and o1, partition the matrix L into di-
agonal blocks Li; and Loy and off-diagonal block Ly, where Lq; is
k-by-k. We show that the convergence of (o;(L1;) 1 — aj_l) / crj_l for
j=1,...,k, and of (0;(Lo2) ~ op44j)/0k+j, for 5 =1,... ,n—k are all
quadratic in the gap ratio oy.1/0%. The worst case is therefore at the
gap, where the absolute errors || L 7] — o*,;l and ||Logg|| — oxy1 are thus
cubic in J,'c"l and oy, respectively. One order of covergence is due
to the rank-revealing pivoting in the first step; then, because of the
pivoting in the first step, two more orders are achieved in the second
step. Our analysis assumes that IIy = I, that is, that pivoting is done
only on the first step. The algorithm can be continued beyond the first
two steps, and we make some observations concerning the asymptotic
convergence. For example, we point out that repeated singular values
can accelerate convergence of individual elements. This, in addition to
the relative convergence to all of the singular values being quadratic in
the gap ratio, indicates that the QLP decomposition can be powerful
even when the ratios between neighboring singular values are close to
one.



1 Introduction

1.1 Overview

One of the most important tools for analyzing a matrix A is the Singular
Value Decomposition (SVD): If A is a real m-by-n matrix, then there exist

orthogonal matrices

U={u,... % ER™™ and V ={vy,...,v,] € R¥™

such that

UTAV = diag(o, ... ,0p) =3 € R™" p = min{m,n},

where g1 > 03 > -+ > 0, 2 0 [6, Theorem 2.5.2]. The vectors u; and v; are
called, respectively, the ith left singular vector and ith right singular vector
of A. The o; are called the singular values of A.

While the SVD gives a lot of information about A, it is rather costly to
compute. A worthy goal is to develop a method that provides information
close to the quality that the SVD provides but which runs much faster.

One attempt at gaining SVD-type information is, of course, the QR fac-
torization [6, Section 5.2]: Let A € R™*” have rank n. Then A can be
written uniquely in the form A = QR, where ) is an m X n orthogonal
matrix and R is an n X n upper triangular matrix with positive diagonal
elements. This can be made into a full blown decomposition which handles
rank-deficient A. For details, see {13, Chap. 4, Sec. 1].

The QR factorization is very cheap to compute, relative to the SVD, Since
( is orthogonal, we know that || A||z = || E||2, so that the singular values of R
are the same as those of A. As we have effectively reduced a dense matrix A
to an upper triangular matrix R, we might hope that the diagonal elements

of R are approximations to the singular values of A.



This is clearly not true in general. For example, if the norm of the first
column of A is small compared to the norms of the rest of the columns,
then r; is small and comes nowhere close to oy = ||A||2. All that is readily
apparent is that r;; < oy and ry,y, > oy

We can introduce column pivoting into the computation of the QR fac-
torization [7], and this makes a huge difference. Pivoting ensures that the
diagonal elements in the computed R-factor are in sorted order, and these
are often rough approximations of the corresponding singular values. They
can also be used for gap revelation, which of course requires less accuracy.
Pivoting also provides at least one bound that its unpivoted brother could
not promise. The fact that ri; equals the norm of the largest column of A
gives rise to the bound r1; > o1/4/n {see page 14).

Note that although the column pivoted QR factorization provides this
useful bound for the error in approximating o1 by 711, only an exponential
bound exists for o, and 7, [4]. So although in practice the diagonal elements
of R are rough approximations to the singular values, this need not always be
the case. (Indeed, the Kahan matrix provides a well-known counterexample.
8

This is one consideration that motivates the rank revealing QR factoriza-
tion (RRQR) {5, 1]. If R is partitioned as

B (Ru Rlz) |
0 Ry
an RRQR algorithm tries to maximize the smallest singular value of Ry,
and/or minimize the largest singular value of Ry [2]. This essentially means
making, respectively, |R;1|| as large as possible and ||Ra|| as small as pos-
sible. From the interlacing property of singular values, o, (R11) < ox(A)
and Opez{Ren) > o0ry1(A). So an RRQR factorization provides bounds on

the singular values of A in terms of the norms of the blocks.
In terms of tracking the singular values, the RRQR algorithms tend to




perform about as well as the pivoted QR factorizations, and they come with
guarantees. Whereas the pivoted QR factorization can completely fail (like
on Kahan’s example [8]), an RRQR algorithm is guaranteed to work within
the bounds it provides. So for example, one algorithm which tries to minimize
| Rez|| can promise that 7y, < y/noy,, & bound that the column pivoted QR
factorization cannot provide.

Stewart [14] introduced another candidate for SVD-quality information
with minimal cost having the QR factorization as its only building block. The
pivoted QLP decomposition requires only the work of two QR factorizations,
and one of them need not even be pivoted. Yet despite its simplicity and
speed, the decomposition provides approximations to the singular subspaces
of A and gives excellent approximations to all of the singular values of A.
It is the purpose of this paper to provide some theoretical underpinning for
this observation.

The paper is organized as follows. In § 2 we discuss the QLP decompo-
sition and illustrate just how good it is at tracking the singular values. We
also consider taking it beyond just two successive QR factorizations, which
leads to an algorithm that asymptotically calculates the SVD. In discussing
the convergence of this algorithm in the absence of pivoting, we point out
the connection to the QR algorithm and mention past work done by Math-
ias and Stewart [9] and Chandrasekaran and Ipsen [3]. In § 3 we study the
convergence of the QLP decomposition. The decomposition is obtained by
performing a pivoted QR factorization of A as A = QR, where we have
incorporated the pivoting into the matrix (), and then a pivoted QR factor-
ization of RT as RT = PL. If there is a gap between o and o441, partition
the matrix L into diagonal blocks Li; and L¢y and off-diagonal block Lo,
where Ly, is k-by-k. We show that the convergence of (o;(Ly1)™" — o7 1/ o
for j = 1,...,k, and of (6;(Lag) — Ortj)/ 0k, for 7 = 1,...,n — k are all
quadratic in the gap ratio og,1/0x. The worst case is therefore at the gap,
where the absolute errors | L7 || — o5 and || L]} — 041 are thus cubic in o}"
and oy..1, respectively. It turns out that one order is due to the rank-revealing



pivoting in the first step; then, the pivoting has provided a springhboard so
that two more orders are achieved in the second step. Our analysis assumes
that TI; = I, that is, that pivoting is done only on the first step. That we
have relative convergence quadratic in the gap ratio for all of the singular
values helps show why the QLP decomposition can work so well even when
most of ratios between singular values are close to one. It only takes one sig-
nificant gap for the decomposition to work very well. We provide numerical
experiments to illustrate the results.

