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The example of Figure 2.8 revisited. In the matrix on the left, the
last Givens rotation applied gave the element rga) (now marked c)
almost no zeroing contribution to its convergence because of the
repeated singular values 5 and 5. Now the element marked £ is
being zerced, and ¢ will receive a nonzeroing contribution, because
in this example it is very small compared to d and h. From the
discussion, ¢ will converge at the product of the rates of h and d.
In this example, h and d are being affected by primarily zercing
contributions, so they are each converging at the rate of 1/5. So
¢ should be converging at the rate of their product, 1/25. The

matrix on the right, which shows the rates again for reference,

confirms this. . . . . . . . . . . .. e

Here are six sample matrices with their singular values given in
bold on the diagonal. Offi-diagonal elements are replaced by their
asymptotic convergence rates in italics, and diagonal elements have
their rates written below them. Concerning the off-diagonal rates,
see the text for some discussion and also notice that each of (1)
through (3) in the catalogue on page 44 is represented. Concern-
ing the diagonal rates, notice that Theorem 2.3.2 is everywhere
verified: the rate of rg? is equal to the square of the slowest (i.e.,

largest) rate among all the off-diagonal elements in row s and col-
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RW on the right. Note that none of the elements marked with a

‘y’ are needed to perform the computation. . . . ... .. ... ..
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ABSTRACT OF THE DISSERTATION

Analysis and Application

of Stewart’s Pivoted QLP Decomposition
by

David Andrew Huckaby
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2002
Professor Tony F. Chan, Chair

The pivoted QLP decomposition, introduced by G. W. Stewart, represents the
first two steps in an algorithm which approximates the SVD. The matrix Allj is
first factored as AIl, = QR, and then the matrix RTII; is factored as RTII; =
PLT, resultingin A = QII; LPTTIT | with @ and P orthogonal, L lower-triangular,
and IIy and II; permutation matrices. Stewart noted that the diagonal elements
of L approximate the singular values of A with surprising accuracy. We provide
mathematical justification for this phenomenon. We demonstrate that if there
is a gap in the singular values, the relative error in all of the singular values is
quadratic in the gap ratio. The worst case is at the gap, where the absolute error
is cubic in the singular values on either side of the gap. One order is due to the
rank-revealing pivoting in the first step; then, two more orders are achieved in
the second step. Our analysis assumes that [1; = I, that is, that pivoting need
be done only on the first step. The algorithm can be continued beyond the first
two steps, and we make some observations concerning the asymptotic conver-
gence. For example, we point out that repeated singular values can accelerate

convergence of individual elements. This, in addition to the relative convergence

xiil



to all of the singular values being quadratic in the gap ratio, indicates that the
QLP decomposition can be powerful even when the ratios between neighboring

singnlar values are close to one.

We also follow Stewart in considering truncating and interleaving the algo-
rithm, which are possible because of the nonnecessity of pivoting in the second
step, with an eye toward obtaining an efficient approximation to the truncated
SVD for low-rank problems. We show that the convergence results of the full
decomposition hold also in this truncated version. For a matrix having numerical
rank 7, the truncated pivoted QLP decomposition can be computed in O(mnr)

time, making it ideal for accurate SVD approximations for low-rank problems.

We also look at two applications in which the pivoted QLP decomposition can
substitute for the SVD, namely condition number estimation and latent semantic

indexing,.
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CHAPTER 1

Introduction

1.1 The Singular Value Decomposition

One of the most important tools for analyzing a matrix A is the Singular Value
Decomposition (SVD): If A is a real m-by-n matrix, then there exist orthogonal

matrices

U=1up,. .., U] € R and V = [v1,...,0,] € R

such that

UTAV = diag(oy,... ,0,) = £ € R™" p = min{m,n}

where 03 > 0y > -+ > 0, > 0 [GL96, Theorem 2.5.2].

The SVD shows us that any matrix A = UXV7 is equivalent to a diagonal
matrix, when supplied with the correct change of basis on the left and the correct
change of basis on the right. The vectors u; and v; are called, respectively, the
ith left singular vector and ith right singular vector of A. The o; are called the

singular values of A.



Since the rank of a diagonal matrix is the number of its nonzero entries, we
see that the rank of ¥ is the number r of nonzero singular values. Hence, the

matrix A can be written

r
A= E oiuw;r,
=1

which expresses A as a sum of r rank-one matrices. Since U and V are orthogonal,
the rank of A is thus r. A basis for the range of A is given by [uy,... ,u,], and a
basis for the nullspace of A is given by [v,41,... ,vn]. Note that since U and V

are orthogonal, we have || 4]l = ||2]| = 1.

That the rank of a matrix 4 can be obtained by inspecting the singular values
is definitely a selling point for the SVD. However, the decomposition says much
more about A, and this can be seen most easily by viewing things geometrically.
The image of the unit sphere under any matrix A is a hyperellipse. The left
singular vectors u; give the direction of the axes of this hyperellipse, and the o;
give their corresponding lengths. The right singular vectors v; are the vectors
in the original unit sphere that map to the u;. So the SVD tells us in which
directions A is “active” (from the singular vectors) and how much (from the
singular values). This is made precise by the following result [GL96, Theorem

2.5.3]: Let k < r = rank(A), and let

k
Ak = E a,;u,;v?.
1==1

Then



min = [|A— Bz =4~ A2 = op41. (L.1)
rank(B)<k

So Ag 18 the best rank-%k approximation to A, and the error is og1.

This result really brings to the fore the true power of the SVD, that the de-
composition tells us so much about the dimensionality of the problem represented
by A. First of all, as noted above, it provides the rank. By equation (1.1}, if
ors+1 = 0 and oy # 0, then the rank of A is k. Similarly, if ox. is numerically
zero and oy, is not, then A has numerical rank k. But we can generalize: If there
is a large gap in the singular values, say o is much larger than ox.1, we see
that Agyy = A + ak+1uk+1vg+1 is not a much better approximation to A than
is Apg, relatively speaking. Hence, gaps in the singular values allow us to break
up A into subspaces, in each of which A is “acting” roughly the same amount.
Geometrically, the kth axis of the hyperellipse to which A maps the unit sphere
is so much larger than the (k + 1)st axis that taking the first & axes provides
a good approximation to the entire hyperellipse. Practically, we can “chop off”
the SVD at this point, letting A = Ay, with relative impunity. The next logical
place to reduce the dimension would be at the next gap, say between o; and o4,
For k +1 < 4 < I, the input directions v; and output directions u; are far less

important than for ¢ < k& but far more important than for¢ > { +1

While the SVD gives a lot of information about A, it requires a lot of com-
putation time. What we would like to have is a good approximation to the SVD

which is cheaper to compute.



1.2 Prelude in QR

Let us survey some matrix factorizations which were around before the pivoted
QLP decomposition. Each gives a portion of the information that the SVD

provides, and we will look at them in order of increasing informativeness.

One attempt at gaining SVD-type information is, of course, the QR factor-
ization [GL96, Section 5.2]: Let A € R™*" have rank n. Then A can be written
uniquely in the form 4 = QR, where () is an m X n matrix having orthonor-
mal columns and B is an n X n upper triangular matrix with positive diagonal
elements. This can be made into a full blown decomposition which handles rank-

deficient A. For details, see [Ste98, Chap. 4, Sec. 1].

The QR factorization is very cheap to compute relative to the SVD. Since ¢}
is orthogonal, we know that ||Allz = ||R||2, so that the singular values of R are
the same as those of A. As we have effectively reduced a dense matrix A to an
upper triangular matrix R, we might hope that the diagonal elements of R are

approximations to the singular values of A.

This is clearly not true in general. For example, if the norm of the first column
of A is small compared to the norms of the rest of the columns, then ryy is small
and comes nowhere close to o7 = ||A|ls. All that is readily apparent is that

711 < o1 and T,y > 0.

We can introduce column pivoting into the computation of the QR factoriza-
tion [Gol65), and this makes a huge difference. Pivoting ensures that the diagonal
elements in the computed R-factor are in sorted order, and these are often rough
approximations of the corresponding singular values. They can also be used for
gap revelation, which of course requires less accuracy. Pivoting also provides at

least one bound that its unpivoted brother could not promise. The fact that rq;



equals the norm of the largest column of A gives rise to the bound ry; > o1/y/n

(see page 19).

e

Note that although the column pivoted QR factorization provides this useful
bound for the error in approximating o1 by r1;, only an exponential bound exists
for oy, and 7y, [Dem97]. So although in practice the diagonal elements of R are
rough approximations to the singular values, this need not always be the case.

(Indeed, the Kahan matrix provides a well-known counterexample. [Kah66])

This is one consideration that motivates the rank revealing QR factorization

(RRQR) [Fos86, Cha87]. If R is partitioned as

Ry Ry
0 Ry

H

an RRQR. algorithm tries to maximize the smallest singular value of Ry, and/or
minimize the largest singular value of Rye [CI94]. This essentially means making,
respectively, |[I%11|| as large as possible and || Ryl as small as possible. From
the interlacing property of singular values, opin(B11) < ox(A) and Opmes{FRae) >
or+1(4). So an RRQR factorization provides bounds on the singular values of A

in terms of the norms of the blocks.

In terms of tracking the singular values, the RRQR algorithms tend to perform
about as well as the pivoted QR factorizations, and they come with guarantees.
Whereas the pivoted QR. factorization can completely fail (like on Kahan’s exam-
ple}, an RRQR algorithm is guaranteed to work within the bounds it provides.
So for example, one algorithm which tries to minimize ||Rap|| can promise that

Trn < /N0y, a bound that the column pivoted QR. factorization cannot provide.



Stewart [Ste99] introduced another candidate for SVD-quality information
with minimal cost having the QR factorization as its only building block. The

pivoted QLP decom

LR Ry oL £

position requires only the work of two QR factorizations, and
one of them need not even be pivoted. Yet despite its simplicity and speed, the
decomposition provides approximations to the singular subspaces of 4 and gives
excellent approximations to all of the singular values of A. In this dissertation

we will study this fascinating decomposition.

1.3 Overview

The dissertation is organized as follows. To start off Chaper 2 we discuss the
QLP decomposition and illustrate just how good it is at tracking the singular
values. We also consider taking it beyond just two successive QR factorizations,
which leads to an algorithm that asymptotically calculates the SVD. In discussing
the convergence of this algorithm in the absence of pivoting, we point out the
connection to the QR algorithm and mention past work done by Mathias and

Stewart [MS93] and Chandrasekaran and Ispsen [CI95].

In § 2.2 in Chapter 2 we study the convergence of the QLP decomposition.
The decomposition is obtained by performing a pivoted QR factorization of A as
A = QR, where we have incorporated the pivoting into the matrix A, and then
a pivoted QR factorization of BT as RY = PL. If there is a gap between oy and
Gky1, partition the matrix L into diagonal blocks L1y and Lg; and off-diagonal
block Lgi, where Ly, is k-by-k. We show that the convergence of (o;{L11)™! —
o; ) o7 for j = 1,...,k, and of (0;(Ls) — 0k4)/0kss, for j = 1,...,n — k
are all quadratic in the gap ratio oky1/0k. The worst case is therefore at the
gap, where the absolute errors ||L7']| — o' and |[Las|| — ox41 are thus cubic

in U,f and o4, respectively. It turns out that one order is due to the rank-



revealing pivoting in the first step; then, the pivoting has provided a springboard
so that two more orders are achieved in the second step. Our analysis assumes
that T, = T that is, that pivoting is done only on the first step. That we have
relative convergence quadratic in the gap ratio for all of the singular values helps
show why the QLP decomposition can work so well even when most of the ratios
between neighboring singular values are close to one. It only takes one significant
gap for the decomposition to work very well. We provide numerical experiments

to illustrate the results.

In § 2.3 in Chapter 2 we present some observations concerning the asymptotic
convergence of the algorithm. The off-diagonal elements converge in interesting
patterns, and from them we can discern the asymptotic rates of convergence of
the diagonal elements. From this perspective of individual element convergence,
we again see the phenomenon of repeated singular values (or singular values that
are close) accelerating convergence. The results are obtained by analyzing the
actions of the Givens rotations used in computing the QR factorizations, and

numerical experiments are again provided to illustrate the theory.

In Chapter 3 we look at truncating and interleaving the QLP decomposition,
which gives a result analagous to the truncated SVD and is ideal for low-rank
problems. Truncating is computing only that part of the decomposition per-
taining to the larger singular values, including approximations to these singular
values and their respective singular vectors. Interleaving is a tool used to identify
a gap in the singular values, presumably in order to truncate at the gap. As the
computation proceeds down the diagonal of A, we alterate between steps one
and two, i.e., between computing rows of R and columns of L, using the diagonal
elements of R to probe for a gap and the diagonal elements of L to confirm an

alleged gap. When a gap is confirmed, the computation can stop, for at this point



the truncated pivoted QLP decomposition has been computed.

