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ABSTRACT

In this chapter mathematical models and efficient algorithms are developed
for the visualization, analysis and shape reconstruction for an arbitrary
data set that can include unorganized points or continucus manifolds of
any codimension, such as pieces of curves and surface patches. The distance
function to the data set and its contours are used for fast visualization and
analysis of the data set. A minimal surface and a convection model are used
for shape reconstruction from the data set. All formulations and numerical
algorithms are based on implicit representations on simple rectangular grids
which extend fo any number of dimensions and which also can easily be
combined with the level set method for dynamic shape deformation and
other manipulations.

1 Introduction

Visualization and analysis of large data sets of unorganized points have
important applications in scientific computing, computer graphics/vision,
computer aided design, medical imaging etc. Mathematically, interpola-
tion or shape reconstruction from a set of unorganized data points is an
ill-posed problem, i.e., there is no unique solution. For large data sets in
three and higher dimensions the problem becomes more challenging due
to the following: (1) the geometry and topology of the real shape is not
known 4 priori and can be very complicated, (2) finding the connection
or ordering of the data points can be difficult and expensive, especially
for data that are not uniformly spaced. In real applications, noise or other
uncertainty in the data makes things even more complicated. A desirable
procedure should be able to deal with all these difficulties and should have
a representation and data structure that is not only good for static render-
ing but also good for dynamic deformation and other manipulations. Most
of the previous approaches to this problem can be clagsified as continu-
ous vs. discrete in formulation and explicit vs. implicit in representation.
For continuous formulations, one often uses variational methods or partial
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differential equations, e.g., [BW90, CG91, MT93, SPOK95], to define the
desired solution in an appropriate function space equipped with a certain
regularity {smoothness). The formulation is meant to combine the interpo-
lation or other constraints with a regularization to remove the ill-posedness.
Approaches using continuous formulations are usually robust and allow
flexibility in dealing with noise. However the choice of regularization in
the formulation is not obvious and can make the problem difficult to solve
numerically. For discrete approaches, one tries to sort out connections or
orderings among data points based on exploring precise local structure and
relation of points, lines and planes etc. Interpolation is then used to con-
nect points or reconstruct the shape in a piecewise smooth fashion. Discrete
approaches are usually based on simple geometric relations and attempt to
interpolate the data exactly. However, in three and higher dimensions, sort-
ing out correct connections for an arbitrary data set can be very difficult.
Furthermore, the global structure pieced together from local information
may not be consistent or may lack smoothness, Noise or uncertainty in the
data can also be a problem.

The representation of reconstructed surfaces (shape) can be classified
as explicit or implicit. Explicit surfaces prescribe the precise location of
a surface while implicit surfaces represent a surface as a particular iso-
contour of a scalar function. Popular explicit representations include para-
metric surfaces using NURBS e.g., [PT97, Rog00], and triangulated sur-
faces using Voronoi diagrams and Delaunay triangulations e.g., [ABF8,
ABX98, Boidd, Ede98, EMY4]. Tracking of large deformations and topo-
logical changes can be a problem using explicit surfaces.

Recently, implicit surfaces or volumetric representations have attracted a
lot of attention. The traditional approach [BBB*97, Mur91, TO99] uses a
combination of smooth basis functions (primitives) to find a scalar function
such that all data points are close to an isocontour of that scalar function.
This isocontour represents the constructed implicit surface. The computa-
tional cost is very high for large data sets, since the construction is global.
This requires solving a large linear system and a single data point change
can result in changes of all the coefficients. Recently, in [CBC*01] poly-
harmonic Radial Basis Functions (RBF) and multipole methods were used,
enabling the authors to model large data sets by a single RBF. However,
human interaction and dynamic deformation are still difficuit tagks. More
recently, the signed distance function has been used to reconstruct and rep-
resent an implicit surface on a rectangular grid with the signs to distinguish
inside and outside [BBX95, BC00, HDD*92]. Most of the constructions
of signed distance functions from unorganized points are based on dis-
crete approaches. Similar ideas have been applied to shape reconstruction
from range data and image fusion [CL96, HSIW98]. The main advantages
of implcit surfaces incinde topological flexibility, a simple data structure
and depth/volumetric information. Using the signed distance representa-
tion, many surface operations such as Boolean operations, ray tracing and
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computing offsets become quite simple [PASS95, WGG99). Efficient algo-
rithms, see e.g. [NB93, WMWS&6], are available to turn an implicit surface
into a triangulated surface. In fact the level set method [OS88] provides
a general framework for the deformation of implicit surfaces according to
arbitrary physical and/or geometric rules. Recent applications based on
implicit surfaces and level set method range from computer animations,
dynamic visibility, and solving partial differential equations on manifolds,
see e.g., [DCGY8, FF01, BCOS01, CBM002, TBC*02].