In § 4 we present some observations concerning the asymptotic conver-
gence of the algorithm. The off-diagonal elements converge in interesting
patterns, and from them we can discern the asymptotic rates of convergence
of the diagonal elements. From this perspective of individual element conver-
gence, we again see the phenomenon of repeated singular values {(or singular
values that are close) accelerating convergence. The results are obtained by
analyzing the actions of using Givens rotations in computing the QR fac-
torizations, and numerical experiments are again provided to illustrate the
theory.

2 QLP: An Approximate SVD

2.1 The Pivoted QLFP Decomposition

The QLP decomposition was introduced by G. W. Stewart [14], who observed
its potency in rank revelation, singular value approximation, and gap revela-
tion. Let us call the diagonal elements in the R matrix of a QR factorization
of A the R-values of A. Noting that the R-values are rough approxima-
tions of the singular values, Stewart suggested taking the pivoted QR fac-
torization and then triangularizing on the right, obtaining the factorization
A = QII LPTIY. If we include the permutation matrices IT; and I} as part
of A and RT, we have A = QLPT, called the pivoted QLP decomposition of
A. Note that the second step is equivalent to performing a QR factorization



on RT, obtaining RT = PL*. Also note that L is lower-triangular. So the
decomposition amounts to taking two pivoted QR factorizations and thus
factorizing A into the product of an orthogonal matrix, a lower-triangular
matrix, and another orthogonal matrix. The diagonal elements of L are
called the L-values of A.

Stewart showed empirically that the L-values track the singular values
surprisingly well—far better than the R-values. See Figure 1.

0 pivoted QR
10
1 0‘5 1 1 1 1 1 L 1 1 1
o 10 20 30 40 50 60 70 80 90 100
10°
1 0—5 1 i | L 1 1 L 1 :
] 10 20 30 40 50 60 70 80 80 100

Figure 1: QR vs QLP. Here the solid lines are the singular values of a 100-by-
100 matrix that has a gap between oy and os1. The dotted line represents
the R-values in the first plot and the L-values in the second.

Note from Figure 1 that not only do the L-values identify the gap far bet-
ter than the R-values, they also approximate the singular values. So with only
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the extra cost of one more QR. factorization, we get very good information—
almost SVD-quality information in many situations. (Note that the QLP
decomposition is a special case of the ULV decomposition, also introduced
by Stewart [11, 12]. The usual ULV and URV decompositions are also rank-
revealing but do not attempt to approximate the singular values. Their main
selling point is that they are easily updated.)

2.2 The QLP Iteration

Stewart points out that without pivoting, the decomposition represents the
first two steps in an iterative algorithm that actually computes the SVD [9)].
Let us call this iterative algorithm the QLP iteration. In each step after the
first, we just compute the QR factorization of the transpose of the R factor
produced by the last step. Here is the algorithm:

1. Compute the QR factorization of A, obtaining A = Qo Fy.
2. Compute the QR factorization of RY, obtaining Rl = Q:R,.
3. Compute the QR factorization of RT, obtaining RT = QqR,.

4. Continue in the same way.

Notice that if we stop after the second step and perform the QR factoriza-
tions in steps 1 and 2 with pivoting, then this is just the QLP decomposition.
If on the other hand we do not pivot and do not stop after the second step but
continue on, we obtain something akin to the QR algorithm for computing

eigenvalues and eigenvectors, which follows [15]:

A0 = 4

for k=1,2,...
QEWR® = A=) QR factorization of A%~
A® = REIQK)  Switch factors



The A®) converge to a diagonal matrix whose elements are the eigenvalues
of A in decreasing order.

To see how the QLP iteration relates to the QR algorithm, define the
matrix A® = RLR,. Now from the QLP iteration, RY = Qaip1Rois1,
so that A% = Qg1 Roi11Ry;. Since the product of two upper-triangular
mafrices is upper-triangular, this equation represents a QR factorization of
A% the first step of the QR algorithm. To perform the second step, we
switch the two factors [9]:

i+1
ARD = Ry i RoiQain
T
R21+1R25+1
T 7
Rzi-i—leg;.{_zQZHszHi

T
= R2’i—§—2R2i+2‘

We see that every two steps of the QLP iteration (excluding the first) on
the R; are equivalent to one step of the QR algorithm on the RL Ry;. Since
the A® converge to a diagonal matrix whose elements are the eigenvalues
of A® = RTR; in decreasing order, the Ry; converge to a diagonal matrix
whose elements are the singular values of Ry in decreasing order. (A similar
argument can be used for the R; when 7 is odd.)

Some convergence results for the unpivoted version of the iteration were
given by Mathias and Stewart [9] and Chandrasekaran and Ipsen [3]. Let
R be the upper-triangular matrix at one step of the iteration and let R be
the upper-triangular matrix at the next step. Partition the n-by-n matrices

I e R
0 Ra 0 R

as



where Ry: and R}, are k-by-k. Mathias and Stewart showed that if

p = || Raoll/inf(R1:) < 1, then ||Ri,|] < p||Riz|l- Chandrasekaran and Ipsen
studied not only the convergence of the R matrices, but also the convergence
of the singular vectors of the R matrices as well. They provided some mono-
tonic convergence results and some asymptotic convergence results and also
suggested preceeding the iteration with an RRQR. algorithm to make p as
small as possible.

We would like to point out that the QLP iteration also computes the
singular vectors. At each iteration, an orthogonal matrix is computed as
part of the QR factorization. A product of these accumulates on each side of
the R®, the product on the left converging to U and the product on the right
converging to V7. In the case of the QLP decomposition, that is, stopping
after two iterations, there is only one matrix on each side, ) and P. Error
bounds on how well they approximate the singular subspaces are available.
See [9] and {13, Chap. 5, Thm. 2.3]. Our focus will be on the convergence
of the triangular matrix to the singular values.

3 Convergence of the QLP Decomposition

3.1 The Extreme Singular Values

First we will see how well the QLP decomposition approximates the extremal
singular values, ¢y and ¢,. In studying the QLP decomposition, we let the
notation reflect the fact that we view the decomposition as the first two steps
of the QLP iteration. Thus we use Q% instead of @, QW) instead of P, and
(RUT instead of L. Stewart pointed out that the pivoting in the first step
was crucial, but necessary in the second step only to avoid “certain contrived
counterexamples.” So to simplify the analysis, we will assume no pivoting
on the second step. This is fine, since the results can only get better with
pivoting.

We are not here seeking precise bounds, but only rough estimates sufli-



cient to explain the good convergence after only two steps. In analyzing the
first step, we note that all rank-revealing-type algorithms perform roughly
equally most of the time. This frees us to use bounds from any RRQR algo-
rithm in our derivations, while still tacitly assuming a pivoted QR decompo-
sition in the first step. We will use the bounds provided for “Hybrid-III" by
Chandrasekaran and Ipsen [2].

Since we are interested in bounding the error in approximating o, we let
k =n — 1. In this case, the relevant bounds are:

Q< Vo, (1)
inf(RY ;0
f(Riy) = T (2)

(The bound (1) is originally due to Golub and Van Loan [6].)