Stewart suggested truncating and interleaving, and we show that they actually
work. We extend our theory for the full QLP decomposition to the truncated
version. In particular, we show that if there is a gap between oy and o041, again
the convergence of (o;(L11) ™" — o} n/ o; Lfor j =1,...,k, are all quadratic in the
gap ratio o1 /or—this without having to compute the rest of the matrix L. We
also point out that the truncated QLP runs in O{mnk) time, where truncation

occurs after & rows.

We then consider two applications of the pivoted QLP decomposition in situ-
ations where it can substitute for the SVD. In Chapter 4 we look at the problem
of estimating condition number. We first discuss the idea of the condition of a
problem, illustrating the need for a condition number estimate. We then derive
bounds on the underapproximation ratio. A condition estimator should run in
O(n?) time. So using ideas related to QLP as inspiration, we discuss techniques
that provide estimates better than that of the pivoted QR factorization but run
in O(n?) or even O(n) time. We finish the chapter with some numerical exper-
iments that verify the ability of the QLP and some of these other methods to

provide good condition number estimates.

In Chapter 5 we use the QLP to do latent semantic indexing. Following the
exposition of Barry, Drmag, and Jessup in [BDJ99], we first discuss the idea of
representing a database as a matrix and performing queries. We then discuss the
idea of reducing the rank of the matrix by using the QR factorization or the SVD
and point out that the rank-reduced representation of the database reveals its
semantic content better than the original full-rank matrix. We then show how
the truncated and interleaved QLP decomposition is ideal for this application

and apply it to a small example. A concluding chapter provides a summary of



the dissertation.



CHAPTER 2

Convergence Theory

2.1 QLP: An Approximate SVD

2.1.1 The Pivoted QLP Decomposition

The QLP decomposition was introduced by G. W. Stewart [Ste99], who observed
its potency in rank revelation, singular value approximation, and gap revelation.
Let us call the diagonal elements in the R matrix of a QR factorization of A
the R-values of A. Noting that the R-values are rough approximations of the
singular values, Stewart suggested taking the pivoted QR factorization and then
triangularizing on the right, obtaining the factorization A = QI LPTTIY. If
we include the permutation matrices II; and I} as part of A and R”, we have
A = QLPT, called the pivoted QLP decomposition of A. Note that the second
step is equivalent to performing a QR factorization on R, obtaining BT = PL”.
Also note that L is lower-triangular. So the decomposition amounts to taking
two pivoted QR factorizations and thus factorizing A into the product of an
orthogonal matrix, a lower-triangular matrix, and another orthogonal matrix.

The diagonal elements of L are called the L-values of A.

Stewart showed empirically that the L-values track the singular values sur-

prisingly well —far better than the R-values. See Figure 2.1.

Note from Figure 2.1 that not only do the L-values identify the gap far better

10



pivoted QR

10 T T T T 1 H T T T
1 0-5 ! ! ! 1 _ 1 3 3 1 ]
0 10 20 30 40 50 60 70 80 20 100
b pivoted QLP
10
1 0-5 ) ] ! 1 1 H ] 1 1

0 10 20 30 40 50 60 70 80 90 100

Figure 2.1: QR vs QLP. Here the solid lines are the singular values of a 100-by-100
matrix that has a gap between o5 and o5. The dotfed line represents the
R-values in the first plot and the L-values in the second.

than the R-values, they also approximate the singular values. So with only the
extra cost of one more QR factorization, we get very good information—almost
SVD-quality information in many situations. (Note that the QLP decomposition
is a special case of the ULV decomposition, also introduced by Stewart [Ste92,
Ste93]. The usual ULV and URV decompositions are also rank-revealing but do
not attempt to approximate the singular values. Their main selling point is that

they are easily updated.)

11



2.1.2 The QLP Iteration

Stewart points out that without pivoting, the decomposition represents the first
two steps in an iterative algorithm that actually computes the SVD [MS93]. Let
us call this iterative algorithm the QLP iteration. In each step after the first, we
just compute the QR factorization of the transpose of the R factor produced by

the last step. Here is the algorithm:

1. Compute the QR factorization of A, obtaining A = QuRy.

2. Compute the QR factorization of R}, obtaining R} = @1 R;.
3. Compute the QR factorization of RT, obtaining R = Q2 Rs.
4, Continue in the same way.

Notice that if we stop after the second step and perform the QR factorizations
in steps 1 and 2 with pivoting, then this is just the QLP decomposition. If on the
other hand we do not pivot and do not stop after the second step but continue
on, we obtain something akin to the QR algorithm for computing eigenvalues and

eigenvectors, which follows [TB97]:

A — A

for k=1,2,...
QR R® = A1} QR factorization of A%~1

A®) = RBIQE  Switch factors

The A%} converge to a diagonal matrix whose elements are the eigenvalues of A

in decreasing order.

To see how the QLP iteration relates to the QR algorithm, define the matrix
A® = RTR,. Now from the QLP iteration, RE = Qi1 Rai1, so that A®) =

12




(Q2i11 941 Re;.  Since the product of two upper-triangular matrices is upper-
triangular, this equation represents a QR factorization of A®, the first step of

the QR algorithm. To perform the second step, we switch the two factors [MS93]:

i+1
AEFY = Roi i RiQoia
. T
= Ry Ry
T 7
= FRoi1Q9 42242851

T
= RaiaRaiya.

We see that every two steps of the QLP iteration {excluding the first) on the
R; are equivalent to one step of the QR algorithm on the RLRy;. Since the A®)
converge to a diagonal matrix whose elements are the eigenvalues of A9 = RT R,
in decreasing order, the Ry; converge to a diagonal matrix whose elements are
the singular values of Ry in decreasing order. (A similar argument can be used
for the R; when i is odd.)

Some convergence results for the unpivoted version of the iteration were given
by Mathias and Stewart [MS93] and Chandrasekaran and Ipsen [CI95]. Let R
be the upper-triangular matrix at one step of the iteration and let R’ be the

upper-triangular matrix at the next step. Partition the n-by-n matrices as

pe [ B}y o [ B

where Ry; and RJ; are k-by-k. Mathias and Stewart showed that if
p = |[Raal/inf(Ry1) < 1, then ||R,|| < pl|Rizll. Chandrasekaran and Ipsen

13



studied not only the convergence of the R matrices, but also the convergence of
the singular vectors of the R matrices as well. They provided some monotonic
convergence resitlts and some asymptotic convergence results and also suggested

preceeding the iteration with an RRQR algorithm to make p as small as possible.

We would like to point out that the QLP iteration also computes the singular
vectors. At each iteration, an orthogonal matrix is computed as part of the
QR factorization. A product of these accumulates on each side of the R®)| the
product on the left converging to U and the product on the right converging to
V7. In the case of the QLP decomposition, that is, stopping after two iterations,
there is only one matrix on each side, @ and P. Error bounds on how well they
approximate the singular subspaces are available. See [MS93] and [Ste98, Chap.
5, Thm. 2.3]. Our focus will be on the convergence of the triangular matrix to

the singular values.

2.2 Convergence of the QLP Decomposition

2.2.1 The Extreme Singular Values

First we will see how well the QLP decomposition approximates the extremal
singular values, o1 and o,. In studying the QLP decomposition, we let the
notation reflect the fact that we view the decomposition as the first two steps
of the QLP iteration. Thus we use Q9 instead of @, QW) instead of P, and
(RN instead of L. Stewart pointed out that the pivoting in the first step
was crucial, but necessary in the second step only to avoid “certain contrived
counterexamples.” So to simplify the analysis, we will assume no pivoting on the

second step. This is fine, since the results can only get better with pivoting.

We are not here seeking precise bounds, but only rough estimates suflicient to
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explain the good convergence after only two steps. In analyzing the first step, we
note that all rank-revealing-type algorithms perform roughly equally most of the
time. This frees us to use bounds from any RRQR. algorithm in our derivations,

while still tacitly assuming a pivoted QR decomposition in the first step. We will
use the bounds provided for “Hybrid-1II” by Chandrasekaran and Ipsen [CI94].

Since we are interested in bounding the error in approximating o,, we let

k =n — 1. In this case, the relevant bounds are:

[l < Vo, (2:1)

1
inf(RAYY > 0, 2.9
(Ry) = D) (2.2)

(The bound (2.1) is originally due to Golub and Van Loan [GL96].)

After the first step, we no longer have a full matrix A but an upper-triangular
matrix R, so we may employ the analysis of Mathias and Stewart [MS93].
Their paper is divided into two parts. In the first, they studied the unpivoted
iteration on block upper-triangular matrices. They showed [MS93, Theorem 2.1]

that under the assumption

(1)
inf(R]?)

the following hold:
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IBEY) < o9RY), (2.4)
o (BGM) < oi(RY)),  j=1,...,n—k (2.5)
o (REMY > o;(RY),  i=1,...,k (2.6)

In the second part of their paper, they used these results to approximate the
singular values of a block upper-triangular matrix R by the singular values of a

block diagonal matrix B. Partition R and R as
Ri1 R N R 0
B SR 11
0 Rgz O R22

In general, the singular values of R differ from those of R by no more than || Ry, ||

[GL96, Cor. 8.6.2]. Mathias and Stewart show that if

_ Bl
p= inf(Rll)

<1, (2.7)

then

| £az|? ) ‘

a;(R)/o;(B) =1+ 0 ((1 — p?)[inf(Ry)]?

We will assume that (2.3) holds with i = 0, that is, after the first step. This

is not an unreasonable assumption, since the pivoted QR factorization of the first
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step roughly orders the embryonic singular values. Note that if A has j zero
singular values, then this initial pivoting will put zeros as the last j elements on
the diagonal of BR®). The matrix can then be deflated (the last j rows and j
columns of R® discarded), and the iteration continued with R® having all non-
zero singular values. We may therefore assume that there are no zero singular

values.

Now we are ready to state our first theorem.

Theorem 2.2.1 Let A be an m-by-n matriz and let o,_1(A) > 0n(A). Let R®
be the R-factor in the pivoted QR factorization of A, ATl = QO R® and let R
be the R-factor in the unpivoted QR factorization of (R®)T, (RO = QMW R™),
Assume that the bounds (2.1) and (2.2) hold and that p© = |r$)|/inf(RY) < 1.

Then

0|~ o, < Cn nd | (BRI
" "aﬁfav@mmmww (2.8)

Proof:

Since p© = |r{%|/inf(RY) < 1, by (2.5) and (2.6) we have IrH| < 1P| and
||R§11)|| > |BY|, so that pU = |r{] /inf(R{Y) < 1 also. Hence Mathias and
Stewart’s result [MS93, Theorem 3.1] gives

(D2
i>>1-0( IR ),
i [1 = (p)2limf(REY)

or
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{112
|T(1)| —0n < |7"7(1172|O ( 12 | %) \ ,
\[1 - {(p)2)(inf( Ry )] /

From this, the result follows:

I —o, < [F®BO

nn o

IR |2 )
— (p)?](inf(R{Y)]2

. {1}0( (p©)2| B2 ) (29)

— (p)?][inf( B2

(p(ﬁ) ||R(U)||2
[1— (p1)?] mf(R(l))]z) (2.10)

(U}

AN

P |1 RS 11
inf(BD)2~ \[1 — (o0)2][inf(RD)2

3 31RO 2
Tn-1 \[1 = (pM)?][inf(R})]?
The inequality (2.9) follows from (2.4), (2.10) follows from (2.5), and (2.11)
follows from (2.1) and (2.2). O

Note that here R§2 is a vector. Theorem 2.2.1 gives a bound on the error in
approximating the smallest singular value o, of A by |rm |, the absolute value of
the final element on the diagonal of R(. We see that the error |rﬁtlfz| — oy, 1s cubic
in o,. From equation (2.10), we see that one order comes from the ]r,(«fm factor
in front, which is bounded in the rank-revealing first step while two orders come
from the (p(®)? factor contributed in the second step. The inequality also shows

that the relative error (|r7(11,2| — 0yp)/on 18 quadratic in 0, /0,1,

We illustrate Theorem 2.2.1 on a 30-by-30 matrix. We fix the largest 29 singu-
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lar values to be spaced evenly from 1 to 10. We perform the QLP decomposition
(with pivoting on the first step and no pivoting on the second step) five times, al-
lowing the smallest singular value, osg, to take on the values 1071, 1072, ... , 1075,
We expect the absolute error |T§}}),30| — o3p to decrease by 1072 on each run and
the relative error (’r:(,},),30| — o39)/03p to decrease by 1072 on each run. This is

verified in Figure 2.2.

