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A NUMERICAL METHOD FOR SOLVING VARIABLE COEFFICIENT ELLIPTIC
EQUATION WITH INTERFACES

SONGMING HOU AND XU-DONG LIU

ABSTRACT. A new 2nd order accurate numerical method is proposed for solving the variable coefficient
elliptic equation in the presence of interfaces where the variable coefficients, the source term, and hence the
solution itself and its derivatives may be discontinuous. Jump conditions at interface are prescribed. The
boundary and the interface are only required to be Lipschitz continuous instead of smooth, and the interface
is allowed to intersect with the boundary. The method is derived from a weak formulation of the variable
coefficient elliptic equation [12]. Numerical experiments show that the method is 2nd order accurate in L™
norm.

1. INTRODUCTION

The “immersed boundary” method [16, 17] uses a numerical approximation of §-function which smears
out the solution on a thin finite band around the interface. In {19], the “immersed boundary” method was
combined with the level set method resulting in a first order numerical method that is simple to implement
even in multiple spatial dimensions. However, for both methods, the numerical smearing at the interface
forces continuity in solution at the interface regardless of the interface condition [u] = a, where a might
not be zero.

In [13, 14], a fast method for solving Laplace’s equations on irregular regions with smooth boundaries
was introduced. By using Fredholm integral equation of the second kind, solutions can be extended to
a rectangular region. Since solutions are harmonic, Fredholm integral equations can be used again fo
capture the jump conditions in solution and its normal derivative, [u] # 0 and [u,] = 0. Then these jump
conditions are used to evaluate discrete Laplacian, and then fast Poisson solver on a regular region can be
applied with 2nd or higher order accuracy.

In {7], the “immersed interface” method was presented for solving elliptic equation with smooth source
term and [u] = 0 and [Bu,] = 0. The method achieves a second order accuracy by incorporating the
interface conditions into the finite difference stencil in a way that preserves continuities in both solution
and its co-normal derivative. The corresponding linear system is sparse but not symmetric or positive
definite. A fast iterative method [8] conjunctured with “immersed interface” method has been developed
for constant coefficient problems with interface conditions [u] # 0 and [Buy] # 0, and achieves 2nd order
accuracy.

In [1], a finite element method was developed for solving such a problem with the interface conditions
[u] = 0 and [Bu,) # 0. Interfaces are aligned with cell boundaries. The 2nd order accuracy was obtained
in an energy norm. Nearly the 2nd order of accuracy was obtained in L? norm.

In [10], another finite element method was developed for solving the problem with the interface conditions
[4] = 0 and [Bu,] = 0. Cartesian grids are used, and then associated uniform triangulations are added on.
Interfaces are not necessarily aligned with cell boundaries. Numerical evidence shows that its conforming
version achieves 2nd order accuracy in L® norm, and higher than first order for its non-conforming version.

The boundary condition capturing method [11] uses the Ghost Fluid Method (GFM} [2] to capture the
boundary conditions. The Ghost Fluid Method (GFM) is robust and simple to implement, so is the resulting
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boundary condition capturing method. The boundary condition capturing method is implemented using a
standard finite difference discretization on a Cartesian grid, making it simple to apply in multi-dimensions,
including three spatial dimensions. Furthermore, the coefficient matrix of the associated linear system is the
standard symmetric positive definite matrix for the variable coefficient Poisson equation in the absence of
interfaces allowing for straightforward application of standard “black box” solvers. The convergence proof
of the method is provided in [12]. In [12], a weak formulation of the problem was studied. The boundary
condition capturing method can be obtained from discretizing the weak formulation. The convergence
proof follows naturally. The boundary condition capturing method can solve the elliptic equation with
interface conditions [u] # 0 and [Bu,] # 0 in multi-dimensions (including 2 dimensions and 3 dimensions},
however the boundary condition capturing method is only first order accurate.

In this paper, inspired by the boundary condition capturing method [11] and the weak formulation
derived in [12], we extend the weak formulation to include the case that the boundary and the interface are
only required to be Lipschitz continuous instead of smooth, and the interface is allowed to intersect with
the boundary. We then propose a numerical method by discretizing the weak formulation. Our method
is capable of solving the elliptic equation with variable coefficients and interface conditions [u] # 0 and
[Buy] # 0, and is capable of dealing with the case that the boundary and the interface are only Lipschitz
continuous and the interface intersects with boundary. Numerical experiments show that our method is
2nd order accurate in L° norm if the interface is smooth or if the non-smoothness of the interfaces is
properly handled.

2. EQUATIONS AND WEAK FORMULATION

Consider an open bounded domain @ C R® with Lipschitz continuous boundary 952. Let I be a Lipschitz
continuous interface of co-dimension n — 1, represented by the zero level-set of a continuous but piece-wise
smooth function ¢{z), which is a signed distance function of the interface locally [18]. We assume that ¢
divides € into disjoint subdomains, 2~ = {¢ < 0} and QF = {¢ > 0}. Thus, we may write Q@ = QrUQ~UT.
The unit normal vector of the interface is n = V¢/|V |, for #(z) = 0, pointing from Q~ to Q.