After the first step, we no longer have a full matrix A but an upper-
triangular matrix R, so we may employ the analysis of Mathias and Stewart
191, Their paper is divided into two parts. In the first, they studied the
unpivoted iteration on block upper-triangular matrices. They showed [9,
Theorem 2.1] that under the agsumption

o _ IRRI _ )

mf(R(i))
the following hold:
1RGN < s 4R, (4)
o (RGY) < oy(RY),  i=1,...,n—Fk (5)
o; (RS > o (R, j=1,...,k (6)

In the second part of their paper, they used these results to approximate
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the singular values of & block upper-triangular matrix R by the singular
values of a block diagonal matrix £. Partition R and R as

R= Ry R and B = Riun O ‘
0 R 0 Ry

In general, the singular values of R differ from those of R by no more than
| R12]] [6, Cor. 8.6.2]. Mathias and Stewart show that if

Rl <1

p= inf(RH) ’ (7)

then

. | Rz ?
oj(R)/o;(R) =140 ((1 = pz){inf(Rﬂ)F) |

We will assume that (3) holds with ¢ = 0, that is, after the first step. This
is not an unreasonable assumption, since the pivoted QR factorization of the
first step roughly orders the embryonic singular values. Note that if A has
j zero singular values, then this initial pivoting will put zeros as the last j
elements on the diagonal of R®). The matrix can then be deflated (the last j
rows and j columns of R(® discarded), and the iteration continued with R(®
having all non-zero singular values. We may therefore assume that there are
no zero singular values.

Now we are ready to state our first theorem.

Theorem 3.1 Let A be an m-by-n matriz and let o,_1(A) > 0,(A). Let
R be the R-factor in the pivoted QR factorization of A, AIl = QRO
and let R be the R-factor in the unpivoted QR factorization of (RO)T,
(RONT = QW RN Assume that the bounds (1) and (2) hold and that p© =
[rit|/inf(RY) < 1.

11



Then

D) < O O( nf | (R3] ) .
Tn-1 \[1 = (pW)2inf(RY))2

T

Proof:

Since p© = |} /inf(RY) < 1, by (5) and (6) we have |r's| < |r{| and
IR = |RYD}, so that i) = |'r(1)|/1nf(R§§)) < 1 also. Hence Mathias and
Stewart’s result [9, Theorem 3.1) gives

% 1o IR
5] [1— (pV)2)[inf(REY)2 )

or

|r5;3|—~an<|r(ﬂi( 2 | )
- [1— (p0)2)(inf(R{Y)]2

From this, the resuit follows:

12



(1) @

IA

A0 _ g | 1R |2
Pl = on S ([1 (PO Jfin(R 5?)}2)
( (

PRI
e mf(R(”)P) ¥

—
(0)32 (0) 2
— (PO mf(Ru )2
o _Iriap ( (R )
} mf(R&?) (1~ ()2 inf (R3]
3 B ploy2
S Z‘n O fn’2||1212 ” (1) . (11)
Tn-1 \ [L— (pM)?][inf(R3;)]?
The inequality (9) follows from (4}, (10) follows from (5), and (11) follows
from (1) and (2). 0

Note that here RQ is a vector. Theorem 3.1 gives a bound on the error in
approximating the smallest singular value o, of A by |T7(r,2 |, the absolute value
of the final element on the diagonal of RV, We see that the error |r,(11¢2| — 0o,
is cubic in o,. From equation (10), we see that one order comes from the
|r$32| factor in front, which is bounded in the rank-revealing first step while
two orders come from the (p{®)? factor contributed in the second step. The
inequality also shows that the relative error (jrin| — on)/0y is quadratic in
On/On-1-

We illustrate Theorem 3.1 on a 30-by-30 matrix. We fix the largest 29
singular values to be spaced evenly from 1 to 10. We perform the QLP
decomposition {with pivoting on the first step and no pivoting on the second
step) five times, allowing the smallest singular value, o3y, to take on the
values 10711072, ... ,10™°. We expect the absolute error |r§(1)},30| — o3 to
decrease by 107 on each run and the relative error (}r§}330| ~ 30) /030 to
decrease by 1072 on each run. This is verified in Figure 2.
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absolute error u relative error
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Figure 2: As o3y decreases from 10! down to 10™°, the absolute error |n(;172 |—
o, decreases as the cube of 039, and the relative error (|rid|—0y,) /o, decreases
as the square of g3p/099 = 039/1 = 030-

There is an analogous result for Tﬂ). Because the pivoted QR factor-

(0)! —
11

ization makes |r£2)| equal to the norm of the largest column of A4, |r
maxi<j<n ||Ae;ll3, where e; is the j-th canonical vector, we do not need to
borrow an RRQR bound for |er) |. For any A € R*™, we have

A
max || Ae;l|2 > 14]l>

1<j<n N (12)

This is a standard result: ||A||Z = max,=1 [|Az|} < |Al% < nmaxicj<n [|Ae;l3.
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The first inequality is from, for example, Theorem 2.5 on p. 175 of [10].
When we take the column pivoted QR factorization of a matrix A, the ab-
solute value of the element 711 in the upper-left corner is equal to max; <<, || Ae;ils.
Equation (12) therefore tells us that }r\}| is greater than or equal to oy /\/7.
S0 here we have an RRRQ bound automatically. The one RRQR bound

assumed for this case is {2]:

IR < v/2(n — 1) 0. (13)

The theorem is very similar to Theorem 3.1.

Theorem 3.2 Let A be an m-by-n matriz and let o1(A) > o2(A). Let R®

be the R-factor in the pivoted QR factorization of A, AIl = QOR® and let

RW be the R-factor in the unpivoted QR factorization of (RO)T, (RO =

QWRW . Assume that the bound (18) holds and that p® = |[RQ /|~ V] < 1.
Then

5
PO gt < B (MRS ) 1)
St = (o)

Proof:

Since o = ||Rg7|/Iri?} < 1, by (5) and (6) we have | Ry;)| < || B33 and
|r§i}! > |r§{{)|, so that pll) = ||R£12)|] / |'rﬁ)| < 1. Hence Mathias and Stewart’s
result [9, Theorem 3.1] gives

Ml e IREP
o1 (1= ()2 (riY)?