In this chapter, we present some recent work by the authors and col-
laborators [ZOMKO00, ZOF01, Zha02a] on visualization, analysis and shape
reconstruction for uncrganized data set bagsed on continuous formulations
and implicit representations. Our algorithms are developed based on rect-
angular grids and work in any number of dimensions.

2 Fast multiscale visualization and analysis of
large data sets using distance functions

In many applications, for data sets that are noisy and of large size, perhaps
involving multiple dimensions and with complicated geometry and topol-
ogy, visualization or analysis techniques based on interpolation, which re-
quires one to explore the exact relations among all data points, often result
in high computational cost. In many situations we only need representa-
tions that are good enough for approximate analysis and visualization, t.e.,
one can compromise between the interpolation accuracy and efficiency. At
the same time we also want 1o keep the consistency and fidelity of desired
features and topological/geometric properties of the data set as much as
possible. A consistent multiresolution and multiscale framework is another
desired property for these approximate procedures.

In [Zha(2a] efficient multiscale data analysis and processing procedures
based on simple applications of distance function, distance contours and
connectivity are proposed that can:

¢ find all disconnected components on a given scale,
¢ provide quick visualization on different resolution and scale,

e characterize and approximate some important topological or geomet-
ric properties of the data set,

+ extend to any number of dimensions.

The basic idea is that the distance contours of the data set can be viewed
as approximate offsets of the shape represented by the data set and can
be used to visualize the data, to dissect disconnected components and to
characterize some important topological and geometric information for the
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data set. Efficient numerical algorithms are developed based on rectangu-
lar grids to compute the distance function to an arbitrary data set, extract
appropriate distance contours, and identify and characterize each discon-
nected component. The grid resolution and the choice of the distance con-
tour depend on the prescribed scale or the data sampling density. A natural
multiresolution framework can be implemented in a hierarchical way. The
complexity of the whole algorithm is of order N + M, where N is the
number of grid points and M is the number of the data points.

2.1 The distance function and the fast sweeping method

The distance function d(x) = dist(x, &) is the most important and intrinsic
information for a data set S. It is invariant under rotation and translation.
Given the distance function to a data set, we can choose an appropriate
scale parameter e, which may be prescribed or may depend on the sampling
density of the data, so that:

1. the distance contour d(x) = ¢, with a good choice of ¢, is an approx-
imate e-offset of the manifold represented by the data set and thus
can be used to approximately represent and visualize the shape of
the data set.

2. the e distance contour can be used to dissect and analyze the discon-
nected components of the data set on the scale e

3. the eshell= {x : d(x) < €} can be viewed as an approximate e-
covering of the manifold represented by the data set and thus can be
used to approximate the Hausdorff dimension of each discommected
piece of the data set

In numerical computations we compute the distance function on a rect-
angular grid that contains the data set with a grid size h that resolves
the prescribed scale £. We then construct the e distance contour or e-shell,
and dissect and characterize the disconnected components on this grid. To
compute the distance function to an arbitrary data set on a rectangular
grid, we use the fast sweeping algorithm that was used in [ZOMKO00] and
analyzed in detail in [Zha02b]. The distance function d(x) to an arbitrary
data set & solves the following Eikonal equation:

Wu(x)| =1, wx)=0, xe8. (1.1)

From a PDE point of view, the information propagates along straight lines
away from the data set, and the solution at a grid point should be deter-
mined only by its neighboring grid points that have smaller distance values.
We use the following fast sweeping method that combines upwind differ-
encing with Gauss-Seidel iterations of different sweeping orders to solve
the equation (1.1) on rectangular grids. For simplicity of exposition, the
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algorithm is presented in two dimensions. Extensions to higher dimensions
are straightforward. We use x;; to denote the grid peints at which dis-
tance values are to be computed. b is the grid size and u"(x) denotes the
numerical sclution.

The fast sweeping algorithm:

1. Discretization:
At interior grid points the following upwind difference scheme is used
to discretize the PDE (1.1):

[(u:t.‘? - U2Min)+]2 + [(ui,j - uzmin)+]2 = h'z,

i=2,...,0-1,§=2...,J-1, (1.2)

T § b B ominfah b
where ug,.., = min(ug ; ;, uliy ); Upmi, = min{ud; g, ,) and
x x>0 : . .
(z)t = 0 z<0 At the boundary, one sided difference is used

if needed. For example, at the left boundary, one sided difference is
used in the z direction,

{(uil,j e ug,j)+]2 + [(u1,; — uymin)+}2 = h.

2. Initialization:
Asgsign exact values or interpolated values at grid points in or near
&. These values are fixed in later calculations. Assign large positive
values at all other grid points. These values will be updated later.