P absolute error " refative error
1 0_ T T 13 1 0 T T T
107 |
107
107
10°°
-5
10
107" 107
107°
1072
107°
107"t
1 0»»‘?0 3
1 0_1 & 1 3 £ 1 0_1 1 1 1 1.
-1 -2 -3 -4 -5 -1 ) -3 -4 -5

Figure 2.2: As o3y decreases from 10~ down to 10~°, the absolute error 1r£3,2 | —op

decreases as the cube of o3¢, and the relative error (17-53;2} — 0y)/ 0, decreases as
the square of o30/099 = 030/1 = 03g.

There is an analogous result for TE}. Because the pivoted QR factorization

makes |'r§2)! equal to the norm of the largest column of 4, {r£2)| = maXi<j<n || A2,
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where e; is the j-th canonical vector, we do not need to borrow an RRQR bound

for [r{?|. For any A € R*™, we have

max ||Ae;ll2 > 4] (2.12)

1<5<n N

This is a standard result: ||All} = max| =1 [|Az|3 < [|A]% < nmaxicj<n [|Ae]l3.
The first inequality is from, for example, Theorem 2.5 on p. 175 of [Ste73].

| When we take the column pivoted QR factorization of a matrix A, the absolute
value of the element ry; in the upper-left corner is equal to maxi<;<n ||Ae;l.
Equation (2.12} therefore tells us that |r§2)| is greater than or equal to o1//n.
So here we have an RRRQ bound automatically. The one RRQR bound assumed
for this case is [CI94]:

IR < v/2(n — 1) s (2.13)

The theorem is very similar to Theorem 2.2.1.

Theorem 2.2.2 Let A be an m-by-n matriz and let o1(A) > 09(A). Let R©® be
the R-factor in the pivoted QR factorization of A, ATl = QOR® and let R
be the R-factor in the unpivoted QR factorization of (RO, (ROT = QW RO},
Assume that the bound (2.13) holds and that p© = |RD||/|r?] < 1.

Then
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q

2 02
- 2 ( ni 1R | \ (2.14)

|T(1)|_1 22
11 50 T
1\ [ = (pD)7] 7"11 e/

C|

Proof:
Since p®@ = [|RD||/I?] < 1, by (2.5) and (2.6) we have [[RY < |RY|
and [r| > 179, so that p® = ||[RY}|/|[r{}| < 1. Hence Mathias and Stewart’s

result [MS93, Theorem 3.1] gives

ML o IRE )
o [1 = (o))

or

(1}12

Ry

|7"ﬁ)|w1 - Ufl < |Tﬁ)|_l(D 125 | &y :
[1 - (P{I))g}(Tu )2

From this, the result follows:
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1
|T§11)|_1—01—1 < (l)l lo( R§2)||2 \
\[1 = (p)(riy)? ]

< g [_GOPIRI ) 015
= il ({1—(p(1}>21(r8’)2 (219
< 1OFo ([1(;)(0))2”1%““2 ) (216

()i
< 1EQE, ( 1B )

- (0}[3 (pM) 2](7"(1))2

nR(“’n? n3 || R |
= (p(1)2 (1y2 (2.17)
— (p1)?](r7')?

. 3 0([ nan(“)nz ) (2.18)

o\t - 6y

The inequality (2.15) follows from (2.4), (2.16) follows from 2.6, (2.17) follows
from equation (2.12), and (2.18) follows from 2.13. 0

Note that in Theorem 2.2.2, the quantities in question are reciprocals, and the
convergence is cubic in 1/¢y. We illustrate the theorem using a 30-by-30 matrix
as we did Theorem 2.2.2. This time we fix the smallest 29 singular values to be
spaced evenly from 0.1 to 1. We allow o to increase from 10 to 10° over five
runs, and we expect to see the absolute error decrease by a factor of 10? and the
relative error decrease by a factor of 10% with each run. See Figure 2.3 for the

results.

2.2.2 The Interior Singular Values

There are generalizations of the above bounds in terms of the norms of Ry}’ and

Rys. That is, if Ry; has dimension k£ and hence Ry, dimension n — &, we can
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absolute error relative error

Figure 2.3: As ¢y increases from 10! up to 105, the absolute error |r{}|=* — o]

- ' 1. — -
decreases as the cube of o;%, and the relative error (|r§1)| 1071 /o7t decreases

as the square of o3/0; = 1 /oy = o7 L.

bound [|(REY) | - o3 * and [R5} - ok41,
For general &, the bounds provided for “Hybrid-I1I1I” by Chandrasekaran and
Ipsen [CI94] are as follows:

1B < VE+Dn— k) own, (2.19)
inf(RY) > i (2.20)

VE—E+1)
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The general result is given in the following theorem.

Theorem 2.2.3 Let A be an m-by-n matriz and let o,(A) > o%41(A). Let RO
be the R-factor in the pivoted QR factorization of A, ATl = QO R® and let RW
be the R-factor in the unpivoted QR factorization of (RO, (RO = QW RO,
Assume that the bounds (2.19) and (2.20) hold and that p© = |RD||/inf(RY) <
1.

Then for j=1,... ,n—k,

aj(R£é>)—ak+j<(ak+l)2o nt | RE|” (2.21)
oty \ O [ — (pM[inf(R)2 )

and for 7 =1,...,k,

oj(Ré))—wo;p(am)?O né|| Rig | )
N [1— (p)2][inf(R{Y)]2

Proof: The proofs of inequalities (2.21) and (2.22) are similar to the proofs
of Theorems 2.2.1 and 2.2.2, respectively. For (2.21), for example, Mathias and

Stewart give us the first line

0 (BD) — 04y < 03 (RSD)O (Kbl
J T 1 — (p0))[inf(R2 )

and the rest follows as in the proof of Theorem 2.2.1. {J

Theorem 2.2.3 tells us that when there is a gap between o, and op4y, the
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relative error in each of the singular values is quadratic in the gap ratio ogq1/0y.
For the singular values at the gap, the absolute error is cubic in the singular

value, as the following corollary spells out.

Corollary 2.2.4 Under the assumptions of Theorem 2.2.3, we have

3 5 ()12
D) PP Y LI L1 — (2.23)
o \[L— (W) fint(RD)P

and

2 1102
IR - o7 < 2210 ( 7| B - ) . (2.24)
% \[1 - (pW)linf(R}))]?

Note from the bounds in Theorem 2.2.3 that the corollary represents the worst
case. That is, the bounds are better as we go away from the gap. Theorem 2.2.3
helps explain why the QLP decomposition does so well even when the ratios
between neighboring singular values are close to one. As long as there is one
substantial gap somewhere in the singular values, convergence will be fast for all

of them.

So we see how the pivoting is so important to the QLP decomposition. The
pivoting in the first step roughly orders the embryonic singular values. In the
theorems, this allows us to make the reasonable assumption (2.3) for ¢ = 0. This

ordering then allows the quadractic convergence factor in the second step.

In addition to providing this ordering, the pivoting in the first step also gives
us a linear convergence factor (in the form of the RRQR bounds). Thus the

rank-revealing nature of the pivoting furnishes one order of convergence, while
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the ordering nature of the pivoting sets the table for the second step to provide
two additional orders of convergence.

Note that neither the assumption {2.3) nor the assumed RRQR bounds nec-
essarily hold for the column pivoted QR decomposition. But the RRQR bounds
often do, and (2.3) is more probable the larger the gap, so this analysis helps
explain why QLP apparently does so well in practice. Without pivoting, the
two-step algorithm not only fails to provide the linear convergence factor in the
first step; more importantly, it often fails to provide the ordering needed for the
quadratic convergence factor in the second step. Total failure is often seen with

graded matrices. Pivoting is key.

We now illustrate Theorem 2.2.3 and Corollary 2.2.4 with a couple of exam-
ples. In each example we use a 100-by-100 matrix, let there be gap between o5
and o5, and once again let the gap ratio oy /050 decrease from 10~ initially to

1075 in the fifth run.

The first example illustrates the bound (2.23). We fix the fifty largest singular
values to be equally spaced from 1 to 10. The lowest fifty singular values are also
equally spaced, but their range varies from 10~! to 1072 on the first run, from 10~*
to 1072 on the second run, and so forth. As the gap ratio o5 /050 thus decreases
by a factor of 10 each run, we expect to see the absolute error ||R%) || — 51 and the
relative error (HR%)H — 051) /05, decrease by factors of 10 and 10%, respectively.

This is shown in Figure 2.4.

In the second example, we illustrate the bound (2.22). This time we fix the
smallest fifty singular values to be equally spaced from 0.1 to 1. The largest fifty
singular values range from 10 to 102, then 10? to 10%, etc. As the gap ratio thus
decreases by a factor of 10 each run, we expect to see the relative error in each

of the first fifty singular values decrease by a factor of 10%. This is borne out by
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» absolute error relative error
10 I T T 10 E T T T

1 0"13 1 1 I 10 1 1 i
-1 -2 -3 -4 -5 -1 -2 -3 -4 -5

Figure 2.4: As o5 decreases from 107! down to 107°, the absolute error

| R$D | — 051 decreases as the cube of os;, and the relative error (| (RY |- o51) /o5t
decreases as the square of o51 /050 = 031 /1 = 051.

Figure 2.5, in which we plot the relative error in o7 and oy’

2.3 Convergence of the QLP Iteration

In section 2.1.2 we discussed taking the QLP decomposition beyond just the
first two steps, resulting in an iteration (the QLP iteration) that converges to
the singular values. In this section, we take two approaches to studying the

convergence of the QLP iteration.
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relative error in o;* relative error in c;;

107 ¢ ; , ; . 107 ¢ . . ;

1 1 10 1 1 i
1 2 3 4 5 1 2 3 4 5

10 :

Figure 2.5: As oy increases from 10 up to 10°%, the relative er-
ror (oy(BW)1 — 67" /o7, plotted on the left, and the relative error

(040(R%))"1 — 033 ) /o5, plotted on the right, both decrease as the square of
of 0'51/0'50 = 1/0’5(}.

2.3.1 More Iterations

In sections 2.2.1 and 2.2.2 we saw that with a gap between o and oy, the
QLP decomposition approximates all of the singular values with a relative error
depending on the square of the gap ratio o441 /0y, If we iterate beyond the first
two steps (assuming that pivoting is used on the first step and no pivoting on
each subsequent step), the error bounds improve by a quadratic factor in each

step. To see this, we can simply apply the bound (2.4) at each iteration.
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Theorem 2.3.1 Let A be an m-by-n matriz and let o,(A) > op(A). Let
R©® be the R-factor in the pivoted QR factorization of A, ATl = QRO gnd
let R®) i > 1, be the R-factor in the unpivoted QR factorization of (RU=NT,
(RE-NT = QUWRY . Assume that the bounds (2.19) and (2.20) hold and that
P = |RZ/inf(RiY) < 1.

Then for j=1,...,n~k,

% i 4i41
0j(R33) = Oksj (a) o EIRDIP (2.25)
Okt \ O [~ (o) inf(R))2 )

and for j=1,...,k,

“f(35‘3)“1““?1<(0k+1)%0 o ;73 PP
T\ o [1 — (p9)2][inf(RSY)]2

Proof:

The proofs are similar to those given before. For example, in proving the
bound (2.25), the only real difference from the proof of Theorem 2.2.1 is inequality
(2.9), different here because we are iterating. So the first two lines of the series

of inequalities are as follows:

O"(R(i))mgk+~ < J~(R{2)O ”Rglp .
e T TR — (002 int(RI)]?

¢ oo (VUL )
- [1— (p)2][inf(RY)]?
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The rest of the proof proceeds as expected. 0

2.3.2 Assymptotic Convergence of individual Eiements

We would now like to make some observations and conjectures on the rate of
convergence of individual elements in the R% matrices as well as individual ele-
ments in the U® and V® matrices, where R®) = UOS(VINT, Unfortunately, we
cannot provide hard and fast proofs for everything, but we will describe what we
see. It appears that the convergence of the diagonal elements of the R® depends
on the convergence of the off-diagonal elements. We will prove a statement con-
cerning this dependence. The convergence of the off-diagonal elements appears

complex, and we will give some observations.

We already know that the R® converge to a diagonal matrix whose elements
are the singular values of A in decreasing order. So in discussing asyniptotic rates
of convergence of elements in R®, we may assume that the diagonal elements are
close to the o; and that all of the off-diagonal elements of RO are very small.
With pivoting in the first step, convergence often reaches the asymptotic range
quickly, after the first two or three iterations. Note that whether pivoting is
used (in the first step only or on every step) or not, there will come an iteration
after which pivoting ceases anyway. Hence, it would seem that asymptotic rates
of convergence would not depend on whether we pivot. This intuition is wrong,
however, for the acceleration in convergence afforded by pivoting extends in some

cases even to the asymptotic convergence rates. We will comment on this.