We seek solutions of the variable coefficient elliptic equation away from the interface given by

(2.1a) V- (B(x)Vu(z)) = f(z}, =€ Q\T,

in which z = (z1,...,2,) denotes the spatial variables and V is the gradient operator. The coeficient 3(z)
is assumed to be a positive definite, symmetric n x n matrix, the components of which are continuously
differentiable on the closure of each disjoint subdomain, 2~ and Q¥, but they may be discontinuous across
the interface I'. It follows that there are positive constants m < M with m I < g{z) < M I, where I
stands for the n X n identity matrix. We suppose that on the interface, 5 assumes the limiting values from
within Q. The right-hand side f(z) is assumed to lie in L2(Q).

Given functions a and b along the interface I", we prescribe the jump conditions

fuly. (2) = uH(z) ~ u(z) = a(2),
(2.1b) { [(Bu)nly () = (Bu) () ~ (Bu)y (@) =b(z), =T

Note that (Bu), =n - fVu, and the “+” subscripts refer to limits taken from within the subdomains OF.
Finally, we prescribe boundary conditions

(2.1c) u(z) = g{z), =z €09,

for a given function g on the boundary 2.

In [12], a weak formulation of the problem has been obtained in the case that the boundary Q2 and the
interface I' are smooth, and the interface I' does not intersect with the boundary ). Here we extend the
weak formulation a bit to include the case that the boundary 99 and the interface I" are only Lipschitz
continuous instead of smoeoth, and the interface T' is allowed to intersect with the boundary Jf2.
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We are going to use the usual Sobolev spaces Hj(2) and H'(}). We use the usual inner product for
HY(9). For H}(Q), instead of the usual inner product we choose one which is better suited to our problem:

(2.2} Blu,v] = /ﬁVu-Vv+fﬁVu-Vv.

This induces a norm on Hj (2) which is equivalent to the usual one, thanks to the Poincaré inequality and
the uniform bounds for the coefficient matrix.

Let Rr and Rgpq denote the restriction operators from H(Q2) to L*(T') and L2(60), respectively. Such
restrictions are well defined, because the boundary and the interface are required to be Lipschitz continuous,
[4] and [15]. Throughout this section, we shall always assume that our interface data a and b are the

restrictions of functions & and b € H(£2), respectively:

o~

(2.3) a= Rr(a) and b= Rr(b).
We shall always assume that our boundary data g can be obtained by the following way
(2.4) g = Rsq(€) — Ron(@)x(80~ N Q) for some €€ H(Q),

where 92~ is the boundary of = and x(-) is the characteristic function. This (2.4) could be thought as
a compatibility condition between a and g. To simplify the notation, from now on we will drop the tildes.
‘We will construct a unique solution of the problern in the class

H{a,¢) = {u:u—c+ax(Q) e H}{O)},
where 2~ is the closure of Q™. If u € H(a,c) then
[ulr=a
Note that I} () can be identified with H(0,0).

Definition 2.1. A function u € H{a,¢) is a weak solution of (2.1a), (2.1b), (2.1c) if v = u — ¢ + a ¥(02")
satisfies

(2.5a) —Blv, 9] = F(#),
for all 4 € H}(Q2), where
(2.5b) Blu,vl= [ fVu-Vo+ | fVu- Vo
[
and
(2.5¢) F(p) = / Fo+ / BVc- Vi — / BVa- Vi + f .
2 iy - r

A classical solution of (2.1a), (2.1b), (2.1¢) is necessarily a weak solution, because the boundary dQ and
the interface T' are Lipschitz continnous and hence the divergence theorem is valid, see [4].

Theorem 2.1. If f € L?(Q), and a, b, and c € H'(SY), then there ezists a unigue weak solution of (2.5a),
(2.58), (2.5¢) in H{a,c).

Proof. The left-hand side (2.5b) of (2.5a) is a bounded bilinear form on H}(f2) and the right-hand side
(2.5¢c) of (2.5a) is a bounded linear functional on Hg((2). By the Riesz representation theorem, there exists
a unique v € HY Q) (s0 u = v+ c— ax(Q~) € H(a,c)) such that —Bv, 9] = F(¥), for all ¢ € H{(Q). O

3. NUMERICAL METHOD

For easy of discussion in this section, and accuracy testing in the next section, we assume that ¢ and b
are smooth on the closure of ). We also assume that ¢, 8 and f are smooth on the closure of each Q1 and
2, but they may be discontinuous across the interface I'. Also g 4+ ax(0~) is smooth on the closure of
i.e. o and g are compatible (2.4).
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F1Gure 3.1. a uniform triangulation

3.1. Grid and Interpolation. For simplicity, we restrict ourselves to the special case of a rectangular
domain Q = [zw,zg] X [ys,yn] in the plane, and § is scalar. Given positive integers I and J, set
Az = (zg —zw)/T and Ay = (yny — ys)/J. We define a uniform grid {(z;,y;)} = {{zw +iAz,ys5 + jAy)}
for i=0,---,7and j = 0,.--,J. Bach (z;,y;) is called a grid point. A grid point is called a boundary
point if i = 0,7 or j = 0, J; otherwise an interior point. The grid size is defined as h = max(Az, Ay) > 0.
The radio Az/Ay is fixed when the grid size h goes to zero.