3. Gauss-Seidel iterations with alternating sweeping orders:
At each grid x; ; compute the solution, denoted by %, of (1.2) from the
current value of its neighbors '“‘?:i:l,j: uﬁ‘;jil and then update uf" j to be
the smaller one of & and its current value, i.e., upst = min(ugff,ﬁ).
‘We sweep the whole domain with four alternating orderings repeat-
edly,
i=1:1j=1:0 i=I:1,j=1:J
@Bi=I:l,j=J:1 Ai=1:F3=J:1

Computing local distance: The computation of the distance function
can be easily restricted to a neighborhood of the the data set using a simple
cutoff criterion. For example, if we want to restrict the distance computa-
tion to the neighborhood {x;; : d(x; ;) < d}, in the Gauss-Seidel iteration
we update the distance value at a grid point x; ; only if at least one of its
neighbors has a distance value smaller than d, i.e., if min(u? ., uh ) < d.

Implementation details can be found in [Zha02b], in which it is shown
that 2™ number of sweeps is enough to compute the distance function to
an arbitrary data set in n dimensions. The alternating sweeping idea is
similar to the Danielsson’s algorithm [Dan&0]. However our formulation is
based on solving the PDE (1.1) and can treat much more general situations
[TCOZ01).
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2.2 Dissection and Characterization of Disconnected
Components

After we have computed the distance function on a rectangular grid, we can
use an appropriate distance contour and a connectivity condition to classify
all grid points as exterior points, neighboring points and interior points
asgsociated with each disconnected component. The boundaries between
these points are corresponding distance contours which can be used to
visualize and characterize the data set. For simplicity of exposition our
notation and algorithms are defined for two dimensions. The extension to
three and higher dimensions is straightforward.

Given a scale €, which is resolved by the grid on which the distance
function has been computed, we define the following three sets for all grid
points x; ;.

e the set of exterior points, denoted by :
OF = {x; j|d(x; ;) > € and x; ; is connected to infinity}

e the set of neighboring points, denoted by Q:
OV = {xi5]d(xi,5) < €}

e the set of interior points, denoted by §f, are the grid points compli-
mentary to NF U OV,

We define the connected neighboring points of a grid point x;; to be
Xi+1,;,%i;+1 in two dimensions and define the boundary of a set 2, denoted
by 812, to be the set of those grid points in £ for which at least one of its
four neighbors is not in 2.

We first identify the set of exterior grid points, 0F. We start with an
arbitrary initial subset 3 C ¥, For example, }¥ can be a known ex-
terior region or simply a seed point in € such as a vertex point of the
computational domain. We expand the initial set of exterior points (¥ to
OF by repeatedly marching the boundary of the set of temporary exterior
points, denoted by 0QF, by adding those grid points that are connected to
the boundary 90F and have a distance value that is greater than e. The
expansion stops when there is no more connected exterior grid point to
add. After the identification of all exterior points we also have the bound-
ary between 07 and QV, which can be used to visualize the data set as is
shown below. For the unmarked grid points, we can easily identify those
that have a distance value less than ¢ and mark them as neighboring points,
and the remaining unmarked points are the interior points. With careful
bookkeeping and marking, every grid point needs to be visited and checked
only once.

The most subtle point in the classification of all grid points is the choice of
the scale e. If the sampling density of the data set satisfies a separation con-
dition, i.e., the distance between two disconnected components or disjoint
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parts is larger than the largest distance between two connected neighbor-
ing data points, (which is a reasonable assumption to avoid any ambiguity
about connectivity,) then we can use any € in this range to separate all
disconnected components. The set of neighboring points can be regarded
as an € covering of the real manifold represented by the data set. More-
over, if the real manifold represented by the data set is closed, the union
of the neighboring set 2V and the interior set {2! has the same topology
as the interior region enclosed by the real manifold. Hence the boundary
between the set of exterior points and the set of neighboring points, which
we have identified in the above classification algorithm, is homeomorphic
to the real manifold and can be regarded as an approximate e offset. If
the real manifold represented by the data set is open and the distance
between disjoint parts is larger than the largest distance between two con-
nected neighboring points, the boundary between the set of exterior points
and the get of neighboring points looks like a thin shell enclosing the true
manifold and can be still nused as a good approximation in visunalization,
as is shown below. All the above situations are demonstrated in figure 1,
in which the red curves correspond to an distance contour of the distance
function to a data set represented by the blue dots. The data set contains
several disconnected components. The sets of exterior points, neighboring
points and interior points can be identified easily. We can also see clearly
how the distance contour separates the disconnected components and how
well it approximates the shape of the data set. By using this € offset we
can avoid finding complicated connections among data points.