Y
—

or

15



Rfi) 2
P - ot < Do | el (1}2)-
2~ ()i

From this, the result follows:

(132
(D=1 _—1 rO-Lo || B35 ||
ricl™ = < ] (h D)2 7Dz

< ppg [ _POPIRS 15)
) (1= (W)
< pOpo (VIR (16)
= - (D)
< RSP, 1R 12
- {0)13 [1— (p)2)( (1))2
< ||R“”||2 nt||Rip | a7
- [1 — (p)2 (1))2
(9)
o3 n2 1|R12 7
< ;O ( a0 ) (18)
t (1= (W) (riy)
The inequality (15) follows from (4), {16) follows from 6, (17) follows from
equation (12), and (18} follows from 13. O

Note that in Theorem 3.2, the quantities in question are reciprocals, and
the convergence is cubic in 1/07. We illustrate the theorem using a 30-by-30
matrix as we did Theorem 3.2. This time we fix the smallest 29 singular
values to be spaced evenly from 0.1 to 1. We allow o to increase from 10
to 10° over five runs, and we expect to see the absolute error decrease by a
factor of 10° and the relative error decrease by a factor of 10? with each run.
See Figure 3 for the results.
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absolute error . relative error
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Figure 3: As oy increases from 10! up to 10%, the absolute error |r{Y|"t — o7

decreases as the cube of o7, and the relative error (Jrﬁ)rl — oY) o7t
decreases as the square of o3/0y = 1/0y = o7t

3.2 The Interior Singular Values

There are generalizations of the above bounds in terms of the norms of R}
and Ry,. That is, if i1, has dimension k£ and hence gy, dimension n — k, we
can bound [|(RY) || — 0" and [|RE)|| — o1,

For general k, the bounds provided for “Hybrid-I11” by Chandrasekaran

and Ipsen [2] are as follows:

17



1B < VE+1{n— k) opes, (19)
inf(RY) > i (20)

VE(n—k+1)

The general result is given in the following theorem.

Theorem 3.3 Let A be an m-by-n matriz and let o,(A) > opy1(A). Let
RO be the R-factor in the pivoted QR factorization of A, AIl = QRO
and let RY be the R-factor in the unpivoted QR factorization of (ROHT,
(ROYT = QWRW, Assume that the bounds (19) and (20) hold and that
P = | Rl /inf(RY) < 1.

Then for j=1,...,n—k,

oi(R) — ok _ (oka1 " nd || Ry |2 )
' S( )O(u—mmmmﬂm%F @

and for j=1,... ,k,

Mﬁﬁ*WT<Cmq% nd || RiZ |” @
o7 AN 1 — (p)2][inf(R{)]2

7

Proof: The proofs of inequalities (21) and (22) are similar to the proofs
of Theorems 3.1 and 3.2, respectively. For (21), for example, Mathias and
Stewart give us the first line

R(1)||2
o5 (RY) = sy < 05 (RO I, ,
T TR - (o) [inf(RO)]?

and the rest follows as in the proof of Theorem 3.1. O

18



Theorem 3.3 tells us that when there is a gap between o and 0.1, the
relative error in each of the singular values is quadratic in the gap ratio
Ox41/0%. For the singular values at the gap, the absolute error is cubic in the
singular value, as the following corollary spells out.

Corollary 3.4 Under the assumptions of Theorem 3.3, we have

3 511 (0} 12
TR

B - oxir < "’“;10( ol ) (23)

i \[L - (pW)2finf(RY)
and
. _ o2 n3 | R
I - ;1 < Zetto LAY R
af " \[1 - (p0)2|[int(RY)J?

Note from the bounds in Theorem 3.3 that the corollary represents the
worst case. That is, the bounds are better as we go away from the gap.
Theorem 3.3 helps explain why the QLP decomposition does so well even
when the ratios between neighboring singular values are close to one. As long
as there is one substantial gap somewhere in the singular values, convergence
will be fast for all of them.

So we see how the pivoting is so important to the QLP decomposition.
The pivoting in the first step roughly orders the embryonic singular values.
In the theorems, this allows us to make the reasonable assumption (3) for
t = 0. This ordering then allows the guadractic convergence factor in the
second step.

In addition to providing this ordering, the pivoting in the first step also
gives us a linear convergence factor (in the form of the RRQR bounds). Thus
the rank-revealing nature of the pivoting furnishes one order of convergence,
while the ordering nature of the pivoting sets the table for the second step
to provide two additional orders of convergence.
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Note that neither the assumption (3) nor the assumed RRQR bounds
necessarily hold for the column pivoted QR decomposition. But the RRQR
bounds often do, and (3) is more probable the larger the gap, so this analysis
helps explain why QLP apparently does so well in practice. Without pivoting,
the two-step algorithm not only fails to provide the linear convergence factor
in the first step; more importantly, it often fails to provide the ordering
needed for the quadratic convergence factor in the second step. Total failure
is often seen with graded matrices. Pivoting is key.

We now illustrate Theorem 3.3 and Corollary 3.4 with a couple of exam-
ples. In each example we use a 100-by-100 matrix, let there be gap between
oso and o3, and once again let the gap ratio os1 /05 decrease from 1071
initially to 107° in the fifth run.

The first example illustrates the bound (23). We fix the fifty largest
singular values to be equally spaced from 1 to 10. The lowest fifty singular
values are also equally spaced, but their range varies from 107! to 1072 on
the first run, from 1072 to 1072 on the second run, and so forth. As the gap
ratio os1 /o5 thus decreases by a factor of 10 each run, we expect to see the
absolute error ||R5{212)|| — 051 and the relative error (||R%)|| — 051) /051 decrease
by factors of 10° and 10?, respectively. This is shown in Figure 4.

In the second example, we illustrate the bound (22). This time we fix the
smallest fifty singular values to be equally spaced from 0.1 to 1. The largest
fifty singular values range from 10 to 102, then 10% to 10°, etc. As the gap
ratio thus decreases by a factor of 10 each run, we expect to see the relative
error in each of the first fifty singular values decrease by a factor of 102. This
is borne out by Figure 5, in which we plot the relative error in o7 and oy

4 Convergence of the QLP Iteration

In section 2.2 we discussed taking the QLP decomposition beyond just the
first two steps, resulting in an iteration (the QLP iteration)} that converges
to the singular values. In this section, we take two approaches to studying
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107" ' ' : 10
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Figure 4: As o5, decreases from 10~! down to 107", the absolute error
]|R§12)|| — o051 decreases as the cube of o51, and the relative error (H(R%)H —
os1) /051 decreases as the square of 051 /050 = 51/1 = 051

the convergence of the QLP iteration.

4.1 More lterations

In sections 3.1 and 3.2 we saw that with a gap between o and opy 1, the
QLP decomposition approximates all of the singular values with a relative
error depending on the square of the gap ratio oypq/op. If we iterate beyond
the first two steps (assuming that pivoting is used on the first step and no
pivoting on each subsequent step), the error bounds improve by a quadratic
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relative error in @'fl' relative error in Teo

10 E T T T

10—13 [ L 1 I i 10 L L L
1 2 3 4 5 1 2 3 4 5
Figure 5: As o5 increases from 10 up to 10%, the relative error (oy (R{Y)~! —

o7Y) /o, plotted on the left, and the relative error (o4 (RY) ™! — o) /om,
plotted on the right, both decrease as the square of of o5, /o5 = 1/050.

factor in each step. To see this, we can simply apply the bound (4) at each

iteration.

Theorem 4.1 Let A be an m-by-n matriz and let ox(A) > op11(A). Let RO
be the R-factor in the pivoted QR factorization of A, ATl = QORO and let
R®, i > 1, be the R-factor in the unpivoted QR factorization of (RU—7T,
(RE-NT = QURY . Assume that the bounds (19) and (20) hold and that
PO = | R I/ inf(RY) < 1.