Two sets of grid functions are needed and dencted by

(3.1a) HY = {wh = (wi;): 0<i< LO< < J},
and
(3.1b) Hyt = {uP = (wi;) e HY": w;;=0if ,i=0,1, or j =0,J}.

For each rectangular region [z, ziy1] X [y;, ¥j+1], we cut it into two pieces of right triangular regions: one
is bounded by z = z;, y = y; and y = LY (33, ) +y;, and the other is bounded by z = z;41, ¥ = 41

Byt
and y = %ﬁf(m — 2441) +y;- Collect all those triangular regions, we obtain a uniform triangulation Th:
Q = Ugers K. See Figure 3.1. We can also choose the hypotenuse to be y = ZE (2 — 2;) +y;, and

get another uniform triangulation from the same Cartesian grid. There is no conceptual difference of our
method on these two triangulations.

If ¢(zs,y;) < 0, we count the grid point (z;,y;) as in 7, otherwise in QF. We call an edge (an
edge of a triangle in the triangulation) an interface edge if two of its vertices (vertices of triangles in the
triangulation) belong to different subdomains; and a regular edge if two of its vertices belong to the same
subdomain, either Q1 or Q.

We call a cell K an interface cell if its vertices belong to different subdomains, and clearly the interface
goes through the interface cell K. In the interface cell, we write K = K+ |JK~. K+ and K~ are separated
by a straight line segment, denoted by ].""}(. Two end points of the line segment F‘}{ are located on the
interface I'. The vertices of K are located in % [JT' and the vertices of K~ are located in @~ |JT. K+
and K~ are approximations of the regions of K N Q1 and K MO~ respectively. We call a cell K a regular
cell if all its vertices belong to the same subdomain, either 2+ or Q. For a regular cell, we also write
K = K*|JK~, where K~ = {} (empty set) if all vertices of K are in O*, and KT = {} (empty set) if all
vertices of K are in Q™. Clearly I'% = {}(empty set) in a regular cell, and K+ and K~ are approximations
of the regions K M Q2% and K N~ respectively. We use |[KT| and |K | to represent their area of K+ and
K~ respectively.

Two extension operators are needed. The first one is T : Hy™ — HE (). For any 9" € Hy", Th(y")
is a standard continuous piece-wise linear function, which is a linear function in every triangular cell and
T"(4y") matches 1" on grid points. Clearly such function set, denoted by Hé’h, is a finite dimensional
subspace of HE ().

The second extension operator " is constructed as follows. For any u” € H" with u* = ¢" at boundary
points, U*(u") is a piece-wise linear function and matches u® on grid points. Tt is a linear function in each
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regular cell, just like the first extension operator /" (u?) = T™(u") in regular cell. In each interface cell,
it consists of two pieces of linear functions, one is on K+ and the other is on K~. The location of its
discontinuity in the interface cell is the straight line segment I"I‘(. Note that two end points of the line
segment are located on the interface ', and hence the interface condition [u] = a could be and is enforced
exactly at these two end points. In psmh interface cell, the interface condition [8Vu - n] = b is enforced

with the value b at the middle point of these two end pomts Clearly such a functlon is not continuous

in general, neither the set of such functions a linear space. We denote the set of such functions as H&;? ,
which should be thought as an approximation of the solution class H(a,c) with the restriction of [Su,] = b.
Similar versions of such extension can be found in the literature [11], [10]. In order to use this extension,
we need the following lemma.

Lemma 3.1. On any triangle K € T" and for any given ub € HM with ub = g" on the boundary points,
Ur{uh) can be constructed uniquely.

The proof is provided in the Appendix.

3.2. Discrete Weak Formulation. Under the current setting, we discretize the weak formulation
(2.5a,2.5b,2.5¢) as follows:

Method 3.1. Find a discrete function u”* € HL" such that

(3.2a) P =ul -4 atyh e Hé’h'
and
(3.2b) —B ", 9" = F(4"),

for all " € H}, where

Bt M = ¥ (f BY(U*(u) — ¢} - VI (§")

(3.2¢) KeTh \x+
+ [ AV(UMu") — ¢+ a) -VTh(¢h)),

P

and
Fhighy = 37 TR A U0 D DU I/ A ('
(3.2d) KeTh K+ JK~ KeTh Th
+ ¥ [ BVe- VIt — 3 [ BVa- VTH(yh).
Keth K+{JK- KeTh K-

Here ¢* € HY" and matches with ¢ at grid points, a® € H'" and matches with a at grid points, and
x € HY* and matches with x(Q~) at grid points. Note that (3.2a) implies u® = g* at boundary points.