1
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CTH
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FIGURE 1. distance contours of a data set

Using the classification of the grid points we can dissect all disconnected
components and characterize their properties on the scale . We start with
any grid point in O U QF and find all grid points in &Y U Q7 that are
connected to it and label them as the first component denoted by ;.
If there is no grid point left in QY U Qf - ), then there is only one
connected component, i.e., 1. Otherwise we start with any left point and
find all grid points in O U QY — ) that are connected to it as the second
connected component denoted by {22. We go on until all grid points in
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QN U Q! are marked. Now we have identified all disconnected components
represented by the data set on the scale €. By using the above algorithm for
identifying all disconnected components, we can also find out the following
useful geometric and topological properties of each component on the scale
of e

¢ The total number of interior grid points in each connected component,
ie., 2:NQY, which can be regarded as an approximation of the volume
of the component . In particular if a component has no interior
point then we can say that data points in that component represent
an open manifold on the scale of e.

¢ The total number of neighboring grid points in each connected com-
ponent, i.e., 3 N Y, which can be regarded as an approximation
of the Hausdorff dimension {i.e. surface area) of the manifold repre-
sented by the data in the k-th component. Also the ratio between
the number of interior points and the number of neighboring points
approximate the ratio between surface area and the volume, which
illustrates the “thickness” of a volumetric object.

» The total number of data points contained in each component (by
counting and adding the number of data points in each grid cell in
Q%) can be used to tell the significance of the cluster of data points.
For example, we can use the number of data points in each component
to single out and remove those isolated outliers.

If the sampling density varies for different components of the data set, we
can first extract any particular component and apply a different scale ¢
on each component for the above analysis. In a more general setting, we
can define the scale € as a spatially varying function e(x) that takes into
account local sampling density, uncertainty or statistics of the data.

2.8  Egtraction of distance contours and visualization of the
data set

After the classification of all grid points, we can extract an appropriate
distance contour as an offset to the real shape to visualize the data set.
As is shown in figure 1, the distance contour d{x) = ¢ which is exactly
AN, may be composed of two pieces for data points that form a closed
manifold. The first one is the boundary between the set of exterior points,
0F and the set of neighboring points, ¥V, which we call the exterior
distance contour and is denoted by I'S. The second one is the boundary
between the set of interior points, £, which is not empty if the data set
consists of a closed manifold on the scale of ¢, and the set of neighboring
points, Y, which we call the interior distance contour and is denoted by
I’;. No maiter what € is, the exterior distance contour I'{ always exists,
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assuming that the scale ¢ is resolved hy the grid size. Thus we extract the
exterior distance contour as an approximate offset of the shape representing
the data set. Denote d to be the largest distance between points that should
be connected and d to be the smallest distance between two disconnected
components or disjoint parts, we say the sampling density of a data set
satisfies the separation condition if d < d. The separation condition is to
exclude possible connectivity ambiguity. If the sampling density of the data
set satisfies the separation condition, we can choose € as amall as possible in
the range (d/2, d/2) so that the exterior distance contour is homeomorphic
to the true shape. As the sampling density increases, i.e., d = 0, we can
also take

df2 < e— 0, sothat ||I' — TS| = Ofe) = 0,

where T is the C! manifold represented by the data. Moreover, using the
distance contour as an offset for the true shape can also automatically
reduce the noise in the data set to some extent. In the examples shown
below in section 2.4, we see that even for large real data sets that are noisy
the visualization results look guite good.

To construct and visualize the distance contour, we construct an implicit
representation, i.e., we construct a signed distance function to the exterior
distance contour as follows. For those grid points in (1% (that are outside

the exterior distance contour), their distance d(x; ;) to the contour is just
a shift by e of its distance to the data set, i.e., d(x;;) = d(x; ;) — . We
also assign d{x; ;) = |d(x; ;} — €| to those boundary points in QY that are
immediate neighbors of ¥, Now we fix these correct distance values and
use them as the initial values to solve the Eikonal equation (1.1} for d(x; ;)
by the fast sweeping method. Then we negate d(x; ;) for those grid pointsin
QNUQY to get the signed distance function to the exterior distance contour.
The whole procedure is again of O(N) complexity for ¥ grid points. Using
the same procedure we can also find the signed distance to the interior
distance contour. Since we can think of the distance contour we construct
as an offset to the real shape represented by the data set, we can use the
distance contour as an initial guess and move it closer to the data set to
get a better approximation. We will discuss this in section 3

Data coarsening Here we propose a simple data processing procedure
that can be used to reduce the amount of data to a prescribed resolution.
We lay down a grid according to a prescribed resolution. For each grid
cell that contains data points, we compute the weighted mass center of all
data points in that grid cell or data points in a neighborhood with a given
radius and assign the total weight of those data points to the mass center.
For example, the weight can be dependent on the uncertainty of each data
point. We can replace the original set of data points by those weighted mass
centers on this resolution for visualization or other analysis. Now each grid
cell only has one point and is associated with some weight. Computing
the mass center is a kind of averaging and can also help to remove noise
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or redundancy in the data to some extent. We demonstrate in one of our
numerical examples that the data coarsening process can greatly reduce the
total number of data points of the original data set and we see no difference
in the visualization result.