Either Householder transformations or (Givens rotations can be used to tri-
angularize each (RM)T. We will assume the use of Givens rotations, since their
g )

action is easier to track and visualize, and because they illuminate the rates of
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convergence for specific elements.

Let us look at how the elements of (R®)7 could change while the matrix is
being upper-triangularized via Givens rotations. The elements (r@)], through
(r®)T, are first zeroed out, then the elements ()%, through (r¥)%, are zeroed
out, and so on. We will assume that elements in each column are zeroed from
top to bottom. Doing so gives us a useful analytical result. It is easy to verify
that zeroing out the elements in this order leaves the submatrix consisting of the
bottom 7 — 1 rows and n — 1 columns in lower-triangular form. This means that

in zeroing out the second and subsequent columns, the mechanics look exactly

the same.

When an element (T(i))ﬁ is zeroed out, the Givens rotation will change entries

only in rows j and k. Take a look at Figure 2.6.

r T r T T X T r T X T T
x x x 0 a ¢ ¢ 0
T x
r T T
X X X X h d; do b
T T T T T r T T T T

Figure 2.6: The element (r®)L, is about to be zeroed out by a Givens rotation.
On the left the elements which at this point are nonzero are marked with an
x. The bold elements will be changed by the Givens rotation. On the right,
depending on what type of change the Givens rotation will effect, the changing
elements are assigned various letters.

In Figure 2.6 we have assigned different letters to the nonzero elements that
change to indicate for each element what type of change the Givens rotation will
effect. For example, the elements ¢; and ¢ will be changed in the same way.

Figure 2.7 shows exactly how each element is changed.

First of all, note that with every Givens rotation that is applied, the diagonal
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Figure 2.7: A Givens rotation affects elements in two rows. Those elements are
shown on the left, with letters indicating the type of change they will undergo.
On the right, the elements appear as they are after the Givens rotation.

elements will always play the role of either @ or b. In fact, the diagonal element
. T N . . - s
('r(‘))jj will first play the role of b precisely j — 1 times, namely when the j — 1
elements to the left of it in row j are being zeroed. It will then play the role of a
precisely n — j times, namely when the n — j elements below it in column 7 are

being zeroed.

So the convergence of a diagonal element is completely determined by these
n — 1 Givens rotations. Looking at Figure 2.7, we see that whether the element
is acting as @ or as b for a given rotation, it receives an O(h?) perturbation,
where h is the off-diagonal element being zeroed by the given rotation. As all
of these n — 1 off-diagonal elements are converging to zero, it is obvious that
asymptotically, only the largest of the n— 1 elements will contribute significantly
to the convergence of the diagonal element. The rest of the n — 1 elements will
only slightly alter the value of the diagonal element at each iteration. Since
asymptotically, the largest of the n — 1 elements will be the one(s) with the
slowest asymptotic convergence rate, it is acceptable to ignore the contributions

from all the other off-diagonal elements.

Let us make this more precise in the context of an example. We will write
things in terms of a small quantity ¢ < o,, and then we are free to discard
lower order terms. Say we are looking at the essential limit 'rﬁ") of rﬁ), which
will play the role of a for each of the n — 1 Givens rotations that affect it each

iteration. If 7"5:1} is asymptotically converging the slowest of all the elements in
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the first column below rgl), then we ignore the contribution of all the others. (We

will later consider the case when two or more of these elements share the slowest
convergence rate.) Let us assume that |'r,(:1)| < e for all ¢ > 145, some 73 and all
the other |r§?|,j # 1 are less than € for all © > 4. Let Aq,..., A, be the

asymptotic convergence rates of each of the rﬁ), 1 < j < mn. Then for ¢z > 4y we

assume that r(l) is converging with a rate of \; + 6;, where |§;| < e. We will
require 7y sufficiently large so that the largest (slowest) rate satisfies Ay + ¢ < 1.

Letting h = T,ﬁ, we look back at Figure 2.7 and see that for ¢ > 1y,

W0 = [y +Z(’"w

= VR 1 o),

We see that of all the n—1 off-diagonal terms that could contribute to 7"11 , only
h = r makes an O(¢?) contribution. All the rest effect only O(e?) perturbations.

S0 in a similar fashion we have

= VO R O+ kP + O
P = D)2 4 B2 o [+ GBI + [+ 8i11) O+ Giaz) B2 + O(e?)
io+1+7 2
i = ey +h2+Z (H Aw%)) h] +0(e"). (2.27)
F=0 a=ig+1

In equation (2.27), there might be a question as to whether we can actually

sweep the contributions of all of the n — 2 other off-diagonal elements into the
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O(e*), since each of these elements contributes an infinite series similar to that of

h = ""m) The contribution from a generic one / = Tél) can be bounded as follows:

S (i) = Slosrnr

a—ig--1 7=0

= )\b-l-ezZ/\b:i:f)zj
j=0

= izz(Ab + 6)21m
= ROy 1+0 (N £e))
= O(eY),

since h = O(e*) and A\, + € < Ay +€ < 1 by assumption when 4 > 4. So equation
(2.27) holds.

Now we have a feel for the proof of the following theorem, which concerns the

asymptotic convergence rates of the diagonal elements.

Theorem 2.3.2 Let € <€ o,. Let iy be an integer sufficiently large so that for
i > 1y the following hold:

1. For each 1 < s < n, denote by h, the element having the slowest (i.e.,
largest) asymptotic convergence rate of all the elements in the same row or
column as r$}, namely, @Y, Ty and (PO, (PO,
and denote the asymptotic convergence rate of hs by A;. If more than one

of these n— 1 elements share the same slowest asymptotic convergence rate,

denote them by hs,, hs,, etc

2. Assume the rate of convergence of each of these n — 1 elements is within €
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of its asympiotic convergence rate. So for example, the rate of the element
hs at iteration i > 4y 48 s + &;, where |§;] < €. Similarly for the rest of

these n — 2 elements.

3. Assume all of the off-diagonal elements of the matriz R® are less than €
in absolute value, except for the h,,,1 < s < n, which need only be less than

¢ in absolute value.

4. Assume that each of the diagonal elements Tg?, 1 < s < n is within €2 of o,.

5. Assume Ag+e <1, forl <s<n.
Then the convergence rate of 1% is A2 + O(e).

Proof: Without loss of generality, we assume that the diagonal elements of
the R are positive.

First let s = 1.

Say there is only one element h; among the n — 1 off-diagonal elements in the

first column of RE";) that converges with the slowest asymptotic rate A;. We have

already derived formulae for {? and r{5” above. Let P = Hzgiﬁ()\l +8,). We

have
i =) = 2R+ Y (PR — (V)2 4 B2+ O
j=0
i 1A+ 30, (Ph)? 1 A2
= ?"gl 1)| (1 =+ 5 (fmf) 5 —-1- 5—{?:_11) 5 + 0(54)
(riy ) (riy )
1 Z;S:O (Phi)Q 4
iw -+ O(E )
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Similarly,

o0
P = Y (PR

3=0
CJEEDR R 4 (O + G+ O

1 Do (Phy)”

4
2 =0 Ol

So the asymptotic rate of convergence of rﬁ) is

1 521 (Ph)?

P PR
Tﬁo) _ ,rg“l} %Zmi: ?,'(f:?m
i1
oo 2
_ 2 PR
2o (Phy)?

To bound this, we can set all of the §, in P = Hzgif{()\l + d,) to their

maximum values, obtaining

MY Gt o~ + )’ ruze Lo
= - €) ==
hi Zj=e()\1 + €)27+2 @
= (A £+ 0(eh)
= M+0(e

Now consider the case when s = n. The only Givens rotations that affect

(r®)I are the ones that zero (r@NI, ... (r@)T Again assume there is

-1
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precisely one of these elements, say (r®)1 , which has the slowest asymptotic
convergence rate. Set h, = (r¥)},, and let its asymptotic convergence rate be

A

We can look at Figure 2.7 to see how things will work. The b in Figure 2.7
will be here riy 1), and at each iteration this will be multiplied by a/v/a? + AZ.
The element a will be rs,g and the element h will be h,, both of which change
at each iteration. All the elements in the last row of (R®)T other than h, will
cause only O(e*) perturbations as before. This time we let P = H;";ﬂ 41{An+da),

and we use the convention that [, 1+1(An +dq) = 1. We have

{i+5)

i - 1) = “‘”H [

(r& e 1 (Phy)?

0
—plD ke 4+ O(e')  (2.28)
( {%)) +h2

_ e 1}00{1“1 fi pz]
Ton Gtq
F=0 2(7-’5;]:‘3))2
1 h?
Pt B B [pS s (R VRN, T
o ( 2(r§:£)2)+ )
. R & P Y )
—  eli—1}) n _ el Tt 4
= T l—mg — 1+ ; + O(e*)
( 2 () 2 (ri)2

hZ P?
_ (t 1) § : 4

=ACr

This leads to
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. i—1) A2
N R N PN
LLLLCS + O(h). (2.29)
(00) (%) - ag P N /
Tnn Tnn Tan "5 J =1 (r (z+J))2

To bound this, we once again set all of the 4, in P = Hfgf] +1{An +34) to
their maximum values. We also make use of the fact that the diagonal elements

are within €? of the singular values to which they are converging. This gives us

Eoo O

=2  ophe?
ioo e +0(e) = AL+ 0(e). (2.30)
j=1 opke?

Finally let s = [. The only Givens rotations that affect ()7 are the ones that
zero (r@E, ..., (r®)T,_, and the ones that zero (r®)T ,,..., (r®)T . Assume
one of these has the slowest asymptotic convergence rate. Then the proof for

elther the s = 1 case or the s = n case carries over.

If in any of the cases more than one of these elements converge at A,, the
same proofs hold with minor modifications. For example, say that both (r®)%
and (r™)] converge at the rate A,. Denote r( Y by hy, and r(ﬁ Y by Ry,. So
looking once again at Figure 2.7, (r®)% plays the role of b with A = A, and later
plays the role of @ with h = h,,. Hence 7"1(1 ) the analoge of r,%",;’}

(2.28), is

in equation
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o 2 2
(1) ‘ rig?) | R ,
] — )t
P\ \er)
2 2
_ (i) _ Py 4
= i H 1 ((w)) +(r("‘”) +0(€)

i

_ 6oL Z Py
— Tu (z 1) T iy

) + O(e").

(ry

Here we used Py = (T[4, (0 +8) ) hu, and P = (T2, (M +64)) huy. The
proof then continues as in the other cases. {At the step where we bound, as in
going from (2.29) to (2.30), letting each J, = +e and i) = o, £ €%, everything
inside the sum in the numerator except for () & €)%*2 factors out and cancels
with the identical terms in the denominator.) For other cases in which multiple

elements share the slowest asymptotic convergence rate, the proofs are similar.

O

Theorem 2.3.2 basically says that the asymptotic rates of convergence of the
diagonal elements are the squares of the rates of the off-diagonal elements. More
precisely, the rate of a diagonal element rit 2 i equal to the square of the slowest
rate among all the off-diagonal elements in the union of row s and column s. So
we now know the asymptotic convergence rates of the diagonal elements given
the asymptotic convergence rates of the off-diagonal elements, to which we now

turn.

We can use Mathias and Stewart’s results again here. Recall that under the

assumption (2.3} we have
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1RSI < p@| R,

For sufficiently large 4, if oy # 041, then (2.3) holds. So we know that every
element in the off-diagonal block R%) must converge asymptotically with a rate
p < 0x41/0k. So we have the following bound on the convergence of off-diagonal

elements.

Lemma 2.3.3 For s <t let Ay be the asymptotic rate of convergence of ri?. If

05 # 0y then Ay < oyf0s.
Combining Lemma 2.3.3 and Theorem 2.3.2 gives us the following bound.

Theorem 2.3.4 Let )\,, be the asymptotic convergence rate of 'rgi). Ifo,_1 >

05 > Oyy1, then Ay < max((oy/0s_1)?, (0511/05)%).

This bound is tight. In addition, there are many times when the convergence

is much faster. Examples given later will illustrate both of these facts.

Having achieved a bound on the convergence of off-diagonal (and therefore
diagonal) elements, we can make a few observations on precise asymptotic con-

vergence rates.