The method 3.1 can be simplified as
Method 3.2. Find a discrete function u® € H* such that
(3.3a) u" = ¢" on boundary points
and for all ¢* € Hy™",
- ( [ BYUR ) - VT + f BYUk(ul) - VT"(W))
KeTh
(3.3b)
= 2 [ FTMyMy + [T ()

KeTh \K+JK~- rh



6 SONGMING HOU AND XU-DONG LIU

We know that Hé"h is a finite dimensional subspace of H(£2). We construct its base according to grid
points. Let Form=1,--- ,J—-landn=1,--- ,J -1, Let ¢,’§L,ﬂ ={bimbjn:t=0,---,1,j=0,---,J} €
H}S) where

. t=m

[ 1, :
Oi’m‘i 0, i # m.

Clearly {T*($, ) : m =1,--- ,] —=1,n =1,---,J — 1} is a base of Hy". Hence our method 3.2 can be
rewritten as:

Method 3.3. Find a discrete function u” = {u; ;} € H%" such that
(3.4a) i =gi; Hi=0,I, orj=0,J

andform=1,---, I—-landn=1,--- ,J—1,

KeTh \K+

- 2 (f BYUMuP) - VTH(ph )+ [ 5VUh(Uh)'VTh(¢fn,n))
(3.4) e

= 2 I T he) + [ 6T (W00)
KeTh \K+|JK~- T

Remark 1. The discrete weak formulation can be extended to multi-dimensions and irregular triangulations

as follows:

Method 3.4. Find a discrete function 1" € HY" such that

(3.5a) u" = ¢" on boundary points

and for all $* € Hy™,

-5 ( [ VUM uh)y - VTR My + [ ﬁVUh(uh)-VTh(¢h))
(3.5b) KeTh \ K+ K-

= 3 [ T+ [T (yh)
T

KeTh \K+|JK~

where T" is any “triangulations” in multi-dimensions, and H'" and Hé b are proper grid function spaces,
and U? and T are corresponding extensions in multi-dimensions.

4. NUMERICAL EXPERIMENTS

The interface might hit grid points, which may cause inaccuracy in dealing with a situation of zero over
zero. To avoid this, we set ¢(z;,y;) = —¢, if |(z4, 95} < € (= 107%Az in all our calculations).
For simplicity reason, in each triangular cell K, we set 87 to be the 8 value at the center of K, and
B~ the B value at the center of K~. They approximate |T{1:FT f B and ﬁ f B within enough accuracy.
K+ K-

In each triangle K, for [ f4, we first cut Kt into two triangles if K is not a triangle, then on
K+
each triangle, we use a 2nd order accurate numerical quadrature to evaluate the integration of f1 on the
triangle; similarly for [ f4.
o
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Figure 4.1. V - (8Vu) = f(z,y), f piece-wise smooth but not constant, 8 piece-wise
smooth but not constant, [u] # constant, [Bu,] # constant, and ¥/~ =~ 1/1000.

Az = Ay || L®-error in U | order || L%-error in VU | order || Aw, Ay [| L™-error in U | order | L*-error in VU | order
i 5.54e-1 3.92e-0 =, = 4.91e-1 3.92e-0
P 1.45e-1 1.93 1.34e-0 1.55 2, 1.37e-1 1.84 1.57e-0 1.32
1—55 3.19¢-2 2.18 6.43e-1 1.06 || =5, = 3.84e-2 1.83 5.59e-1 1.49
320 8.94e-3 1.84 2.84de-1 118 || 55, 555 9.04e-3 2.09 2.98e-1 0.91
TABLE 4.1.

4.1. Smooth Interface. Example 1: Consider V- (8Vu) = f(z,y) on [~1,1] x [-1,1]. The interface is
a circle 22 + y? = 0.5% and is described by the zero level-set of the level-set function ¢ = 2% + y* ~ 0.25.
The interface T' cuts the domain Q into 27, where ¢ < 0, and Q*, where ¢ > 0. The unit normal is
7= (z//22 +y2,y//22 +42). On Q~, we let u(z,y) = 2 + y? + 2, f~ = 1000{zy + 3) and f(z,y) =
80003y + 12000. On %, we let ulz,y) = 1 — 22 — %, B = 2% — 4?4+ 3 and f(z,y) = 8y* — 8z% — 12.
Appropriate Dirichlet boundary condition is used. The jump conditions are [u] = —1 — 222 — 2y? and
[Buy] = ~2z(z? — y? + 1000zy + 3003)n1 — 2y(z% — y* + 1000zy + 3003)n,. Figure 4.1 shows the numerical
solution of our method with step size Az = Ay = %. Note that all data are variables and /87 =
1/1000. Table 4.1 shows that our method achieves 2nd order accuracy in L° for solutions and first order
accuracy in L norm for the gradient of solutions away from the interface on two different sets of grids.
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FIGURE 4.2. V. (V) = f(z,y), f piece-wise smooth but not constant, § piece-wise
smooth but not constant, [u] # constant, [Bu,] # constant.