Then for j=1,...,n—k,
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C’j(Rg)“’w<(mak+l)%o n“P RGP -
A [1 = ()2 )nt(BD) )

and for 7 =1,...,k,

oy (R — o7 <(ak+1)2“'0 o L G W
a;’ “\ o [1 — (p)?][inf(R)]?

J

Proof:

The proofs are similar to those given before. For example, in proving
the bound (25), the only real difference from the proof of Theorem 3.1 is
inequality (9), different here because we are iterating. So the first two lines
of the series of inequalities are as follows:

oy (2 — Oy < 0 Rgiz)o ”R%)”g . )
(RS < 0(Bas) ([1_(p(i))2][inf(R§?)]2

(IR ) |
[1 = (p)?]lnf(RE)]

< (RGO (

The rest of the proof proceeds as expected. O

4.2 Assymptotic Convergence of Individual Elements

We would now like to make some observations and conjectures on the rate of
convergence of individual elements in the R matrices as well as individual
elements in the U® and V® matrices, where R® = U@L (V. Unfortu-
nately, we cannot provide hard and fast proofs for everything, but we will
describe what we see. It appears that the convergence of the diagonal ele-
ments of the R® depends on the convergence of the off-diagonal elements.
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We will prove a statement concerning this dependence. The convergence of
the off-diagonal elements appears complex, and we will give some observa-
tions.

We already know that the R® converge to a diagonal matrix whose el-
ements are the singular values of A in decreasing order. So in discussing
asymptotic rates of convergence of elements in R®), we may assume that
the diagonal elements are close to the o; and that all of the off-diagonal el-
ements of R are very small. With pivoting in the first step, convergence
often reaches the asymptotic range quickly, after the first two or three it-
erations. Note that whether pivoting is used (in the first step only or on
every step) or not, there will come an iteration after which pivoting ceases
anyway. Hence, it would seem that asymptotic rates of convergence would
not depend on whether we pivot. This intuition is wrong, however, for the
acceleration in convergence afforded by pivoting extends in some cases even
to the asymptotic convergence rates. We will comment on this.

Either Householder transformations or Givens rotations can be used to
triangularize each (R®)T. We will assume the use of Givens rotations, since
their action is easier to track and visualize, and because they illuminate the
rates of convergence for specific elements.

Let us look at how the elements of (R®)” could change while the ma-
trix is being upper-triangularized via Givens rotations. The elements (r@)%
through (+®)7, are first zeroed out, then the elements (r®)%, through (r®)Z,
are zeroed out, and so on. We will assume that elements in each column are
zeroed from top to bottom. Doing so gives us a useful analytical result. If is
easy to verify that zeroing out the elements in this order leaves the submatrix
consisting of the bottom n — 1 rows and n — 1 columns in lower-triangular
form. This means that in zeroing out the second and subsequent columns,
the mechanics look exactly the same.

When an element (r9)%, is zeroed out, the Givens rotation will change
entries only in rows 7 and k. Take a look at Figure 6.

In Figure 6 we have assigned different letters to the nonzero elements that
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T T X T T T r X T I I I
x x x 0 ac¢c ¢ 0
T e
T I z x
X X X X h dl dz b
T T T T T r ¥ T T I

Figure 6: The element ()%, is about to be zeroed out by a Givens rotation.
On the left the elements which at this point are nonzero are marked with
an x. The bold elements will be changed by the Givens rotation. On the
right, depending on what type of change the Givens rotation will effect, the
changing elements are assigned various letters.

change to indicate for each element what type of change the Givens rotation
will effect. For example, the elements ¢; and ¢y will be changed in the same
way. Figure 7 shows exactly how each element is changed.

) sthds hb
a -+ ¢ -+ 0 a? +h? e a\/ca.2+h2 VaZ hE
h -+ d. -+ b 0 oo, gdy—hes 0 ab
8 Var-+h? Vo2th?

Figure 7: A Givens rotation affects elements in two rows. Those elements
are shown on the left, with letters indicating the type of change they will
undergo. On the right, the elements appear as they are after the Givens
rotation.

First of all, note that with every Givens rotation that is applied, the

diagonal elements will always play the role of either a or b. In fact, the

diagonal element (r®).

namely when the j — 1 elements to the left of it in row 7 are being zeroed.

will first play the role of b precisely j — 1 times,

It will then play the role of a precisely n — j times, namely when the n — j
elements below it in column j are being zeroed.

So the convergence of a diagonal element is completely determined by
these n — 1 Givens rotations. Looking at Figure 7, we see that whether
the element is acting as a or as b for a given rotation, it receives an O(h?)
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perturbation, where A is the off-diagonal element being zeroed by the given
rotation. As all of these n — 1 off-diagonal elements are converging to zero,
it is obvious that asymptotically, only the largest of the n — 1 elements will
contribute significantly to the convergence of the diagonal element. The rest
of the n —1 elements will only slightly alter the value of the diagonal element
at each iteration. Since asymptotically, the largest of the n —1 elements will
be the one(s) with the slowest asymptotic convergence rate, it is acceptable
to ignore the contributions from all the other off-diagonal elements.

Let us make this more precise in the context of an example. We will
write things in terms of a small quantity ¢ < o,, and then we are free to
discard lower order terms. Say we are looking at the essential limit rﬁo) of
rﬁ), which will play the role of a for each of the n — 1 Givens rotations that
affect it each iteration. If r,(:g is asymptotically converging the slowest of all
the elements in the first column below rﬁ), then we ignore the contribution
of all the others. (We will later consider the case when two or more of these
clements share the slowest convergence rate.) Let us assume that [rL)| < e
for all ¢ > ig, some iy and all the other |rﬁ)|, 4 # 1 are less than ¢? for all
i > 1p. Let Aq,...,A,—1 be the asymptotic convergence rates of each of the

(i) ()

rit» 1 < j < n. Then for ¢ > iy we assume that 7|’ is converging with a rate

of Aj + &;, where |§;| < e. We will require iy sufficiently large so that the
largest (slowest) rate satisfies Ay + € < 1. Letting h = 7'1(:1)5 we look back at

Figure 7 and see that for 7 > iy,

T
r = |2+ )
=2

= T2+ R+ 0,

We see that of all the n — 1 off-diagonal terms that could contribute to
r® only b =r® makes an O(e?) contribution. All the rest effect only O(e?)

perturbations. So in a similar fashion we have
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D = ) B (O B + O

P = ) 4R (O B A + [k + 8er) Ok -+ 8142)J2 + O(e)

io+144 2
( 11 (/\k+5a)) h} + O(e*).

a=ig+1

[ 0]
iy = J(r&“”)“hﬂz

4=0

In equation {27), there might be a question as to whether we can actually
sweep the contributions of all of the n — 2 other off-diagonal elements into
the O(e?), since each of these elements contributes an infinite series similar
to that of h = T(z) The contribution from a generic one A = rt(,? can be
bounded as follows:

£ (1) « Sty

a,_'m+1 F=0

= BN +e¢)? Z(Ab + €)%
=0

1
1- ()\b + 6)2

= R £ 21 +0 (s Ee)?)
= O(e"),

= FLZ()\b + 6)2

since h = O(e!) and Ay + € < Ay + € < 1 by assumption when i > ip. So
equation (27} holds.