We can easily see what happens when A is a 2-by-2 matrix with distinct
singular values, for the passage from (R™)T to RE+D is illustrated by Figure 2.7
(just look at the first and last columns). Since we are in the asymptotic range,
h is very small, and the diagonal elements a and b are close to o1 and o,. They
experience O(h?) perturbations and thus remain close to o and oy, If we denote

the off-diagonal element of R4+ by A/, then the rate of convergence is #'/h =
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b/v/a? + k2. This is an O(h?) perturbation of b/|a|, so we see that the asymptotic

rate of convergence is o3/0qp. Note that if the singular values are equal, the

The elements in a general n-by-n matrix are experiencing two types of effects
from the various Givens rotations, and these can be seen once again in Figure 2.7.
Once each iteration, a given off-diagonal element z will be zeroed out. That
is, it will play the role of h in Figure 2.7. Let us say that z here receives a
zeroing contribution to its convergence. Typically several times each iteration,
the element z will be affected by a Givens rotation though it is not being zeroed
out. That is, it will play the role of ¢, or d; in Figure 2.7. Let us say that x is
here receiving a nonzeroing contribution. (The only off-diagonal element never
to receive a nonzeroing contribution to its convergence is 7{2 It plays the role of
h precisely once, with a = ’r%"l) and b= T,(f%, and therefore its asymptotic rate of

convergence is o, /oy, the reciprocal of the condition number.)

We already understand the effect of a zeroing contribution. Indeed, if only
zeroing contributions were in play, then the situation in an n-by-n matrix would
be a simple generalization of the 2-by-2 case: rg? would asymptotically converge
at a rate of o;/o, if 0, > o and painfully slowly if the singular values were
equal. We know this is not the case from empirical observation. First, repeated
singular values tend to speed up convergence, and speed it up a great deal. See
Figure 2.8. As we know that this is not coming from zeroing contributions,
we have our first hint that nonzeroing contributions not only sometimes play a
significant role but can be agents of very fast convergence. Second, nonzeroing

contributions sometimes play a significant role (and bring about fast convergence)

even in matrices with all distinct singular values.

To get a feel for how this fast convergence might happen, let us take a closer
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Figure 2.8: This is one observed convergence pattern for a matrix having sin-
gular values 10, 5, 5, and 1, written in bold on the diagonal for reference. In
place of each off-diagonal element is its asymptotic convergence rate. Beneath
each diagonal element is its rate. (Note that the diagonal convergence is as The-
orem 2.3.2 states.) We know that nonzeroing contributions must be significant
simply because of the repeated singular values. But look at how they speed up
the convergence. The rates of the elements 7"513) and rgs) are faster than the ratio
of any two singular values in the matrix. We would expect r;{g to converge at a
rate of 5/10 = 1/2 were zeroing contributions dominating. Note that its (much)

faster rate here allows the diagonal element rgg) to have a faster rate as well,

(1/5)? instead of (1/2)2.
look at a nonzeroing contribution. Say an off-diagonal element in question plays
the role of ¢, in Figure 2.7 under a certain Givens rotation, If we denote its value

after this rotation is applied by ¢, then the convergence rate is

c ac, —~ hd; n hd,

E

O 00 70 o414 22 2.31
s cgvat -+ h? |a|cs ( )

where the sign is the sign of a and is different from the sign of the fraction. (The
signs of the elements is a topic we will not pursue here.) Keeping in mind that
a is large, being on the diagonal, we see that the convergence rate will be about
+1 if A, ¢,, and d, are all about the same size. That is, the Givens rotation will
not significantly affect c;. But what if in equation (2.31), the element ¢, is much

smaller than h and d,? Then the ratio hd,/|a|cs is no longer close to zero, and
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the contribution from this Givens rotation is significant.

So where there are disparities in the sizes of off-diagonal elements, nonzeroing

consider the asymptotic convergence rate of ¢, given by equation (2.31). For this
rate to be constant, ¢, must converge at the product of the rates of h and d;. (The
diagonal element, a is large and constant for our purposes here.) This is what we

seem to observe with, for example, repeated singular values. See Figure 2.9.

1 1 1
(10 3 % 15\
Yy Lo
25 5
~10 =z x x T ,
a~3 ¢ 0 E’_ 5
N5 25
1
ho d b~1 \ Ny

Figure 2.9: The example of Figure 2.8 revisited. In the matrix on the left, the last
Givens rotation applied gave the element 'r%) (now marked c) almost no zeroing
contribution to its convergence because of the repeated singular values 5 and
5. Now the element marked h is being zeroed, and ¢ will receive a nonzeroing
contribution, because in this example it is very small compared to d and h. From
the discussion, ¢ will converge at the product of the rates of h and d. In this
example, h and d are being affected by primarily zeroing contributions, so they
are each converging at the rate of 1/5. So ¢ should be converging at the rate of
their product, 1/25. The matrix on the right, which shows the rates again for
reference, confirms this.

Before we state an observation concerning the asymptotic rate of convergence

for off-diagonal elements, let us set some notation to handle repeated singular

values. Say that o > 0p41 =+ = Okyp > Okypri. o€t p,i‘jzi == pﬁp =

! !
Ok/0k+1, and set P:(JA == chip = Oktp/ Chtpt1-

We already know from Lemma 2.3.3 that if s < £, then the slowest the asymp-
totic rate of convergence of 'rg) can be is 0,/0y, assuming the singular values are

not equal. For the general case, we here catalogue some of the possible asymp-
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totic rates of convergence for the off-diagonal elements based on our empirical

observations.

1. If neither o, nor o, is a repeated singular value, then rg) often converges at
the rate o;/0y, but can behave as if o, and/or o were repeated, as described

in the following.

2. If o, = o; then r{) often converges at either the rate (p{™)2 or the rate

(pg))z. Actually, a sequence of j equal singular values defines a j-by-j

block, all of whose off-diagonal elements converge at the same rate.

3. If o, # o, and one or both are repeated singular values, then rg) of-

ten converges at the rate o/oy, (pgu))zds [os, (p

(pgl))zo's/o't-

V2o, /ov, (p))20, /0w, or

In Figure 2.10 are the asymptotic convergence rates for a few example matrices

with given singular values, and (1) through (3) above are represented.

In the 3-by-3 matrix, off-diagonal elements receive only zeroing contributions,

so the agymptotic convergence rate of frﬁ) is 01/, This is not so for the 6-by-6

maftrix. Although it has all singular values distinct, the element rfg is receiving
nonzeroing contributions, converging at a rate of 1/50 <« 1/2 = 5/10 = o5 /04.
The three 4-by-4 matrices have the same singular values, 10, 5, 5, and 1, but
converge differently. From these three matrices, we see that asymptotic (and not
just initial) convergence is dependent not only on the singular values but also on
the entries in the original matrix. It is also dependent on whether pivoting is
used or not. In the examples we looked at, pivoting on the first step of the QLP
iteration tended to give faster asymptotic convergence rates than not pivoting.

(For example, for 4-by-4 matrices having singular values 10, 5, 5, and 1, the rates

on the right are far more likely to occur when pivoting is used on the first step.
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Figure 2.10: Here are six sample matrices with their singular values given in
bold on the diagonal. Off-diagonal elements are replaced by their asymptotic
convergence rates in italics, and diagonal elements have their rates written below
them. Concerning the off-diagonal rates, see the text for some discussion and also
notice that each of (1) through (3) in the catalogue on page 44 is represented.
Concerning the diagonal rates, notice that Theorem 2.3.2 is everywhere verified:
the rate of ri? is equal to the square of the slowest (i.e., largest} rate among all
the off-diagonal elements in row s and column s.
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Recall that it is discrepancies in the sizes of off diagonal elements that bring into
play nonzeroing contributions and therefore faster convergence. Pivoting seems

to encourage this.)

From studying the asymptotic convergence rates, we now have two insights
into how the convergence of individual elements in the pivoted (QLP decomposi-
tion can be fast in the presence of repeated singular values. One, in the presence
of repeated singular values, convergence tends to be faster than with distinct sin-
gular values. Significant nonzeroing contributions cause the faster convergence,
and they are necessarily a part of the landscape when repeated singular values
are around. They are optional (and indeed less common, at least in our obser-
vations) when singular values are distinct. Although these are only asymptotic

results, the pivoting can often speed up the approach of the asymptotic range.

Two, recall that nonzeroing contributions are caused by large discrepancies
in the sizes of off-diagonal elements and that pivoting tends to encourage this.
The discrepancies are thus starting to form in the first step, and where there are

discrepancies, there are some small off-diagonal elements already.

These observations apply not only when there are repeated singular values but
also when the ratios between neighboring singular values are close to one. Indeed,
prior to reaching the asymptotic range, the QLP iteration cannot distinguish
identical singular values from those that are merely close. The slow convergence

in the latter case is an asymptotic phenomenon. Early on the convergence is fast.

It is also interesting to note that when faster convergence occurs, the conver-
gence of the matrices of singular vectors of the R ig also faster. For example,
Chadrasekaran and Ipsen [CI95] show that the convergence to zero of the angle
between the first k& columns of U® (and also of V) and the first k columns

of the identity matrix is bounded by oy.1/0x. We would like to point out that
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faster rates are attainable when nonzeroing contributions are at work. For exam-
ple, in the 6-by-6 matrix in Figure 2.10, we noticed that the element in the (4,5)
position is converging fast, at a rate of 1/50 instead of at the “expected” rate of
05/04 = 5/10 = 1/2. Correspondingly, the first four columns of U and of V#

are converging not at a rate of 1/2 but at a rate of 1/10.

Finally, we note that there are patterns in the asymptotic convergence of
individual off-diagonal elements of the U and V{) gimilar to the patterns seen

in the R,
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CHAPTER 3

Truncating and Interleaving

3.1 QLP Junior

Many applications involve a large m-by-n matrix A with numerical low rank, that
is, with a few significant singular values and the rest close to zero. Once again,
the Singular Value Decomposition of A is given by A = ULVY, where U ¢ R™*™
is the matrix of left singular vectors, V' € R**" is the matrix of right singular
vectors, and X € R™*" is a diagonal matrix containing the singular values. We
would like to have a rank-k approximation of A which ignores the contributions
of the small singular values. It is well known that the best such approximation
to A is obtained by simply truncating the SVD: 4 ~ A, = UpS, VL, where U,
is m-by-k, ¥y, is k-by-k, and V; is k-by-n (see equation (1.1} in Chapter 1). The
columns of U, span what is called the left superior singular subspace and the

columns of V;, the right superior singular subspace.

Just as an approximation to the full SVD of a matrix A = USV7T will provide
approximations to the singular values and to the left and right singular sub-
spaces (spanned by the columns of U and V, respectively), an approximation to
the truncated SVD, A; = U,Z,V,I, must provide approximations to the first &

singular values and to the left and right superior singular subspaces.

We saw in Chapter 2 that the QLP decomposition is an approximation to

the full SVD, with @ =~ U, L ~ X, and P = V. Partition the matrices of the
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decomposition as follows:

Ly 0 Pr
QLP" = (1 @) : (3.1)
Loy Ly Pf

where (J; and P, both have k columns and Ly; is k-by-k. Then QL Py is
an approximate truncated SVD. One question is whether these three matrices
are obtainable without having to compute the entire QLP decomposition. Stew-
art [Ste99] pointed out that because pivoting is not required in the second step
(taking the QR factorization of R to obtain L), it is possible to truncate the QLP

decomposition.

To see how truncation is possible, assume the matrix A has numerical rank r,
and that we would like to obtain the r largest singular values and their associated
superior singular subspaces. We begin as we would in computing the full QLP
decomposition by computing the pivoted QR factorization of A. Say we have
computed the first » columns of ¢ and thus the first r rows of K. But these rows
of R are exactly what is needed to compute the first r columns of L, assuming

we use no pivoting in obtaining L. See Figure 3.1.

Note that pivoting is not inhibited in this second step, that is, in triangulariz-
ing this set of 7 columns of BT to obtain L”. It is just that pivoting is confined to
these 7 columns, for the remaining columns of BT ﬁere not computed. If pivoting
were a crucial part of this second step, truncation would be impossible, for any of
the n columns of RY might need to be pivoted to the first column or the second
column or so on. Because pivoting on the second step produces only minor, if
any, changes from not pivoting, we can truncate with impunity after computing

only the first r rows of B. Note that in thus computing the first r rows of R, we
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Figure 3.1: An example of truncating with & = 2. On the left, the ‘x’s represent
[RIVRY]. We take the transpose of this matrix (see center), and perform the
QR factorization, obtaining the 2-by-2 matrix R on the right. Note that none
of the elements marked with a ‘y’ are needed to perform the computation.

have obtained a basis for the left superior singular subspace, and in computing
the first r columns of L, we have obtained a basis for the right superior singular

subspace.