Az = Ay |j L-error in U | order || L®-error in VU | order || Az, Ay || L™-error in U | order || L™-error in VU | order
= 3.18¢-2 1.48e-1 = 2 2.75e-2 2.73e-1
% 9.02e-3 1.82 1.32e-1 0.17 =, 2 9.28e-3 1.57 1.61e-1 0.76
0 2.08e-3 2.12 4.79%e-2 146 || 57, 155 2.54e-3 1.87 4.19e-2 1.94
% 5.55e-4 1.91 2.05e-2 1.22 43%1 75 5.67e-4 2.16 2.72e-2 0.62
TABLE 4.2.

Example 2: Consider V-(8Vu) = f{z,y) on [~1,1] x [-1,1]. The interface is a curve (=:(8), ()} where
z(6) = .02v/5 + (.5 + .25in(560)) cos(8), y(6) = .02v/5 + (.5 + .25in(50)) sin(d), @ € [0, 27). The interface is
described by the zero level-set of the level-set function ¢ = (z —.02v/5)% + (y ~ .02v/5)? — (.5 + .25in(56))?,

where 8 = tan™!( %). The interface cuts the domain © into Q~, where ¢ < 0, and Q7F, where ¢ > 0.

The unit normal is @ = (ny,n2) = V¢/|Ve|. On 2™, we let u(z,y) =722 +Ty° +1, B~ = (2% ~ y* + 3)/7,
f(z,y) = —8y% + 822 +12. On OF, we let u{z,y) = 5—5z% — 52, B+ = (zy+2)/5 and f(z,y) = —8zy 8.
Appropriate Dirichlet boundary condition is used. The jump conditions are [u] = 4 — 122 — 12y* and
[Bun) = (2zy? — 222y — 22° — 10z)n; + (2y° — 2%y — 2zy% — 10y)ne. Figure 4.2 shows the numerical solution
of our method with step size Ax = Ay = é,%ﬁ_ The difficulties of this problem is that all data are variables
instead of constants, and the geometry of the interface is more complicate than the example 1. Table 4.2
shows that our method achieves 2nd order accuracy in L norm for solutions and about 1st order accuracy
in L™ for the gradients of the solutions away from the interface on two different sets of grids.



NUMERICAL METHOD FOR ELLIPTIC EQUATION WITH INTERFACE 9

a1

FIGURE 4.3. V - (8Vu) = f(x,y), f piece-wise smooth, but not constant, 8 piece-wise
smooth, but not constant, [u] # constant, [Buy] # constant, I' is smooth but is tangential
to 90 and intersects with 5%0.

Az = Ay || L™-error in U | order || L™-error in VI | order || Az, Ay [} L=-error in U | order || L®-error in VU | order
% 4.88e-4 2.70e-3 %, ;za 5h.05e-4 2.95¢-3
i 1.25e-4 1.96 1.11e-3 1.28 g 1.35e-4 1.90 1.20e-3 1.30
T Z.gge-5 1.88 7.02e-4 0.66 || =, i 3.51e-5 1.94 5.88¢-4 1.03
335 .9%e-6 1.92 4.59e-4 rFfﬁlijE 4?, 315 9.05¢-6 1.96 2.89e-4 1.02

Example 3: Consider V - (8Vu) = f(z,y) on @ = [~1,1] x [~1,1]. The interface is a parabola and is
described by the zero level-set of the level-set function ¢ = 2? — y — 1. The domain is cut by the interface
I' into ©~, where ¢ < 0, and Q1, where ¢ > 0. Note that the interface is tangential to the boundary 9 at
(0, 1) point, and it intersects with the boundary 92 at (—1,0) and (1,0} at certain nonzero angles. The unit
normal vector of the interface is 7 = (\/ﬁ, W}w?) On O, we let u(z,y) =22 +4%, - =22 — 4> +3
and f(z,y) = —8y* + 822 +12. On QF, we let u(z,y) =4 — % —y?, B* = zy +2 and f(z,y) = —8zy - 8.
Appropriate Dirichlet boundary conditions are used. The jump conditions are [u] = 4 — 1222 — 12y? and
[Bun] = (2zy? — 222y — 223 — 102)n; + (29 — 222y — 2xy* — 10y)ny. Figure 4.3 shows the numerical solution
of our method with step size Az = Ay = 3%. Other than the difficulty of all variables, the interface is
tangential to the boundary and intersects with the boundary at certain nonzero angles. Figure 4.3 shows
the numerical solution of our method with step size Az = Ay = 3%. Table 4.3 shows that our method
still achieves 2nd order accuracy in L™ norm in solutions and about 1st order accuracy in L° norm in the
gradients of the solutions on two different sets of grids.
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1 -1

FigURE 4.4. V - (BVu) = f(z,vy), f piece-wise smooth, but not constant, S piece-wise
smooth, but not constant, [u] # constant, [Bu,] # constant, I is smooth except at the cusp
point(—0.25, 0}.