Now we have a feel for the proof of the following theorem, which concerns
the asymptotic convergence rates of the diagonal elements.

Theorem 4.2 Let € < o,. Let iy be an integer sufficiently large so that for
i > ig the following hold:
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1. For each 1 < s < n, denote by h. the element having the slowest (i.e.,
largest) asymptotic convergence rate of all the elements in the same row
or column asr$), namely, (rT T and (PO L (PO
and denote the asymplotic convergence rate of h, by ;. If more than
one of these n — 1 elements share the same slowest asymptotic conver-

gence rate, denote them by hy,, hs,, elc.

2. Assume the rate of convergence of each of these n—1 elements is within
€ of its asymptotic convergence rate. So for example, the rate of the
element hy at iteration 1 > iy is A; + 6;, where |6;] < e. Similarly for
the rest of these n — 2 elements.

3. Assume all of the off-diagonal elements of the matriz R®) are less than
e in absolute value, except for the hs;» 1 < s < n, which need only be

less than € in absolute value.

4. Assume that each of the diagonal elements rik 1 < s < n is within €

of o,.

5. Assume A;+e <1, forl <s < n.
Then the convergence rate of 'rgi) is X2 + O(e).

Proof: Without loss of generality, we assume that the diagonal elements
of the R are positive.

First let s = 1.

Say there is only one element h; among the n — 1 off-diagonal elements
in the first column of R%;) that converges with the slowest asymptotic rate

A1. We have already derived formulae for ?"?1) and rﬁ‘)) above. Let P =

[T+ (A, + 6,). We have
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r) -l = \J(T§§_1))2+h?+2(Ph1)2~ (V)2 + B2+ O(e)

=0

2 oG 2 9
-1 1A '*‘Zjﬁg (Ph) 1 hf 4
-l ( R T TR ) A
12;20 (Ph)?
= 5oy T O(e*).
2 7’&1 g

Similarly,

=0

r) - = J(rﬁ“”)uh%&j(w

— 2 B2 (M + Gigs)ha)? + O(€)

152, (Ph)?

- + O(e*).
2 Tg Y

So the asymptotic rate of convergence of r§"3 is

. 1 EE (PR

TﬁO) - Tg?l) R + O
TSO) _ :,«%“1) 1 Zieo(Ph)?
N

> (Pha)” 4

= =TTy -+ O(t’ )
Zj:(] (Phl)
To bound this, we can set all of the ¢, in P = H;D:ziﬂ(’\l + 8,) to their

maximum values, obtaining
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h2 S (AL 4 )2t (M £ 6)2—‘_——1“?
h; Zgl()\l + )23+2 O(e") = 11 Pazel O{e*)
I Zj:{)( 1 6) ].-—(A]_:i:ts)z
= (/\1 + 6)2 -+ 0(64)
= X+ O(e)

Now consider the case when s = n. The only Givens rotations that affect
(r®YL, are the ones that zero (r®)%,, ... (r®)' _,. Again assume there is
precisely one of these elements, say (r("))fl, which has the slowest asymptotic
convergence rate. Set h, = (r®)7}, and let its asymptotic convergence rate
be A,.

We can look at Figure 7 to see how things will work. The b in Figure 7 will
be here rif;,,_l), and at each iteration this will be multiplied by a/va® + hZ2.
The element a will be r,(:,z and the element A will be h,, both of which
change at each iteration. All the elements in the last row of (R®)” other
than h, will cause only O(e?) perturbations as before. This time we let
P= H;":‘:ﬂ +1{An +3,), and we use the convention that H:ﬁ_—m 11 (An+dy) =1

We have
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{i+34)

o0
. . T
o) = e [ et
j=0 ¢

(rF N2 1 (Phy,)

_ 0
—rlD ke 1 O(et)  (28)
(rn)? + b

T 1 R
= {i-1) 1—= n P2
T —
" { 2(rf )y ]
1 h?
- f:n Y 1-5 (;; +O(64)
2 (T4)?

: h2 i P2 1 A2
= D= E s 1+____L)+0( 4
Tnn i 7 €
( 2 L (Y 2 (ri))?

_ - h? P?

= O(eh).
'ﬁ:’ﬂ‘ 1
2 Py (r( JrJ))
This leads to
{i~1) B2 P2
T,(ﬁ) TS:JI) —Tan T _2 r (i+j))2 4
o = EC=T + O(e*). (29)
Tan" — Thn E] =1 (T(H".?}}z

To bound this, we once again set all of the 6, in P = HZ“;‘; s1lAn +48,)
to their maximum values. We also make use of the fact that the diagonal
elements are within €* of the singular values to which they are converging.
This gives us

Zoo (AnFe)2it2
j=2

e P O = X+ 0. (30)

j=1 gpte?
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Finally let s = I. The only Givens rotations that affect (r®))7 are the ones
that zero (F)7, ..., (F®)},_;, and the ones that zero (r®)f,, ..., (M),
Assume one of these has the slowest asymptotic convergence rate. Then the
proof for either the s = 1 case or the s = n case carries over.

If in any of the cases more than one of these elements converge at A,
the same proofs hold with minor modifications. For example say that both
(r9)% and (r®)] converge at the rate A,. Denote r ~ by h,, and rlp 1) by
hs,. So looking once again at Figure 7, (r®)% plays the role of b with h = h;,
and later plays the role of @ with h = h,,. Hence r{ ) , the analoge of e in

equation (28), is

2
o0 (i+4) P 2
|| 4 ~ (—(:1)) +O(e")
=0 \V (ri )2 + P2 "
2 2
P
_ (i—1) 2 4
= 7 H 1-— (———(m}) +(—T§;_U) + O(eh)
2
D Z Py 4
= 1y ( 5 l i 1) ( éf;"j))? )+O(G )

Here we used P; = (H;";ﬁ“ (M + 5a)) hy, and Py = (Hi§§+l(Ag -+ 5a)) i, .
The proof then continues as in the other cases. (At the step where we bound,
as in going from (29) to (30), letting each 8, = ¢ and ) = o, + 2,
everything inside the sum in the numerator except for (\; £ €)%*2 factors out

and cancels with the identical terms in the denominator.) For other cases in
which multiple elements share the slowest asymptotic convergence rate, the

proofs are similar. 1

Theorem 4.2 basically says that the asymptotic rates of convergence of the
diagonal elements are the squares of the rates of the off-diagonal elements.
More precisely, the rate of a diagonal element ri¥ is equal to the square of

32



the slowest rate among all the off-diagonal elements in the union of row s
and column s. So we now know the asymptotic convergence rates of the
diagonal elements given the asymptotic convergence rates of the off-diagonal
elements, to which we now turn.