Along the same lines, Stewart pointed out that the algorithm can be inter-
leaved. This means computing the first &y rows of R and from them computing
the first k; columns of LT. Then computing the next ky rows of R and from them
computing the next ky columns of L¥. And so on. This can be continued until
the entire full QLP decomposition has been computed. It works for the same
reason that truncating works: pivoting on the second step is not crucial. Note

that pivoting is possible within each set of k; vectors.

Interleaving is a useful tool because of the nature of the R-values and L-values.
If r is the numerical rank, we know there is a large gap in the singular values,
orp1/0, < 1. Consider the pivoted QR factorization of A, AIl = QR. The
elements on the diagonal of R, the R-values, often indicate the presence of a gap
in the singular values. As a check, we can take the (unpivoted) QR factorization

of RT, RT = PLT. We know that the L-values provide excellent approximations
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to the singular values and that, in particular, gaps in the singular values are
clearly revealed. So the R-values reveal a potential gap, and the L-values provide

confirmation.

So for a low-rank problem, interleaving can work in tandem with truncating
in the following way. Say we compute k; rows of R until we see a gap in the
R-values. (So if the potential gap in the singular values is between o, and o,,,
then k; could equal r +1.} These k; rows of R are all that are needed to compute
the first k; columns of L (and hence the first k; L-values). Computing these
L-values, we either confirm the gap and truncate the QLP decomposition here,
or we fail to confirm the gap and hence repeat the process, calculating the next ko
rows of R until another potential gap is revealed, which can then be checked by
computing the corresponding k; L-values. Once a gap has been confirmed by the
L-values, we are finished—the truncated QLP decomposition for this low-rank

problem has been computed.

3.2 Convergence

We now assess the ability of the truncated pivoted QLP decomposition to capture
the singular values. If the full pivoted QLP decomposition is A = QLPT, let R

and L be partitioned as usual:

Ry R L 0
B 11 e I— 11 7

3

0 Rzg L21 L22

where Ri; and L1y are both k-by-k. As before, we make the assumption that the

initial pivoting reveals the rank in the sense that
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[Roall < v/ (k+1){n~ k) ows, (3.2)
: O
inf(R .
(B) VEn ~ k& + 1)
The pivoted QR factorization usually does this. The bounds (3.2) and (3.3) are
for an RRQR algorithm by Chandrasekaran and Ipsen [CI94]. We also make the

1-R22|
inf(r,,)

v

(3.3)

assumption that p = < 1, which is almost always true if the gap between
o and oy, is substantial, which is the situation when dealing with low-rank

problems, for example.

We have the following theorem.

Theorem 3.2.1 Let A be an m-by-n matriz and let 0i(A) > or+1(A), k < n.
Let (R Ri2) be the first k rows of the R-factor in the pivoted QR factorization
of A. Let LT, be the R-factor in the unpivoted QR factorization of (Ri;R{,)".
Assume that the bounds (3.2) and (3.3) hold and that p = ||Raz||/inf{R11) < 1.

Then for j =1,...,k,

3

75 (L)™" ~ o7 Tt \ ¥ || Ry |)?
ot s ( Ok ) 0 ((1 — p2)[inf(R11)]2) l (34)
Proof:

Since there is no pivoting in the second step, the Ly produced by truncating
the QLP decomposition is the same as the L1, produced by computing the entire
QLP decomposition. Hence, the result follows from Theorem 2.2.3 of Chapter 2.
- .
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Theorem 3.2.1 shows that when we have a low-rank problem and perform a

a; “log7t ..
truncated QLP decomposition, the relative error ’(L“J)fl% is quadratic in the
i

gap ratio oy /o, for each 7 = 1,... k. All of the singular values of interest are

oA

well approximated.

3.3 Operation Count

In addition to being accurate, the truncated pivoted QLP algorithm is fast when
k is small. To QR factorize & columns of an m-by-n matrix using Householder
transformations requires about 2mnk—k?(m-+n)+2/3k* flam. Note that pivoting
adds only an O(mn) term, so we need not distinguish when we are pivoting. (A
flam is a floating point addition combined with a floating point multiplication,
a very common operation in linear algebra. Stewart [Ste98, p. 96] prefers using
this term to report many operation counts, because the term “flop” has changed

meaning multiple times and is therefore now ambiguous.)

Computing the complete QLP factorization requires computing all n columns
of the QR factorization of the m-by-n matrix A and computing all » columns of

the QR factorizatoin of the n-by-n matrix RT. This gives a total flam count of

2 2 1
2mn? — n*(m + n) + -?;na +2n® —n?(n +n) + §n3 =mn®+ §n3.
Computing the truncated QLP factorization, in which we compute only the
first r rows of R, requires computing the first r columns of the QR factorization
of the m-by-n matrix A and computing all » columns of the QR factorization of

the n-by-r matrix (R, RL)T. This gives a total flam count of
11412 g
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2 2 1
omnr — r2(m 4+ n) + —r® + 2nr% — r*(n+ 1) + -r® = 2mnr — mr? + ot
3] (9] a9
If 7 is small (r < n), then the O(mnr) time it takes to compute the truncated
QLP is small compared to the O(mn?) time for the full QLP decomposition. This
can be a huge savings. Providing SVD-quality information, the truncated QLP

decomposition is a real bargain.
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CHAPTER 4

Estimating Condition Number

4.1 Background

Say we have some linear algebra algorithm. We would like to know whether the
algorithm is such that given two inputs that are close, the algorithm produces
two outputs that are close. An algorithm is labeled “stable” or “unstable” based

on whether it has this property.

Unstable algorithms are usually worthless, and it is easy to see why. When we
give the algorithm data so that it can give us an output from the data, that data
will almost never be the exact data for the problem we are trying to solve. For
example, suppose the problem is one in which pressure depends on temperature.
We feed the algorithm some temperatures that we have measured, and it spits
out a pressure. Our temperature measurements will certainly be off by a little
bit—aside from human error, measurements can only have a certain instrument
dependent precision. So we are not giving the algorithm the actual temperatures
but only numbers that are close. Uh, oh. The unstable algorithm can therefore
spit out a pressure that is far from what it would have spit out had we fed it the
actual temperatures; that is, it can output a pressure which is not close to, but far
from the actual pressure. Even assuming that our measurements were exact, the
number line of the real world is continuous, whereas the number line of a computer

is necessarily discrete, a computer being able to handle only a finite number of

55



possibilities on the number line. So even perfect data is misrepresented before
the algorithm even starts. The data is off by a little, and an unstable algorithm

can therefore make the answer it gives off by a lot.

We employ an algorithm to solve a certain problem we have, and we want
the algorithm to be stable for reasons that we have seen. Before we even get
to the algorithm, however, there is the question of the problem itself. Perhaps
the problem is such that if the data is off by a little, the answer can be off by
a lot, even if a stable algorithm is used to solve it. We say that a problem is
“well-conditioned” or “ill-conditioned” depending on whether is has this property.
An ill-conditioned problem is extrememly hard to solve, because even a stable
algorithm can give answers that are way off. The difficulty is not in the algorithm

but in the problem itself.

In this chapter we are concerned with the condition of a problem. In par-
ticular, we assume that the problem is represented by a matrix, and the ques-
tion becomes whether the matrix is well-conditioned. There are different types
of problems involving matrices, such as solving linear systems and computing
eigenvalues. In all such problems we are concerned with how perturbations in
the data will potentially affect the computed solution. In solving linear systems,

a couple of bounds are [CR83]:

1. if Az = b and A{z + Az) = b+ Ab then

|8z]
]

< 11A|rnA-1tz~“ﬁ%|”|ﬂ,

2. if Az =b and (A + AA)(z + Az) = b, then
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1Az]| . [IABIATIIAAL/[LA]

ol = T-TAMA- A4/

(F=%

provided [AA|| < 1/]]JA|]. The vector norm in the inequalties may be any that

is consistent with the matrix norm.

Note the quantity ||A]||[A™|]. This quantity plays a determinative role in the
above bounds and in many other bounds like them. This number thus indicates

the condition of a matrix, and we call the quantity

k(4) = AlllA7)

the condition number of A (for some matrix norm). Note that since

1
] ]_1 .
|| ||2§| “2 o-lo_n'.\

the Singular Value Decomposition can be used to determine the condition num-
ber. Of course, the SVD is very expensive to compute. As many algorithms
which operate on a full matrix are O(n?®), the goal is to have a condition esti-
mator which is O(n?), negligible compared to whatever else is being done to the

matrix to solve the problem at hand.

The usual assumption when trying to determine the condition number of
a matrix A is that a factorization of A is available, and one of the factors is

triangular, for example, A = LU or A = @ R. In fact, in many applications where
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a condition number estimate is required, the matrix is already thus factored or is
triangular to begin with [Hig87]. So the “general problem” is that of estimating

the condition number of a triangular matrix.

When we say “estimating” the condition number, we mean just that. As
the condition number is used to determine whether the given problem is well-
conditioned, that is, whether it is sensitive to perturbations, the exact condition
number is not needed, but only an order-of-magnitude estimate. (Note that this
is not true for all applications, however. [HT00]) Note that £(A4) > 1. A condition
number on the order of 102, say, indicates a well-conditioned problem, whereas a
condition number on the order of 10 indicates ill-conditioning and that special

care will be needed to solve the problem accurately.

Most of the condition estimators that have been in software libraries and
packages, such LINPACK, LAPACK, and Matlab, have used the 1-norm, though
there are 2-norm condition estimators as well. For a short history of condition
estimation, see the first section of [HTO00], in which the authors also introduce
an improvement on the current LAPACK estimator. For a nice comparison of
condition estimators, including 2-norm estimators, see the survey [Hig87]. In
the latter paper, Higham, who has worked much in this area over the past two
decades, gives the rating of “reliable” to almost all of the estimators surveyed.
This even includes simply taking x(A) & |ri1|/|7usl, where 731 and 7y, are the
upper-lefi and lower-right diagonal elements in the R factor of the pivoted QR
factorization.

Higham and Tisseur point out that estimating condition number “appears
inevitably to admit the possibility of arbitrarily poor estimates (although proving

so is an open problem [Dem92}].” So an estimator is considered useful if it performs

well in practice, and especially if there are some kind of bounds that go with it.

58




Since the QLP decomposition computes approximate singular values, it makes
sense to consider how it can be used to estimate the 2-norm condition number.
The QLP decomposition does not fit exactly into the mold of a typical condition
estimator. After the first (pivoted) QR factorization is performed, we are at the
stage where we would want to apply an O(n?) method to estimate the condition
of R (and therefore of A, since @) is orthogonal). But the second step of the QLP
decomposition, namely computing the QR facrtorization of RY, requires O(n?)

operations.

We therefore approach QLP’s ability to estimate condition number from two
perspectives. First we recognize the fact that sometimes we will want to be
computing the QLP decomposition in order to obtain an approximate SVD for
some purpose. To receive a good condition number estimate for free (especially
one with bounds) would be a nice boon. Also, consider the case when n < m
(as is often the case in least-squares problems), so that doing the second step
on the n-by-n matrix R’ is relatively cheap. Then it would make sense to do
the entire QLP to get a condition number estimate. {(Note that if n is extremely
small, however, we can just compute the SVD of B. So we are thinking of the
case when n is small, but not too small.) So we derive bounds which apply when

the entire QLP is performed.

Our other approach is to look at various ways of estimating condition which
lie somewhere between merely doing the first QR factorization and going all the
way through with the second one. Some of these techniques, observations, and

bounds could be useful in some situations.
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4.2 Doing the Full QLP

To estimate the condition number after performing the full pivoted QLP decom-
position, we take k(A) = 01/0, & irP1/|r)|. We would like to derive a bound
on this estimate. Actually we will derive a bound on the underapproximation
ratio, the ratio of the QLP condition number estimate to the actual condition

number. Again from Mathias and Stewart [MS93] we know that if

w |ROD(2:n,2:n)

0= <1, (4.1)
B
then
1/2
2l (1 1RO, 2 )2 ) | (12)
a1 [1— ()2 )2

Here the matrix R is partioned as usual with k = 1 to isolate the rﬂ)

element used to approximate the 2-norm. If we instead partition with k =n —1,

we know that if

a
W _ |75 | 4
" inf(BM(1:n—1,1:n—1)) <L (13)

then
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Both assumptions are very reasonable after the two steps of the pivoted QLP
decomposition. A resulting bound on the underapproximation ratio is thus the

product of the above bounds:

01/ 1RO 2wy
Tofon (1 - (pm)ﬂ(rﬁ)F)

1— |RD(2 : n,n)|}? 1/2(4 5)
[1— () inf(RO (1 :n—1,1:n—1))? .