Ax=Ay [| L®-error in U | order || Az, Ay [| L=-error in U | order
% 4.08e-3 =, = 3.60e-3
Fr 7.90e-4 2.36 £, 9.85e-4 1.87
135 2.14e-4 188 || 57,155 2.96e-4 1.73
5 1.48e-4 0.53 1| +r, gﬁ%’wﬁ 6.77e-5 2.13
o 2.29e-5 270 || &5 53 2.43e-5 1.48
T'ABLE 4.4.

4.2. Non-smooth Interface. Recall that the interface is approximated by a straight line segment I'% in
each interface cell K. That is accurate enough to achieve 2nd order accuracy for our method if there is only
one smooth interface in K. In the numerical experiments below we observe that, for interface with kinks
and/or cusps, our method is convergent; and if two legs of the kinks are located in different triangular cells
and there is only one interface goes through any cell, our method is 2nd order accurate in L™ norm.

Example 4: Consider V - (8Vu) = f(z,y) on Q = [-1,1} x [-1,1]. The interface is a cardioid and
defined by the zero level-set of the level-set function ¢ = (3(z? + 4?) — z)? — 2% — y*. The domain is cut
by the interface into {~, where ¢ < 0, and O, where ¢ > 0. Note that the interface are smooth except at
cusp point (—0.25,0). On 7, we let u(z,y) = z* + 4%, f~ = z? —y*> + 3 and f(z,y) = —8y? + 822 + 12.
On O, we let u(z,y) =4 — 22—y, Bt = zy+ 3 and f(z,y) = —8xy — 8. Appropriate Dirichlet boundary
condition is used. The jump conditions are [u] = 4 — 1222 — 12¢% and [Bu,] = (2zy® — 22y — 225 —
10z)n; + (2y® — 222y — 2zy? — 10y)n,. Figure 4.4 shows the numerical solution of our method with step size
Az = Ay = 33—0. The difficulty of this problem is that the interface I" has a cusp at (—0.25,0), which is not
Lipschitz continuous. The numerical accuracy tests seems to suggest that 2nd order accurate convergence
in L® norm for solutions on two different sets of grids, see Table 4.4.
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- A

FIGURE 4.5. V - (Vu) = f(z,y), f piece-wise smooth, but not constant, 8 piece-wise
smooth, but not constant, [u] # constant, [Bu,]| # constant, I' has many discontinuities,
touches and intersects with the boundary.

Az = Ay || L>®-error in U | order i Az, Ay || L*-error in U | order
= 2.38e-1 ) 1.2de-1
%,- 7.88e-2 159 || =,% 6.75e-2 0.88
1 5.43e-2 0.54 || =7, 55 4.56e-2 0.57
e 2.57e-2 108 || =0, = 2.25e-2 1.02
TABLE 4.5

Example 5: Consider V - (Vu) = f(z,y) on Q@ = [~1,1] x [-1,1]. The interface is defined by
the zero level-set of the level-set function ¢ = (sin(bnz) — y){—sin{bmry) — z). The domain is cut by
the interface into 2, where ¢ < 0, and QF, where ¢ > 0. Note that there are many kinks on the
interface, the interface intersects with 8(, and there are more than one piece of 2~ and Q. The unit
normal vector of the interface is # = V¢/|V¢|. On 27, we let u(z,y) = 22 + ¢, 8~ =22 —y* + 3 and
flz,y) = —8y% +82% + 12. On QF, we let u(z,y) =4 — 2% — 42, B+ = zy + 2 and f(zx,y) = —8zy — 8.
Appropriate Dirichlet boundary condition is used. The jump conditions are [u] = 4 — 1222 — 12y? and
[Bun] = (23y? — 222y — 223 — 102)n; + (243 ~ 22%y — 22y — 10y)ny. The interface has many kinks and
some of their coordinates are irrational. There is no easy way to put the pairs of all kinks into different
triangular cells. That is the reason why our method is only 1st order accurate, see Table 4.5. Also see

Figure 4.5 for the numerical solution of our method with step size Az = Ay = 3%—0.
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10

-0.4

-1 -0.6
4 0.8

FIGURE 4.6. V - (8Vu) = f(z,y), f piece-wise smooth, but not constant, 8 piece-wise
smooth, but not constant, [u] # constant, [Buy]| # constant, T’ is smooth except at the
corners of ears, the corners of mouth, and the touching point of the nose and the mouth.