2.4 FEzamples

In this section, we present results and timings of our algorithms on real
data sets. In particular we would like to demonstrate (1) the efficiency and
quality of using distance contours for visnalization of large data sets, (2)
dissection, analysis and process of large date sets without surface recon-
struction. All our computations are done on a Linux PC with Pentium
600Mhz processor and 1GB memory, which allows a maximum number of
grid points around 220°. The CPU time is measured in second. The timing
includes every step except the rendering time using Data Explorer. Table
1.1 shows the number of data points, size of the grid and timing for our
examples.

Model Data points Grid size CPU (second)
drill (raw) 50,643 100x69x54 3
drill base 34,106 149x118x1b1 14

drill cap 12,247 117x74x120 7

drill bit 4,283 24x120x24 0.4
dragon {raw) 1,769,513 | 149x124x147 49
dragon 1,723,761 | 311x222x146 93
dragon (scaled) 285,231 311x222x146 94
Buddha 543,652 156x371x156 39
terrain (raw) 100,860 600x118x99 51

terrain 98,725 601x452x29 28

TABLE 1.1. timing table

(a) the raw data set  (b) the drill bit {c) the drill cap {d) the drill base

FIGURE 2.

Figure 2 shows the data processing and visualization of a drill. Figure
2(a) shows the visualization of the raw data obtained by a 3D scanper from
a few different angles. The data has outliers and disconnected components.
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The exterior distance contour d(x) = 2h, where & is the grid size, is used
for the visualization and data processing. The whole data set has a total of
50,643 points. The number of data points in each of the three sets of outliers
is 2, 4, 1 respectively. There are three disconnected components after the
removal of the outliers which are: the drill base which has 34,106 points,
the drill cap which has 12,247 data points, and the drill bit which has 4,283
points. We can dissect these three parts and visualize them using distance
contours on different grids accordingly in figure 2(h),(c},(d). Figure 3 shows
the visualization and processing of the raw data from 3D scanning data for
a dragon statue. We did not use those backdrop data for hole filling that is
used for the construction at www-graphics.stanford.edu/data/3Dscanrep.
The whole data set has 1,769,513 points. Figure 3{(a) visualizes the raw
data on a 149x124x147 grid using the distance contour d(z) == h. On this
grid and with scale ¢ = 2h we can dissect 43 disconnected components,
42 of which correspond to outliers that have 45,518 points all together.
After removal of the outliers we visualize the dragon on a 311x222x146
grid {the largest possible on our PC) using an exterior distance contour
d(x) = h in figure 3(b). We visualize the same data set on a coarse grid
of size 100x73x49 in figure 3{c), which takes only 32 seconds. We can also
rescale the data set after the removal of the outliers to the grid resolution
of a 311x222x146 grid, as described in section 2.3. The total number of
data points is reduced to 285,231 which is visualized using d(x) = h in
figure 3(d). Almost no difference can be seen from using the original data
set in figure 3(b). In figure 4 we show the visualization of a Buddha statue
on a 156x371x156 grid from a 3D scanning data set of 543,652 points.
The distance contour used is d(x) == h and the computation takes only 39
seconds. Figure 5 is the visualization of laser radar data for a terrain. The
data set is very noisy and there are many bad data points due to occlusions
and non-reflections. Moreover, the scale is very different in the horizontal
and vertical directions. Figure 5(a) is the visualization of the raw data and
shows how bad it is. After removal of the a total of 2,135 bad points, e.g.
disconnected outliers, using our procedure, we visualize the data in figure
5(b). Now we can see quite clearly the buildings, the road, bushes and
shadows.

3 Construction of implicit surfaces using the level
set method

In [ZOMKO00],[Z0F01] mathematical formulations and numerical algorithms
were developed for surface reconstruction for unorganized data sets us-
ing differential geometry and partial differential equations. The level set
method and dynamic implicit surfaces were used to provide a general frame-
work for surface modeling, analysis, deformation and many other applica-
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(a) raw data {b) visualization after removal of outliers

{c) visualization on a coarse grid (d) visualization using rescaled data

FIGURE 3.

tions. A “weighted” minimal surface model, which takes into account both
the surface area and closeness to the data set, was proposed. The vari-
ational formulation allowed us to balance them in an optimal way. The
reconstructed surface is smoother than piecewise linear, thus the results
look good on relatively coarse data, sets. In addition, there is a regulariza-
tion that is adapted to the local sampling density in the spirit of [AB98] and
sharp features can be kept if a simple local sampling condition is satisfied.
The formulation handles noisy as well as non-uniform data and works in
an arbitrary number of dimensions. In [PBZ00] we have recently extended
the method to also interpolate data giving the value of the unit normal to
the surface at arbitrary points, curves and surface patches. A physically
motivated convection model and a very fast tagging algorithm were also
developed to give a very good initial approximation to the local minimizer,
and thus to our minimal surface reconstruction.