Note that all of the quantities in the bound (4.5} are readily available, if we
make the approximations [[RV(2 : n,2 : n)|| ~ Ir$%, and inf(RO(1 :n—1,1:
n—1) = |r (1)1n 4| The bound is clearly best when there are sizeable gaps
between ¢, and o, and between ¢, .1 and o,,. Note that (4.2) can also be used

as a bound on the error in using Stewart’s 2-norm estimator [Ste99).

4.3 'Tricks of the Trade

In this section, we do not carry the pivoted QLP decomposition all the way out.
We instead start with R®, the upper-triangular factor after the first pivoted
QR, just like other condition estimators. Using what we know about the QLP
decomposition, we want to see how much we can improve the basic pivoted QR
condition estimate |ry;|/|rnn| by performing G(n?) or even O(n) operations. Our

first two items deal with improving the estimate of oy and our last two items deal
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with improving the estimate of o,,, the much harder of the two to get a handle

on.

4.3.1 QLP Quality for o7 without QLP

Our first item is simply to notice that the upper-left diagonal element rﬁ) ob-
tained after performing the full two-step pivoted QLP decomposition is simply
the norm of the first row of R, assuming no pivoting is done on the second
step. In fact, noticing that the norm of this row is a better approximation to oy
than rﬁ} was what led Stewart to the QLP decomposition in the first place. So
one possibility, given RO, is to take o, = jr'y| and o1 ~ IrD] = |R®(1,1: n)j.
We thus get the bound (4.2) for only O(n) operations.

Of course, the bound (4.4) no longer holds. Instead we have only the RRQR
bound o,/ |r,(f23 > 1/4/n. This bound is usually true for QR with column pivoting,
but to be sure an RRQR method guaranteeing this bound should be used (see
Section 4.3.2). The bound can be useful when n is not too big and rough order-

of-magnitude accuracy is all that is required.

Qur second item is to point out Stewart’s two norm estimator [Ste99], based
on truncating the pivoted QLP decomposition. Instead of computing only 'rﬁ)

and assuming that no pivoting is done on the second step, Stewart pivots on the
(1)

second step, and computes the first few r;’. He suggests using the first two or
three rows of R or using rows 1 through %, where going from row % to row k+1
is the first time a decrease in norm occurs. Either criterion is likely to capture
the 2-norm. {Actually, Stewart was considering the case of a full matrix A before
it has been QR factored the first time, and he has an efficient implementation for
the 2-norm estimator in this case. We have simply described what it would look

like in our simpler situation.)
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Computing the first diagonal element of R using pivoting clearly gives at
least as good and perhaps a better estimate of oy than not pivoting. Moreover,
if we truncate at a significant gap, we expect the relative error to be small, as it

depends on the square of the gap ratio (see Theorem 3.2.1 of Chapter 3).

4.3.2 That Elusive o,

The first of our two items in this section is simply to suggest that to possibly
improve the quality of |n(52i and to ensure the bound o,/ |r,(31| > 1/4/n, we should
use an RRQR algorithm that guarantees this bound. This can be useful no matter

which of the two methods in Section 4.3.1 is used.

The entire RRQR algorithm need not be carried out, of course. We need only
determine the permutation which puts the correct column of R® into the n-th
column. Implemented correctly, determining the permutation and getting the
correct column into the n-th position with the new R of course retriangulated
requires O(n?) operations [Cha87].

The second item gives QLP-quality information about ¢,, when it works. Once

again recall that Mathias and Stewart [MS93] show that if

i
p= inf(R®(1:n—-1,1:n-—1))

<1,

then

IR :n = L)l < p| RO (1 :n—1,n)].
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Now we know that the norm of the n-th column of R() is just |T,(1[2!, that is

(ri)? = (D) + IRV (L s n = L,m)"

Hence

QP = O~ IRO(:n—1,n)|
> (G = RO (L n— 1, )]
A0 \?
2 ('r("))2 T) ||R(°)(1 :n 1, )%
- In—1
These quantities are readily available. If the right hand side is a positive
number, we can take its square root as a lower bound for ri&) without having to
do anything except make this O(n) calculation. Since we then know that we are
not overestimating r,(fg, we can use this quantity as an approximation of o, in a
condition number estimate. As an approximation of o; we can take Irﬁ)| by just
taking the norm of the first row of R(®) (see the previous section). Then we have
a good condition number estimate whose underapproximation ratio satisfies the

bound 4.5 (though we cannot compute the bound).

So for only O(n) work, we get a QLP-quality condition number estimate.
Note that the right hand side of the inequality (4.6) has the best chance of being
positive when the gap ratio r /'rn 1,n—1 18 small. This is when the decrease from

{D) to Ti,,l,g tends to be the greatest and is hence when we are the happiest to be

able to get a handle on ri.
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4.4 Numerical Experiments

We now present some numerical experiments. We will test the performance of
the pivoted QLP decomposition and of the QR/QLP hybrid which takes |r£32; as
the approximation of ¢, and |ﬂrﬂ)| as the approximation of o7 {(by simply taking
the norm of the first row of R(®). Let us call this latter method the QRplus

method, as it is just QR plus computing one row norm, inspired by QLP.

We perform three tests on these two condition estimators, essentially following
Highar [Hig87] (and also Higham and Tisseur [HTO00]) in the details. We run
each test for square matrices of size n, and let n = 10, n = 25, and then n =
50. In each test and for each n, we do fifty runs, calculating the minimum
underapproximation ratio and the average underapproximation ratio. That is,
since we start with the R factor from a pivoted QR factorization, we report the
minimum value and the average value of EST/ko(R), where EST is the estimate

of the condition number.

In test 1, we start with a matrix A having elements from the uniform distri-
bution on [0,1]. We then take the pivoted QR factorization and run the tests on
R.

In test 2, we create a diagonal matrix X having the singular values

letting the condition number vary: first 10, then 10°, then 10%, and finally 10
We then produce random orthogonal U and V and set A to be USV7T, take the

pivoted QR factorization and begin the tests.
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n 10 75 50
QLP | .80/.91 .76/.80 .77/.87
QRplus | .31/.55 .24/.37 .16/.29

Table 4.1: Test 1 with minimum/average underapproximation ratio.

ks nm=10 25 50
10 [.73/89 87/.96 .94/98
10 | .81/.97 .75/.97 .87/.99
10 | .94/.99 78/.98 .75/.99
10° | .99/1.0 .78/.99 .70/.99

Table 4.2: Test 2 for QLP.

Test 3 is just like test 2, except that the singular values are

l=oy =0y =" =051 >0,=[[A7|3".

The results are presented in Tables 4.1 through 4.5. The underapproximation

ratios are given in the form minimum/average in each table.

Note that in all cases order-of-magnitude accuracy is attained. The worst

results are with the random matrices in test 1. Looking at tests 2 and 3 we see

ke n=10 25 50

10 {.b3/.74 .73/.88 .85/.94
1031 .41/.71 .64/.85 .79/.93
108 | .37/.70 .49/.86 .71/.92
10° | .37/.70 .35/.87 .41/.90

Table 4.3: Test 2 for QRplus.
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ke mn=10 2b 50
10 .98/.99 .99/1.0 1.0/1.0
10% | 1.0/1.0 1.0/1.0 1.0/1.0
10% | 1.0/1.0 1.0/1.0 1.0/1.0
10° | 1.0/1.0 1.0/1.0 1.0/1.0

Table 4.4: Test 3 for QLP.

ke n=10 25 50

10 | .47/.75 .61/.87 .74/.93
10° | .49/.72 .53/.88 .74/.93
105 | .45/.73 .54/.87 .76/.93
10° | .51/.74 .51/.88 .81/.93

Table 4.5: Test 3 for QRplus.

that for either method and a fixed n, the values are roughly the same in the entire
column. Moreover this holds true over both tests. Note the spectacular success of
QLP in test 3, especially as compared with the performance of QRplus. (As only
2 decimals are recorded, a value of 1.0 indicates at least two significant digits in
the condition number estimate.) Test 3 has all singular values equal to 1 except
for a small ¢,,. This is a fine illustration of the converging power of the two-step
QLP decomposition. Note that since there is a large gap between o,_1 and oy,
this is a case where the trick at the end of Section 4.3.2 has a good chance of

working. It sure would be nice to get the results of Table 4.4 essentially for free.

The results for both tests are comparable to those obtained by Higham [Hig87)
for the various estimators he tested. We conclude that if we have computed a
pivoted QLP decomposition, the approximations of o; and o, are good enough
to give order-of-magnitude estimates of the condition number, and sometimes

correct digits in the estimate. It has been common practice just to use the given
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pivoted QR factorization by itself to obtain a rough condition number estimate.
Taking the norm of the first row of R improves the estimate of ¢y and appears

to produce acceptable condition number estimates.
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CHAPTER 5

Latent Semantic Indexing

5.1 Querying a Matrix

QOur problem in this chapter is that of representing a database of text documents
and then querying the database. Say our database consists of a set of d docu-
ments, each containing some text. To each document we assign a vector, each
component of which reflects an idea or word associated with the document. So the
vector would have length ¢, the number of terms indicating ideas or words in the
database. Each entry in the vector would be one or zero depending on whether
the document contains or is associated with that term. More often, instead of
ones, weights would be assigned indicating the importance of the term in that
document. Having determined the vector for each document in the database, we
can represent the database as a t-by-d term-by-document matriz. {Much of the

discussion of this chapter comes from {BDJ99] and [BB99].)

Consider the following example from [BDJ99|, with the given ¢ = 6 terms
and d = 5 books:
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P1:
D2:
D3:
D4:
Db:

bak(e,ing)
recipes
bread

cake
pastr(y,ies)

pie

How to Bake Bread Without Recipes

The Classic Art of Viennese Pastry

Numerical Recipes: The Art of Scientific Computing
Breads, Pastries, Pies and Cakes: Quantity Baking Recipes

Pastry: A Book of Best French Recipies

. In forming the term-by-document maftrix A representing this database, say

we let @;; be the number of times term ¢ appears in the title of document j. Then

we have:

/100 1 0)

10111
10010
A=

00010

01011

\0 0 0 1 0

Usually the term-by-document matrix is put into normalized form:
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(05774 0 0 04082 0 )
05774 0  1.0000 0.4082 0.7071
05774 0 0 04082 0
A= (5.1)
0 0 0 04082 0
0 10000 O  0.4082 0.7071
\ © 0 0 04082 0

Now let us say that we want to query the database hoping to find books about

“baking bread”. The vector for this query would be

T
q*“’=(1 0100 o) ,

the one in the first position representing the first term, “baking”, and the one in
the third position representing the third term, “bread”. Normalized, the query

vector is

T
¢ = (0.7071 0 07071 0 0 0) :

To query the database, we can take the dot product of the query vector ¢!
with each of the columns of A. This will give us five numbers, the cosines of the
angles 0, between ¢!’ and each column a; of A. A large cosine means that the
two vectors are close to each other, whereas a small cosine means that the two

vectors are far apart. Let us set a cutoff value of 0.5. Then the columns a; of
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A which return a cosine of greater than 0.5 are considered to be retrieved in the
query.

For the query vector ¢V, the only nonzero cosines are cosf; = 0.8165 and
cos B4 = 0.5774. This is what we would hope to get, for documents one and four

indeed concern baking bread, whereas documents two, three, and five do not.

Let us see what happens if we try a query with only the word “baking”. Then

the query vector is

T
q@):é(z)=(1 0000 0) :

and the cosines are 0.5774, 0, 0, 0.4082, and 0. So only the first document is
retrieved. We would have liked to have had the fourth document refrieved, as

well, since it is a more comprehensive book about baking.

Berry, Drmag, and Jessup [BDJ99! use this last query to motivate the need
for something more than just this basic vector space model of a database. They
list various adaptations that can be made, but one of the most intriguing is called

latent semantic indezing.

The idea in LSI is to replace the term-by-document matrix by one of a lower
rank. We will lose some information by making this replacement, but there are
definite advantages to making the switch. First of all, performing queries can
be much faster with the rank-reduced representation. Second, the new matrix
models the semantic content of the database better than the original matrix.
This was what was motivated in the last example. It is believed that by reducing
the rank of the matrix, much of the noise in the database is removed, and this is

what makes for better queries. Consider searching the term “Samuel Clemens”.
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We would like the query to return documents pertaining to Mark Twain. We
can see that querying with the original term-by-document matrix is not going to
do it for us. Reducing the rank greatly increases the prohahility of such success,

however, as the noise in the database is reduced and its semantic content focused.

For more on this, see [BDJ99] and [BB99].

5.2 Using QR and SVD to Reduce the Rank

Two possible ways of reducing the rank are the QR factorization and the SVD.