Az = Ay || L™®-error in U | order || L*-error in VU | order || Az, Ay || L™-error in U | order
z 6.06¢-2 3.09e-1 Z =z 3.12e-1
= 1.64e-2 1.89 1.16e-1 141 || &5 2.60e-1 0.26
- 1343 1.92 471e-2 130 || o7, o 2.07e-1 0.33
= 1.15e-3 1.92 1.81e-2 140 || ==, 555 1.60e-1 0.37
TABLE 4.6.
Example 6: Consider V - (8Vu) = f(z,y) on € = [-1,1] x [-1,1]. The interface is defined by

the zero level-set of the level-set function ¢ = max(min(¢s, @2, ¢3), ¢4, ds5, P, min(d7, ¢g)), where ¢; =
VE2+y? — 0.75% — 0.152, ¢y = (z—0.75)2+42—0.152, by = (2 +0.75)2+12 —0.152, ¢y = — 5 (z—0.2)> -
Bi2(4—0.22)24+0.12- 0.1, ¢5 = — g5 (2 +0.2)% — 52 (y - 0.22)2 +-0.12 - 0.1, ¢ = —2* — (y+0.08)? +0.12?,
$7 = —x? — (y+0.625)2 +0.4252 and ¢s = —z® — (y+0.25)? +0.22. The domain is cut by the interface into
Q~, where ¢ <0, and O, where ¢ > 0. Note that the interfaces have kinks around ears and mouth, and the
mouth and the nose are tangential at point (0, —0.2), see Figure 4.6. On ™, we let u(z,y) = T2 +Ty* +1,
B~ = (2% — 42+ 3)/7, flz,y) = ~8y* +8z% + 12. On OF, we let u(z,y) = 5 — 5z — 5y?, B+ = (zy +2)/5
and f{z,y) = —8zy — 8. Appropriate Dirichlet boundary condition is used. The jump conditions are
[u] = 4 — 1222 — 1242 and [Bu,] = (229? — 252y — 223 — 10z)m + (2 — 22y — 2zy? — 10y)n,. Figure
4.6 shows the numerical solution with step size Az = Ay = 3—3—0-. Table 4.6 shows the results of numerical
accuracy tests on two different sets of grids. For the 1st set of the grids, all kinks and the touch point
(0, —0.2) are on grid points, and the pairs of legs of all kinks and touching point are located in different
triangular cells. Our method achieve 2nd order accuracy in L°° norm for solutions and more than 1st order
accuracy for the gradients of the solutions away from the interfaces. For the 2nd set of the grids, the pairs
of legs of kinks and the touching point are in some triangular cells. Our method losses 2nd order accuracy
but is still convergent in L™ norm for solutions.
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(s y; + Ay} = P

(zi,y5) = P Py = (z; + Az, y5)

FIGURE 5.1. Case 0: the regular cell

(zi,y; + Ay) = P

(zi,y; + dy) = Ps

Iy
K-
Fg
dy K+

FIGURE 5.2. Case 1: the interface cutting through two legs of a triangle

(zi,y; + Ay) = Py

(z5,y7) = P dz Py = (x; + Ax, ;)

Py = (z; + Az — daz, ;)

FIGURE 5.3. Case 2: the interface cutting through a leg and a hypotenuse of a triangle

5. APPENDIX: PrROOF oF LEMMA 3.1

There are three typical cases for U”(u").
Case 0: If K is a regular triangle, see Figure 5.1. UP{u") = Th(uP) ie.

+ u(Py) — u(Pi) )+ u(P3) — u(P1)

(5.1) UM ) = u(Pr) + T - )

(z — =

13
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Case 1: If K is an interface triangle, and the interface I' cutting through two legs of K, see Figure 5.2.
‘We have

u(Pr) +uf (m—a%)+u (Y — v4), (z,y) € KT,
5.2a Ut uh) = v —u _ -
(6.22) e { u(Py) + 15 (2 — 33 — Ac) + (IR | &ryy(y g (m,y) € K-
Here u, = ﬂﬁ%})—"’) + ﬁ; —. Three interface conditions are enforced as follows:
dx u) +(Azx —dz) uy =7
(5.2b) (Aw - A:"' Ay} ug +dy ul =12
—dypt uf +(dy+ % dﬂz)ﬁ_ ; —dzptul =r;

where 7y = u{P2) — u(Py) + a(Py), ro = u(P) — u(P) + Ml&%ﬁ@dy +a(Ps), r3 = —ﬁ_%dm +
b(Ps)\/dz? + dy?. Here 1 = TI?I:FT J Band g~ = ﬁ [ B are the averages of § in Kt and K~ regions
K+ K-

(In our numerical experiments, we take 8 to be the 8 at the center of K +.and 8~ the B at the center of

K7).
Let
dz {Az — da:) 0 s (Az — dm) 0
A= l 0 Az — —d.’y dy } , Ay rg Az — m««dy dy ,
(5.20) —dyB*+ (dy+ A‘“dm)ﬁ““ —dzpt | r (dy+ & da:)ﬁ‘ —dzft |
' dr 11 0 [ dz (Acr: - dm) r1
Ay = 0 T9 dy s Az = 0 Az — xdy T2
[ —dyft r3 —dxpt } | —dyft (dy+ % dm‘)ﬁ“ 3 |
Clearly
(5.2d) uf = det(Aq)/det(A), u, = det{As)/det{A),

u;' - det(A3)/d6t(A), Uy = u(Pa)A-; Py + ﬁ; -

Note that the matrix A consists of information of grid, interface and coefficients 8, and is independent
from u”, a or b. Also note that the determinants of matrices Ay, Ap and Aj; are linear functions of ut, a
and b. Hence they could be rewritten in the forms of

uf = ol PP o MNP 1 oF ja(Py) + f al(P) + ¢ ob(B),
g = e MEUHE) o MBIMB) oy o o(Py) + o golFs) + “b(FY)
ut = +2u(P2£mu(P1) +c+ H(PSE;(PI) + c a(P4) + ¢, 5a(P5) + c s0(Fs),

Y3
uy =, UPuB) | o wP) P o a(Py) sa(Pf,)-l—c b(Pﬁ).