3.1 The Weighted Minimal Surfoce Model

Let § denote a general data set which can include data points, curves or
pieces of surfaces. Define d{x) = dist(x,S) to be the distance function to



1. Visualization, analysis and shape reconstruction of unorganized data sets 13

(a} front {(b) diagonal {c) back

FIGURE 4.

S. In [ZOMKO0] the following surface energy is defined for the variational
formulation:

EM) = [/F dp(x)ds] ’ , 1<p< oo, (1.3)

where I' is an arbitrary surface and ds is the surface area. The energy
functional is independent of parametrization and is invariant under rotation
and translation. When p = oo, E(T') is the value of the distance of the
point on ' most remote from 8. For p < oo, The surface energy E(T) is
equivalent to [, d”(x)ds, the surface area weighted by some power of the
distance function. We take the local minimizer of our energy functional,
which mimics a weighted minimal surface or an elastic membrane atfached
to the data set, to be the reconstructed surface.
As derived in [ZOMKO0;} the gradient flow of the energy functional (1.3)
) dr L
= [f dp(x)ds] T (x) [Vd(x) ‘n+ 1d(x)m] n, (1.4)
dt r P
and the minimizer or steady state solution of the gradient flow satisfies the
Euler-Lagrange equation

dP~* (%) {Vd(x) ‘n+ ;d(x)ra} =0, (1.5)
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(a) raw data (b) visualization after removal of outliers

FIGURE 5.

where n is the unit outward normal and « is the mean curvature. We see a
balance between the attraction Vd(x) - n and the surface tension d{x)x in
the equations above. Moreover the nonlinear regularization due to surface
tension has a desirable scaling d(x}. Thus the reconstructed surface is more
flexible in the region where sampling density ig high and is more rigid in the
region where the sampling density is low. In the steady state equation(1.5)
above, since |Vd - n| < 1, we have a local sampling density condition simi-
lar to the one proposed in [ABE98], which says sampling densities should
resolve fine features locally. To construct the minimal surface we used a
continuous deformation in [ZOMKO00]. We start with an initial surface that
encloses all data and follow the gradient flow {1.4). The parameter p affects
the flexibility of the membrane to some extent. When p = 1, the surface
energy defined in (1.3) has the dimension of volume and the gradient flow
(1.4) is scale invariant i.e., dimensionless. In practice we find that p = 1
or 2 (similar to a least squares formulation) are good choices. More details
can be found in [ZOMKO00)].

In two dimensions, it was shown in [ZOMKOC] that a polygon which
connects adjacent points by straight lines is a local minimum. This result
shows a connection between the variational formulation and previous ap-
proaches. On the other hand this result is not surprising since a minimal
surface passing through two points is a straight line in two dimensions.
However in three dimengions the situation becomes much more interesting.
The reconstructed minimal surface has no edges and is smoother than a
polyhedron.

3.2 The Convection Model

The evolution equation (1.4) involves the mean curvature of the surface and
is a nonlinear parabolic equation. A time implicit scheme is not currently
available. A stable time explicit scheme requires a restrictive time step size,
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At = O(h?), where h is the spatial grid size. Thus it is very desirable to
have an efficient algorithm to find a good approximation before we start the
gradient flow for the minimal surface. We propose the following physically
motivated convection model for this purpose. We convect a flexible surface
I in the potential field of the distance function d(x) to the data set S,

dr'(¢)

o Vd(x). (1.6)
The velocity field at any point, except those equal distance points, is a
unit vector pointing toward its closest point in §. The set of equal distance
points has measure zero. Hence points on a curve or a surface, except those
equal distance points, are attracted by their closest points in the data set
{see Fig. 6(a)}. The ambiguity at those equal distance points is resolved by
adding a small surface tension force which automatically exists as numerical
viscosity in our finite difference schemes. Those equal distance points on
the curve or surface are dragged by their neighbors and the whole curve
or surface is attracted to the data set until it reaches a local eguilibrium,
which is a polygon or polyhedron whose vertices belong to the data set as
the viscosity tends to zero. Since the convection eguation is a first order
linear differential equation, we can solve it using a time step At = O(h).
The convection model very often results in a good surface reconstruction
by itself.