We can use Mathias and Stewart’s results again here. Recall that under

the assumption (3) we have

41 ; i
IRE|| < o B

For sufficiently large i, if oy # 0xy1, then (3) holds. So we know that
every element in the off-diagonal block R%) must converge asymptotically
with a rate p < oxy1/0%. So we have the following bound on the convergence
of off-diagonal elements.

Lemma 4.3 For s <t let Ay be the asymptotic rate of convergence of rﬁ?.
If o5 # o1 then Ag < 0t/0s.

Combining Lemma 4.3 and Theorem 4.2 gives us the following bound.

Theorem 4.4 Let Xy, be the asymptotic convergence rate of 'rgi). Ifo,_1>
T5 > Osy1, then Ay < max((0s/05-1)%, (0541/05)%).

This bound is tight. In addition, there are many times when the con-
vergence is much faster. Examples given later will illustrate both of these
facts.

Having achieved a bound on the convergence of off-diagonal {(and therefore
diagonal) elements, we can make a few observations on precise agymptotic
convergence rates.

We can easily see what happens when A is a 2-by-2 matrix with distinct
singular values, for the passage from (R®)T to R is illustrated by Figure 7
(just look at the first and last columns). Since we are in the asymptotic
range, h is very small, and the diagonal elements ¢ and b are close to oy and
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oy. They experience O(h?) perturbations and thus remain close to o7 and
o5. If we denote the off-diagonal element of R+ by A’, then the rate of
convergence is h'/h = b/+/a® + k2. This is an O(h?) perturbation of b/|al,
5o we see that the asymptotic rate of convergence is oo/o;. Note that if the
singular values are equal, the convergence is painfully slow.

The elements in a general n-by-n matrix are experiencing two types of
effects from the various Givens rotations, and these can be seen once again
in Figure 7. Once each iteration, a given off-diagonal element z will be
zeroed out. That is, it will play the role of A in Figure 7. Let us say that
7 here receives a zeroing contribution to its convergence. Typically several
times each iteration, the element x will be affected by a Givens rotation
though it is not being zeroed out. That is, it will play the role of ¢, or d,
in Figure 7. Let us say that z is here receiving a nonzeroing contribution.
(The only off-diagonal element never to receive a nonzeroing contribution to

its convergence is rg It plays the role of h precisely once, with ¢ = rﬁ)

and b = r,gf%, and therefore its asymptotic rate of convergence is 0, /0y, the
reciprocal of the condition number.)

We already understand the effect of a zeroing contribution. Indeed, if only
zeroing contributions were in play, then the situation in an n-by-n matrix
would be a simple generalization of the 2-by-2 case: rg? would asymptotically
converge at a rate of ¢ /o, if 0, > oy and painfully slowly if the singular values
were equal. We know this is not the case from empirical observation. First,
repeated singular values tend to speed up convergence, and speed it up a
great deal. See Figure 8. As we know that this is not coming from zeroing
contributions, we have our first hint that nonzeroing contributions not only
sometimes play a significant role but can be agents of very fast convergence.
Second, nonzeroing contributions sometimes play a significant role (and bring
about fast convergence) even in matrices with all distinct singular values.

To get a feel for how this fast convergence might happen, let us take
a closer look at a nonzeroing contribution. Say an off-diagonal element in

question plays the role of ¢, in Figure 7 under a certain Givens rotation. If
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Figure 8: This is one observed convergence pattern for a matrix having sin-
gular values 10, 5, 5, and 1, written in bold on the diagonal for reference.
In place of each off-diagonal element is its asymptotic convergence rate. Be-
neath each diagonal element is its rate. {Note that the diagonal convergence
is as Theorem 4.2 states.) We know that nonzeroing contributions must be
significant simply because of the repeated singular values. But look at how
they speed up the convergence. The rates of the elements 'r%) and 7"93) are
faster than the ratio of any two singular values in the matrix. We would
expect 'r%) to converge at a rate of 5/10 = 1/2 were zeroing contributions
dominating. Note that its (much) faster rate here allows the diagonal element

r$) to have a faster rate as well, (1/5)? instead of (1/2)2.

we denote its value after this rotation is applied by ¢, then the convergence

rate is

ac, — hd, hd;
e Bl NN LN 31
s alc, (31

where the sign is the sign of ¢ and is different from the sign of the fraction.

/
CS_

(The signs of the elements is a topic we will not pursue here.) Keeping in
mind that a is large, being on the diagonal, we see that the convergence rate
will be about %1 if h, ¢, and d, are all about the same size. That is, the
Givens rotation will not significantly affect ¢;. But what if in equation (31},
the element ¢, is much smaller than h and d;?7 Then the ratio hds/|alcs is
no longer close to zero, and the contribution from this Givens rotation is

significant.
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So where there are disparities in the sizes of off-diagonal elements, nonze-
roing contributions can come into play. To see how they can speed conver-
gence, again consider the asymptotic convergence rate of ¢, given by equation
{(31). For this rate to be constant, ¢, must converge at the product of the
rates of A and d,. (The diagonal element a is large and constant for our
purposes here.} This is what we seem to observe with, for example, repeated
singular values. See Figure 9.

1 1 1
(10 5 % 35
4
5 % 3%
~ 10 T T T ry J
a~5 ¢ 0 ? ¥
N5 25
1
h d b~1 \ 1

Figure 9: The example of Figure 8 revisited. In the matrix on the left, the
last Givens rotation applied gave the element 7";(,13) (now marked ¢) almost
no zeroing contribution to its convergence because of the repeated singular
values 5 and 5. Now the element marked h is being zeroed, and ¢ will receive
a nonzeroing contribution, because in this example it is very small compared
to d and h. From the discussion, ¢ will converge at the product of the rates
of h and d. In this example, A and d are heing affected by primarily zeroing
contributions, so they are each converging at the rate of 1/5. So ¢ should
be converging at the rate of their product, 1/25. The matrix on the right,

which shows the rates again for reference, confirms this.

Before we state an observation concerning the asymptotic rate of con-
vergence for off-diagonal elements, let us set some notation to handle re-
peated singular values. Say that oy > o341 = -+ = Opyp > Okipr1. Set

u u) { ) -
P/E:JEI == Piﬁp = 0k/0%k1, and set chJ)rz == chip = Okap/Oktpti-

We already know from Lemma 4.3 that if s < ¢, then the slowest the
asymptotic rate of convergence of rg? can be is o,/0y, assuming the singular
values are not equal. For the general case, we here catalogue some of the
possible asymptotic rates of convergence for the off-diagonal elements based
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on our empirical observations.

1. If neither g, nor oy is a repeated singular value, then rg? often converges
at the rate o,/0;, but can behave as if o, and/or o, were repeated, as

described in the following.