(5.2¢)

h

Lemma 5.1. All coefficients ¢ in (; 5.26} are ﬁmte and independent from u", a and b.

h

Proof. From above dlscussion it is easy to see that all coeflicients ¢ are independent from u”, ¢ and b.

Below we prove that ¢ ¢ 3 is finite. The proofs for the other coefficients are similar.
—(B7 = 7)) (Az — dz) dz dy
g+ (A — do) dy? + R2(Ay — dy) da?) + = (A2do? dy + dyda)

It could be thought as a function of dz and dy. It is smooth on [0, Az] x [0,Ay] except one point
(dz,dy) = (0,0). It is easy to see that if dz = 0 and dy # 0, or dz # 0 and dy = 0, c'w"’3 = 0. Now denote
k = dy/dz € (0,+00), and rewrite it as

(5.2g) C:;S =

(5-2f) C;‘,g ==

—(B* = B7) (Az — dx)k
B+ ((Az - do)k? + R2(Ay — & do)) + 6= (A dok +do k2)
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Let dx goes to zero,

+ s
. + _(18 — ﬁ )k
(52h) dm%é}cﬁ}:kdw CE’S - ﬁ+(k2 —+ 1) ’
hence the limit is bounded for any & € (0, 400},
-+. e
(5.2) dm—;&légr;lzkdxlcz’3| < gt :
Therefore |c} 3| is bounded, for any {dz, dy) € [0, Az] x [0, Ay]. O

Case 2: If K is an interface triangle, and the interface I' cutting through one leg and the hypotenuse of
K, see Figure 5.3. We have
: +
Uh('u,h)={ u(P2) + uf (z — @5 — Az) +u ( y Yih (z,y) € KT,

(5.3a) w(Py) + 1y (2 ~ m) + BBy — gy, (my) € K

- P3)—u(P . .
where U, = ﬂ—a%—l). Three interface conditions are enforced as follows:

(—dz) u} +(dz — Az) ug =ry,
(5.3b) —ﬁ—;dy ut +(ﬁ—;dy — Az)ug +dyul =1y
dyp* uy —dyf~ ug +H(Rfdy — do)BT uf =ry

where ry = u(Py)—u{Pa)+a(Py), rg = u(Pl)—u(P2)+@§$@dy%~a(P5), and r3 = ﬁ”%m(%dy—
dz) + b(Pg)\/dyz + (A2dy - dz)2.

Let
(5.3¢)
—dz (dz — Az) 0 [ 71 (da: — Azx) 0
A = I: g—;dy (ﬁ—;dy — Az) dy , A= | T2 (Amdy Azx) A dy ] ,
dyB* ~dyf~  (R%dy —dz)ft | rs  —dyf™  (Rldy —dz)BT
~dx Ty 0 [ —dz (de—Az) n
Ay = —ﬁ—zdy T2 dy , Az = -%gdy (%;dy —Az) 13 |.
dypt vy (Ridy - dz)BY | dyst —dyB~ 13
Clearly
- ut = det(A1)/det(A), uy = det(Aq)/det(A),
(5.3d) wh = det(Az)[det(4),  uy = ML)

Same as in Case 1, the matrix A consists of information of grid, interface and coeflicients 3, and is
independent from w”, a or b. The determinants of matrices A;, A2 and Az are linear functions of uh, a
and b. Hence they could be rewritten in the forms of

ut _d+ H(P2) u(P1) —]—d“’“ M(PS)AM(Pl) +d+ a(P4)+d+5a(P5) d:,-sb(PS),

JE
= dg MBI g PP 4 g a(Py) + dpga(Ps) + dg gb(Fs),
; - d+ “(Pﬁ?;;‘(ﬂ’ + d; “(PSE‘(P” + d+ a(Py) + djf sa(Ps) + df ¢b(Fs),
d_ u(Pz)—u(Pl) + d_ U«(PS) “(Pl) + d" 1a(Py) +d 5“(P5) +d ﬁb(Pe.)-

(5.3¢)

Lemma 5.2. All coeﬁicients d in (5.3e} are finite and independent from uP, a and b.
Proof. The proof is the same as the proof of Lemma 5.1, and is omitted here. [

From above discussion, we complete the proof of Lemma 3.1 and all coefficients ¢ and d are independent

from u?, ¢ and b.
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