8.8 The Level Set Formulation

In general we do not have any 4 priori knowledge about the topology of
the shape to be reconstructed. Topological changes may occur during the
continuous deformation process. T'his makes explicit tracking, which re-
quires consistent parametrization, almost impossible to implement. Here
we use the level set method as a powerful numerical technique for the dy-
namic deformation of implicit surfaces. The level set method is based on a
continnous formulation using PDEs and allows one to deform an implicit
surface according to various laws of motion depending on geometry, exter-
nal forces, or a desired energy minimization. In numerical computations,
instead of explicitly tracking a moving surface we implicitly capture it by
solving a PDE for the level set function on rectangular grids. The data
structure is extremely simple and topological changes are handled easily.
The level set formulation works in any number of dimensions and the com-
putation can easily be restricted to a narrow band near the zero level sef,
see e.g. [AS95, PMO*99]. Two key steps for the level set method are: (1)
Embed the surface: we represent a surface I' as the zero isocontour of a
scalar (level set) function ¢(x), i.e. T' = {x : ¢(x) == 0}. Geometric prop-
erties of the surface T' can be easily computed using ¢. (2) Embed the
motion: we derive the time evolution PDE for the level set function such
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that the zero level set has the same motion law as the moving surface, 1.e.,
T(t) = {x: $(x,1) = 0},

For geometric motions, i.e. where the motion law {velocity) depends only
on the geometry of the moving surface, the most natural way is to apply the
same motion law for all level sets of the level set function, which will result
in a morphological PDE [AGLM93]. For example, the gradient flow {1.4)
is a geometric motion. i we use p == 1 and extend the geometric motion to
all level sets, the gradient flow in level set formulation becomes

va) =17 7 B+ g
— | =|V¢| |Vd — +dV - —-]|,
2] A A 7 R 7
For the convection model (1.6), since the velocity field —Vd(x) is defined
everywhere, we can naturally extend the convection to all level sets of
¢(x,t) to obtain
o¢

5 = Vi) V. (1.8}

Although all level set functions are equally good theoretically, in practice
the signed distance function is preferred to avoid stiffness and inaccuracy
in numerical computations. However even if we start with a signed dis-
tance function the level set function will generally not remain a signed
distance function. We use a numerical procedure called remitialization, see
e.g. [PMO199, S5094], to redistance the level set function locally without
interfering with the motion of the zero level set. As a result the implicit
surface is a signed distance function after the deformation procedure stops.

o¢
S =vav-| (L)

3.4 Finding a good initial guess

We can use an arbitrary initial surface that contains the data set, such as a
rectangular bounding box, to begin with, However, a good initial surface is
important for the efficiency and convergence of our PDE based method. On
arectangular grid, we view an implicit surface as an interface that separates
the exterior grid points from the interior grid points. An extremely efficient
tagging algorithm was proposed in [ZOF01] that tries to identify as many
correct exterior grid points as possible and hence provides a good initial
implicit surface. As always, we start from any initial exterior region that is
a subset of the true exterior region.

All grid points that are not in the initial exterior region are labeled as
interior points. Those interior grid points that have at least one exterior
neighbor are labeled as temporary boundary points. Now we use the follow-
ing procedure to march the temporary boundary inward toward the data
set. We put all the temporary boundary points in a heapsort binary tree
structure sorting according to distance values. Take the temporary bound-
ary point that has the largest distance (which is on the heap top) and check
to see if it has an interior neighbor that has a larger or equal distance value.
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If it does not have such an interior neighbor, turn this temporary boundary
point into an exterior point, take this point out of the heap, add all this
point’s interior neighbors into the heap and re-sort according to distance
values. If it does have such an interior neighbor, we turn this temporary
boundary point into a final boundary point, take it out of the heap and
re-gort the heap. None of its neighbors are added to the heap. We repeat
this procedure on the temporary boundary points until the the maximum
distance of the temporary boundary points is smaller than some tolerance,
e.g. the grid size, which means all the temporary boundary points in the
heap are close enough to the data set. Finally, we turn these temporary
boundary points into the final set of boundary points and our tagging
procedure is finished. Now we have the final sets of interior, exterior and
boundary points. Since each interior grid point is visited at most once, the
procedure will be completed in no more than O(N log N) operations, where
log N comes from the heap sort algorithm.

This general tagging algorithm can incorporate human interaction easily

by putting any new exterior point{s) or region(s) into our tagged exterior
region at any stage in our tagging algorithm. After the tagging algorithm
is finished we again use the fast distance algorithm to compute a signed
distance to the tagged final boundary. We can use either a bounding box
of data set or an outer contour of the distance function, d(x) = ¢, as the
initial temporary boundary to start the fast tagging algorithim.
Remark: Since the maximum distance for the boundary heap is strictly
decreasing, the algorithm converges and we can prove that those interior
points which have a distance no smaller than the maximum distance of the
temporary boundary heap at any time will remain as interior points, i.e.
there is a non-empty interior region when the tagging algorithm is finished.
We can also show that at least one of the final boundary points is within
the tolerance distance to the data set.