2. If o, = o then 77 often converges at either the rate (p{*)2 or the rate
(pi‘))? Actually, a sequence of j equal singular values defines a j-by-j
block, all of whose off-diagonal elements converge at the same rate.

3. If o, # 0y and one or both are repeated singular values, then rﬁ? often
converges at the rate o;/oy, (pgu))zo“s/o*t, (pg))zcrs/crt, (pﬁ”))zas/cft, or
(o120, /0.

In Figure 10 are the asymptotic convergence rates for a few example ma-
trices with given singular values, and (1) through (3) above are represented.

In the 3-by-3 matrix, off-diagonal elements receive only zeroing contri-
butions, so the asymptotic convergence rate of 'rg) is oy/os. This is not
so for the 6-by-6 matrix. Although it has all singular values distinct, the
element 'rff; is receiving nonzeroing contributions, converging at a rate of
1/60 <« 1/2 = 5/10 = o5/04. The three 4-by-4 matrices have the same
singular values, 10, 5, 5, and 1, but converge differently. From these three
matrices, we see that asymptotic (and not just initial) convergence is depen-
dent not only on the singular values but also on the entries in the original
matrix. It is also dependent on whether pivoting is used or not. In the ex-
amples we locked at, pivoting on the first step of the QLP iteration tended
to give faster asymptotic convergence rates than not pivoting. (For example,
for 4-by-4 matrices having singular values 10, 5, 5, and 1, the rates on the
right are far more likely to occur when pivoting is used on the first step.
Recall that it is discrepancies in the sizes of off diagonal elements that bring
into play nonzeroing contributions and therefore faster convergence. Pivoting
seems to encourage this.)

From studying the asymptotic convergence rates, we now have two in-
sights into how the convergence of individual elements in the pivoted QLP
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Figure 10: Here are six sample matrices with their singular values given in
bold on the diagonal. Off-diagonal elements are replaced by their asymptotic
convergence rates in italics, and diagonal elements have their rates written
below them. Concerning the off-diagonal rates, see the text for some discus-
sion and also notice that each of (1) through (3) in the catalogue on page 37
is represented. Concerning the dlagonal rates, notice that Theorem 4.2 is
everywhere verified: the rate of 7"33) is equal to the square of the slowest (i.e.,
largest) rate among all the ofl-diagonal elements in row s and column s.
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decomposition can be fast in the presence of repeated singular values. One, in
the presence of repeated singular values, convergence tends to be faster than
with distinct singular values. Significant nonzeroing contributions cause the
faster convergence, and they are necessarily a part of the landscape when
repeated singular values are around. They are optional (and indeed less
cominon, at least in our observations) when singular values are distinct. Al-
though these are only asymptotic results, the pivoting can often speed up
the approach of the asymptotic range.

Two, recall that nonzeroing contributions are caused by large discrepan-
cies in the sizes of off-diagonal elements and that pivoting tends to encourage
this. The discrepancies are thus starting to form in the first step, and where
there are discrepancies, there are some small off-diagonal elements already.

These observations apply not only when there are repeated singular values
but also when the ratios between neighboring singular values are close to one.
Indeed, prior to reaching the asymptotic range, the QLP iteration cannot
distinguish identical singular values from those that are merely close. The
slow convergence in the latter case is an asymptotic phenomenon. Early on
the convergence is fast.

It is also interesting to note that when faster convergence occurs, the
convergence of the matrices of singular vectors of the R() is also faster. For
example, Chadrasekaran and Ipsen [3] show that the convergence to zero of
the angle between the first & columns of U® (and also of V) and the first
% columns of the identity matrix is bounded by o1 /0x. We would like to
point out that faster rates are attainable when nonzeroing contributions are
at work. For example, in the 6-by-6 matrix in Figure 10, we noticed that
the element in the (4,5) position is converging fast, at a rate of 1/50 instead
of at the “expected” rate of o5/04 = 5/10 = 1/2. Correspondingly, the first
four columns of U® and of V) are converging not at a rate of 1/2 but at a
rate of 1/10.

Finally, we note that there are patterns in the asymptotic convergence of
individual off-diagonal elements of the U® and V® similar to the patterns
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seen in the R®.

5 Conclusion

We have studied Stewart’s pivoted QLP decomposition, which represents
the first two steps in an algorithm which approximates the SVD. The matrix
All, is first factored as AIl, = QR, and then the matrix RTTI; is factored
as RTTl; = PLY, resulting in A = QII;LPTII}, with @ and P orthogonal,
L lower-triangular, and II; and II; permutation matrices. Stewart noted
that the diagonal elements of L approximate the singular values of A with
surprising accuracy, and we have provided mathematical justification for this
phenomenon.

Specifically, we showed that if there is a gap between oy and oy, parti-
tion the matrix L into diagonal blocks Ly and Lsg and off-diagonal block Loy,
where Ly; is k-by-k. We show that the convergence of (o;(Ly;)™" cr;l) / aj"l
for j = 1,...,k, and of (0;(Laa) — Oksj)/Ok+y, for 5 =1,...,n—k are all
quadratic in the gap ratio ox.,/0. Hence the pivoted QLP decomposition
will probably approximate the singular values very well when there is at least
one large gap anywhere in the singular values, even if most of the other ratios
between neighboring singular values are close to one.

The “worst case” for the bounds are at the gap, where the absolute errors
Lt = o7 and ||Lag|| — ok41 are thus cubic in o' and 0.1, respectively.
The derivation of the bounds illuminated the fact that one order of covergence
is due to the rank-revealing pivoting in the first step; then, because of the
pivoting in the first step, two more orders are achieved in the second step.
In particular, the one order in the first step comes from the fact that we can
bound the norms of Rl"f and of Hop by o7 ! times a constant and o, times a
constant, respectively, with the constants depending only on & and n. OQur
analysis assumes that II; = I, that is, that pivoting is done only on the first
step.

The algorithm can be continued beyond the first two steps, and we made
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some observations concerning the asymptotic convergence of individual ele-
ments. Assuming that Givens rotations are used to triangularize the matrix
at each iteration, we saw that there were basically two effects that a Givens
rotation can have on an off-diagonal element. When all of the off-diagonal
elements are roughly the same size, then one type of effect dominates, and
convergence is relatively slow. When, on the other hand, there are signifi-
cant disparities in the sizes of off-diagonal elements, the other type of effect
dominates, and the convergence is accelerated. This is the case, for example,
when there are repeated singular values, providing more evidence as to how
the pivoted QLP decomposition can converge so fast when singular values
are close. We listed some of the common patterns convergence of off-diagonal
elements.

We also showed that the asymptotic convergence of the diagonal element
rii) is the square of the slowest asymptotic rate among all elements in row
s and column s. We were then able to produce a bound on the asymptotic
convergence rate of diagonal elements. Numerical examples illustrated the

asymptotic convergence of diagonal and off-diagonal elements.
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