We can take the QR factorization of A and partition as we usunally do:

a=(a @) |

If || Rz2|| is small, one possible way of reducing the rank is to simply throw R,

away, obtaining the reduced rank form:

A= (Ru R12) -

If the SVD is used, the typical rank reduction can be made. Namely, if
A =UZV7T, we just let Ay = Up 34 Vi, where Uy and V, have k columns and ¥y
is k-by-k.

In trying to remove redundancy by reducing the rank of A the question arises
as to how small we can allow the rank to be without compromising the information

in the matrix beyond what is acceptable. The smaller the rank, the faster we can
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perform queries. It is pointed out in [BDJ99] that uncertainties of even 25% can
be introduced into A simply by difference of opinion between human indexers of
going beyond the uncertainty in the database. So there are rough guidelines to

follow as we reduce the rank of a factorization of A in pursuit of faster queries.

What relative change is there to R (and hence A, since @ is orthogonal) when
we set Ras to zero in the QR factorization of A? It is simply the norm of Ry
divided by the norm of R. If we are using the Frobenius norm, ||Ra| /|| R| s
If we instead use the SVD, the relative change is simply /37, ., 07/[|Al 5. So
for a given rank &, we can measure the loss of information in either method, and

adjust k£ so that the loss is acceptable.

As we know, the SVD is more expensive to compute than the QR factorization.
But one big advantage of using the SV is that it gives reduced rank bases of
both the column and row space of A. They are spanned by the columns of U
and of V, respectively. The QR factorization gives only a reduced rank basis for
the column space, which is spanned by the columns of ¢}. The row space basis is

useful for term-term comparisons and narrowing searches. See [BDJ99].

Obviously, the QLP decomposition is a candidate for use in latent semantic
indexing. It is cheap to compute and provides an approximate SVD. Indeed,
the first £ columns of the matrices @2 and P provide reduced rank bases for, re-
spectively, the column and row space of A, as they are the QLP approximations
of Uy and Vj. Plus, the QLP decomposition gives excellent approximations to
the singular values, so we can tell by looking at the approximate singular val-
ues |lgr1 441l - - 5 |Inn] how much information will be lost by making a rank &

approximation.
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QR | SVD | QLP as QR | QLP as SVD
rank 3 || 0.26 | 0.19 0.20 0.20
rank 2 || 0.51 | 0.42 0.44 0.43

Table 5.1: The loss of error for the three methods when reducing to a rank-3 or
rank-2 approximation.

5.3 QLP Applied to an Example

Let us apply QLP to the example of Section 5.1. We can apply both the QR way
and the SVD way of measuring relative change to our approximation and compare
the results with those of the QR and SVD, which are reported in [BDJ99]. They
consider using rank-three and rank-two approximations to the example matrix A
(see (5.1)). The relative changes in A when using QR, the SVD, and the QLP
decomposition, viewing the QLP as a QR and as an SVD are given in Table 5.1.

To compute the QLP statitics viewing the factorization as a QR, we compute

| Loo|| p/{|L|| . For viewing it as an SVD, we compute /> 7, 4 I2./[| L] r.

From the first two columns of the table, we see that the SVD allows a given
rank reduction with less data loss than the QR, which is not surprising. What
is more informative is that taking the rank-three approximation (of either QR
or SVD) costs an acceptable relative change in A (around 0.25 or less), whereas
taking the rank-two approximation loses too much data and is therefore unac-
ceptable. Note that the statistics for the QLP decomposition accurately reflect
this. In fact, the numbers for the QLP (viewed either way) are almost the same

as for the SVD, just slightly worse, which is what we would expect.

Now we show how the QLP decomposition handles the two queries ¢ and
¢® from Section 5.1 and compare the results with what the SVD gives. The

cosine between the query vector and each column of the respective rank-three
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Query 1
SVD | 0.73 [ -0.05 | 0.03 | 0.72 | -0.01
QLP j 0.82 | 0.00]0.00 |0.71} 0.00

Table 5.2: The cosines between ¢ and the columns of the rank three approxi-
mation given by the SVD and QLP.

Query 2
SVD || 0.52 | -0.03 | 0.02 | 0.51 | -0.01
QLP || 0.58 | 0.00 | 0.00 | 0.50 | 0.00

Table 5.3: The cosines between ¢ and the columns of the rank three approxi-
mation given by the SVD and QLP.

approximation are given in Tables 5.2 and 5.3.

Note that the QLP results are quite similar to the SVD results. In particular,
if we again use the cutoff value of 0.5 (i.e., a document is considered retrieved in
the query if the cosine between the document vector and the query vector is at
least 0.5}, then both queries retrieve documents 1 and 4, whichever factorization

is used.

So based on this example, the QLP decomposition looks promising for use in
latent semantic indexing. It correctly indicates the appropriate rank reduction

to make and it performs well on the queries.

5.4 Some Observations

We would like to make a few final comments on the use of the QLP decomposition
in latent semantic indexing and indicate possible directions for future research.

Note that we are usually solving a low-rank problem because of much redun-
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dancy in the term-by-document mastrix. Therefore the QLP decomposition can
be truncated as discussed in Chapter 3.

In fact, we would almost certainly want to use interleaving as well. As we saw
above, one problem is to determine what the rank & of the low-rank approximation
should be. If we replace the Frobenius norm by the 2-norm, the relative change
in Ais ogs1/||Allz & |les1k+1]/11,1]- So we could interleave the computation of L,
even one column at a time, until we reach a ratio |lg41 g+1|/|l11] which represents
an acceptable amount of information loss. At this point, the factorization is
complete, for we have the first £ columns of @ and of P and the matrix L(1 :
k,1:k).

Note that the term-by-document matrix is usually sparse, as in the example
earlier. When the QR factorization of a sparse matrix is taken, the sparsity is
fairly well preserved in the first few columns. This sparsity might be able to be
used to advantage to speed up queries. Note the query results given in Tables 5.2
and 5.3. Whereas the SVD has merely small cosines for the documents we ignored,
the QLP has zero cosines there. This is due to the sparsity being maintained in
the ¢ matrix. So QLP has the nice property that both the reduced rank column
and row spaces are approximated as with the SVD, but sparsity is fairly well
preserved in the first few columns of the column space approximation (the one

used for queries) as with the QR factorization.

Finally, note that if the term-by-document matrix is normalized, then all of
the columns, of course, have norm equal to one. This means that in the first step
of the QLP decomposition, there will actually be no pivoting in the pivoted QR
factorization. So pivoting will be used on neither step. This is a very intriguing
fact, for it implies for this low-rank problem that it does not matter which columns

we take before we truncate. We do get the information from all the entries of
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the matrix into the factorization. During the process of triangularizing the first
k columns, all of the columns of the matrix are multiplied by the & Householder
transformations, and so all of the elements in the last n— k columns contribute to
the formation of the first k& rows of R, if only passively. One question is whether
there is an alternative to pivoting that can speed up the factorization or perhaps
allow us to take a smaller k. At any rate, the QLP decomposition is certainly

worth a look for use in latent semantic indexing.
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CHAPTER 6

Conclusion

We have studied the pivoted QLP decomposition, which represents the first two
steps in an algorithm which approximates the SVD. The matrix Allp is first
factored as AIly = QR, and then the matrix RTTI, is factored as RTII; = PL",
resulting in A = QII; LPTIIY, with @ and P orthogonal, L lower-triangular, and
Ily and II; permutation matrices. Stewart noted that the diagonal elements of
L approximate the singular values of A with surprising accuracy, and we have

provided mathematical justification for this phenomenon.

Specifically, we showed that if there is a gap between o and o441, partition the
matrix L into diagonal blocks L1 and Loy and off-diagonal block Ly, where Ly is
k-by-k. We show that the convergence of (o;(L11)"" — 0} h en Yforj=1,...,k,
and of {(oj(Laz) — 0k+j)/0k+j, for j = 1,...,n — k are all quadratic in the gap
ratio og,1/ok. The worst case is therefore at the gap, where the absolute errors

ILH] — o7t and ||Las|| ~ o441 are thus eubic in o' and o1, respectively.

The derivation illuminated the fact that one order of covergence is due to the
rank-revealing pivoting in the first step; then, because of the pivoting in the first
step, two more orders are achieved in the second step. In particular, the one
order in the first step comes from the fact that we can bound the norms of Ry7'
and of Ry by of ! times a constant and ¢, times a constant, respectively, with
the constants depending only on ¥ and n. Our analysis assumes that II; = 1,

that is, that pivoting is done only on the first step.
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The algorithm can be continued beyond the first two steps, and we made
some observations concerning the asymptotic convergence of individual elements.
Assuming that Givens rotations are used to triangularize the matrix at each
iteration, we saw that there were basically two effects that a Givens rotation can
have on an off-diagonal element. When all of the off-diagonal elements are roughly
the same size, then one type of effect dominates, and convergence is relatively
slow. When, on the other hand, there are significant disparities in the sizes of
off-diagonal elements, the other type of effect dominates, and the convergence is
accelerated. We noted some of the common patterns.

We also showed that the asymptotic convergence of the diagonal element i
is the square of the slowest asymptotic rate among all elements in row s and
column s. We were then able to produce a bound on the asymptotic convergence

rate of diagonal elements. Numerical experiments illustrated results throughout

Chapter 2.

We next turned to a variant of the pivoted QLI decomposition which can be
used in low-rank problems in lieu of the truncated SVD. Stewart had suggested
truncating and interleaving the algorithm, and we showed that the theory for the
full decomposition carries over to the truncated case. In particular, we showed
that if there is a gap between oy, and oy, again the convergence of (o;{L11)™! —
o;")/o; ! for j =1,...,k, are all quadratic in the gap ratio oy 1/ox—this without
having to compute the rest of the matrix L. We also performed some operation
counts and compared the truncated QLP to the full QLP. Whereas the full QLP
runs in O(mn?) time, the truncated version runs in O(mnk) time, where we
truncate after £ rows, making it essentially a quadratic algorithm when & is

small.

Since the pivoted QLP decomposition and its truncated little brother approx-
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imate the SVD and the truncated SVD, respectively, we considered just a couple
of applications which require SVD-quality information and looked at what the

QLP could do.

We first considered the problem of estimating condition number, since the
QLP provides approximations to o; and &,, and we derived a bound on the
underapproximation ratio. As in the literature, we assumed that we already had
a convenient factorization of A, and in particular, we assumed that we had A in
the form of a pivoted QR factorization. Given such a factorization, a condition
estimator should run in @(n?) time. So the full QLP, which requires another
O(n?) operations, would probably be used for a condition estimate only if the full
(QLP were desired anyway, in which case the condition estimate would be had for
free, or if n were of a size that computing the full QLP made sense. So using
ideas related to the QLP as inspiration, we discussed techniques that provide
estimates better than that of the pivoted QR factorization but run in O(n?) or
even O(n) time. Two of these dealt with getting a better approximation to o,
than simply taking |r11] from the pivoted QR factorization. The other two tricks

attempted to get a better handle on ¢, the more elusive of the two.

We carried out some numerical experiments to assess the ability of the QLP
and one of these other methods to provide good condition number estimates. We
looked at the QLP and at QRplus, which means taking the norm of the first
row of R as the approximation to o1, and applied essentially the same tests that
Higham applied in his survey of several condition numbers {Hig87]. Both QLP
and QRplus gave at least order-of-magnitude approximations to the condition

number and can be considered reliable condition number estimators.

Finally we used the QLP to do latent semantic indexing. We saw how the

SVD is used to reduce the rank of the term-by-document matrix representing a
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database, and that it is observed that the rank-reduced matrix represents the
semantic content of the database better than the original full-rank matrix. As
this is an observation, and since the “best” representation is somewhat subjective,

the SVD does not necessarily yield the optimum results.

Here is a place where the QLP decomposition can really shine, for the error
in using it to approximate the SVD causes little damage in an application where
precision is not of the utmost importance anyway, and results are somewhat
subjective. We noted that the QLP, just like the SVD, provides approximations
for both the rank-reduced column space and row space, the former needed to
perform queries and the latter needed for term-term comparisons and refining
searches. We noted that in the process of truncating the QLP decomposition,
interleaving comes in very handy, as we can quickly determine when to truncate
based on the values of the diagonal elements being produced. We want to truncate
when the relative error in representing the matrix decreases beyond an upper
threshhold, and the L-values tell us when this happens. We applied the QLP
to a small example, and it performed quite well, both in informing us when to
truncate and in doing queries. The QLP decomposition seems to hold promise

for use in latent semantic indexing.

We have studied Stewart’s pivoted QLP decomposition, illuminating its con-
vergence and showing it at work in a couple of application areas. We hope that we

have demonstrated that it is a worthy substitute for the SVD in many situations.
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