Figure 6(b) illustrates how the fast tagging algorithm works. The furthest
point on the initial temporary boundary is tangent to a distance contour
and does not have an interior neighbor that is farther away. The furthest
point is tagged as an exterior point and the boundary moves inward at
that point. Another point on the temporary boundary becomes the furthest
point and hence the whole temporary boundary moves inward. Gradually
the temporary boundary follows distance contours and moves closer and
closer to the data set until the distance contours begin to break at the
equal distance point. We see that the temporary boundary at the breaking
point of the distance contour has neighboring interior points that have a
larger distance. So this temporary boundary point will be tagged as a fi-
nal boundary point and the temporary boundary will stop moving inward
at this breaking point. The temporary boundary starts deviating from the
distance contours and continues moving closer to the data set until all tem-
porary boundary points either have been tagged as final boundary points
or are close to the data points. The final boundary is approximately a a
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(a) the attraction of a piece of curve by two peints (b} the tagging algerithm
FIGURE 6.

polyhedron (polygon in 2D) with vertices belonging to the data set.

3.5  Multiresolution and Efficient Storage

There are two scales in our surface reconstruction. One is the resolution
of the data set. The other is the resolution of the grid. The computational
cost generally depends mainly on the grid size. To achieve the best results
those two regolutions should be comparable. However our grid resolution
can be independent of the sampling density. For example, we can use a low
resolution grid when there is noise and redundancy in the data set or when
memory and speed are important. From our numerical results, see e.g.,
figure 9(b) our reconstruction is quite smooth even on a very low resolution
grid. We can also use a multiresolution algorithm, i.e., reconstruct the
surface first on coarser grids and interpolate the result to a finer resolution
grid for further refinement in an hierarchical way.

To store or render an implicit surface, we only need to record the values
and locations (indices) of those grid points that are next to the surface,
i.e., those grid points that have a different sign from at least one of their
neighbors. These grid points form a thin grid shell surrounding the impleit
surface. No connectivity or other information needs to be stored. We re-
duce the file size by at least an order of magnitude by using this method.
Moreover we can easily reconstruct the signed distance function in O(V)
operations for the implicit surface using the following procedure. (1) Use
the fast distance finding algorithm to find the distance function using the
absolute value of the stored grid shell as an initial condition. (2} Use a tag-
ging algorithm, similar to the one used above to find exterior points outside
a distance contour, to identify all exterior points and interior points sep-
arated by the stored grid shell and turn the computed distance into the
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signed distance. For example, if we store the signed distance function for
our reconstructed Happy Buddha on a 146 < 350 x 146 grid in binary form,
the file size is about 30MB. If we use the above efficient way of storage the
file size is reduced to 2.5MB without using any compression procedure and
we can reconstruct the signed distance function very quickly.

3.6 Numerical Implementations and Examples

There are three steps in our implicit surface reconstruction algorithm. First,
we compute the distance function to an arbitrary data set on a rectangular
grid. Second, we find a good initial surface. Third, we start the continuous
deformation following either the gradient flow (1.4) or the convection (1.6)
using the corresponding level set formulation (1.7) or (1.8). Our numerical
implementations are based on standard algorithms for the level set method.
Details can be found in, for example, [PMO99, ZCMS96, ZOMKO00]. The
convection model is simple but the reconstructed surface is close to a piece-
wise linear approximation. In contrast the gradient flow is more computa-
tionally expensive but reconstructs a smoother weighted minimal surface.
In particular, the gradient flow can be used as a smoothing process for
implicit surfaces. In most of our applications, less than one hundred time
steps in total are enough for our continuous deformation to converge.

Figure 7 shows data points for a torus, a few curves (longitudes and
latitudes) on a sphere, data points from MRI slices for a rat brain. Fig-
ure 8 shows the final surface reconstruction from the above data. We see
that the hole in the torus is filled nicely with a minimal surface. For the
sphere reconstruction we only provide the unsigned distance function to
the curves which can be viewed as an extreme case of non-uniform data.
After the initial reconstruction using a distance contour and/or fast tagging
algorithm, we first use the convection model and then use the gradient flow
0 finish the final reconstruction. In our reconstruction, the grid resolution
is much lower than the data samples and yet we get final results that are
comparable to other reconstructions. Figure 9 shows the reconstruction of
the Happy Buddha. Figure 9(a) is the reconstruction on a fine grid. Figure
9(b) shows the reconstruction on a coarse grid.

Model | Data points Grid size CPU (minute)
Rat brain 1506 80x77x79 3

Buddha 543652 146x350x146 68

Buddha 543652 63x150x64 7

TAELE 1.2. timing table
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(a) reconstruction on a fine grid (b) reconstruction on a coarse grid

FIGURE 9. reconstruction of the Happy Buddha



