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Abstract

This paper applies the authors’ previously proposed vector
valued active contour without edges model to segment tex-
tured images. The model uses a level set implementation
and can detect edges without the use of gradient informa-
tion, making it natural for use in textured image segmenta-
tion. Multiple Gabor transforms of the original image are
used to discriminate textures. We show numerical results
for segmentation and discrimination of textures, using su-
pervised and unsupervised forms of the model.

1 Introduction

When looking at a fextured image, the human eye has o
look a little harder in order to spot the different textures.
Likewise, when using a computer to segment the image, we
need to change the standard segmentation models to allow
the computer to segment the textured image. There are sev-
eral problems specific to texture segmentation: when the
textures have the same intensities, it is very difficult for
the standard segmentation models to tell them apart; an-
other problem inherent in textured segmentation is that it
is often difficult to pick out the boundary between two tex-
tures because there is no sharp difference between them. Fi-
nally, any texture segmentation algorithm should be robust
to noise, since texture has small patterns that are “noise”
like.

A vector-valued active contour and segmentation model
could be a way for overcoming these three problems, all fo-
gether. Most active contour models and segmentation algo-
rithms use the gradient of the image in their edge detectors,
but then as a result unclear boundaries between two textures
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are hard to be detected. These models need in addition to
perform a-priori smoothing, to smooth out the noise. This
can therefore produce a not very accurate location of edges.
Among the classical models for active contours based on a
gradient-edge-function for the stopping criteria, we mention
[12], [4], [15], {5}, [13], [15], [32], [26], [19].

The active contour and segmentation model used in
this paper [36], [37] does not use the gradient to detect
boundaries. This property allows the model to be robust
to noise, and to segment color and multi-spectral images
where there are no clear gradient-boundaries. It is based on
the piecewise-constant Mumford and Shah model for seg-
mentation [17], and it uses the level set method [18] for the
representation of the evolving contour. In addition, it does
not need an a-priori smoothing of the image, and therefore
edges are much better located.

We propose here a natural extension of {37] to textured
images since these images often cannot be segmented us-
ing the gradient as an edge detector, In addition, the modet
from [37] and [36] allows for automatic detection of inte-
rior contours, detection of edges which cannot be defined
by gradient, without using an a-priori smoothing. These ad-
vantages could not be obtained by the previous active con-
tour models, such as [12], [4], [15], [5], [13], [15], [32],
{261, (191

For the texture discrimination, we propose to use Gabor
functions, having properties similar to those of early visual
channels, being localized in space and frequency domains
101, [6]. Here, we convolve the Gabor functions with the
original textured image to obtain different channels. Some
of these channels will be the input of the multi-channe] ac-
tive contour algorithm.

To summarize, in this paper we propose a combined
framework of the vector-valued active contour model with-
out edges from [37] and Gabor functions, to segment tex-




tured images. This paper is closely related with [19] and
[20], where the Gabor function is also used to discriminate
textures, in a curve evolution based probabilistic approach.
In these works, it is assumed that a textore pattern is given
[19] (called preferable texture pattern), or that a set of tex-
iure paiierns are known a-prion [20]. 1i is also assumed
there that an a priori knowledge about the desired intensity
properties of the different regions is available.

Here, we do not assume any a-priori knowledge or sta-
tistical information on the type of textures, or on the type
of intensity, or on the location of boundaries. The pro-
posed model here is quite general, and it can be applied in
many situations. In addition, the vector-valued active con-
tour model from [37] can recover a full object from com-
bined channels of the same image, even if there are missing
parts in some of the channels. As we will see in the numer-
ical results, this property is very appropriate and useful in
recovering objects filtered by several Gabor functions.

Other transforms could be used of course, instecad of
the Gabor transform, for texture discrimination, such as
wavelets (see for example [21]).

This paper is related to many other works on active con-
tours and texture segmentation, such as [19], [20] (already
mentioned above), [27], [28], [29], [23], [14]. Additional
related papers are [16}, [40], [41], [42].

Other related works on segmentation, edge-preserving
smoothing, and vector-valued images (e.g. multi-channels,
color, etc), are [7}, [14], [22], [24], [25], [34], [35].

2 Description of the model

We begin by recalling the Gabor function and the vector-
valued active contour model without edges from [37].

2.1 The Gabor function

In this section, we review the basics of the Gabor transforms
necessary for our model, The 1-D Gabor function was first
defined by Gabor [8}, and later extended to 2-D by Daug-
man [6].

The Gabor function has often been implemented in tex-
ture segmentation because it is similar to a biological vision
system which is localized in space and frequency. It has the
property that it can segment images having region differ-
ences in spatial frequency, density of elements, orientation,
phase, and energy, as explained in [3].

A 2-D Gabor filter is an oriented complex sinusoidal
grating modulated by a 2-D Gaussian function, which is
given by

Go,ro(x,y) = 9oz, y) exp[2nj F(x cos O+ysin )], (1)

where . .
1 ét+y
9o (2,y) = 5—z exp[-— 5—].

Note that we use the notation j for the complex number
i. The frequency of the span-limited sinusoidal grating is
given by I and its orientation is specified as &; ¢ is a scale
parameter. The parameters of a Gabor filter are therefore
given by the frequency F, the orientation 8, and the scale
o. The Gabor filter G, 7 g gives a complex-valued function,
decomposed by G4, r ¢ = Gr+jG into real and imaginary
parts.

Giving an image function ug, defined on a planar domain
1, and taking real values, we can convolve it with the Gabor
function, to obtain Gabor transforms of wg:

(uﬁ)a-’F,B = \/(GR * u0)2 -+ (GI * ’U,Q)2.

We vary F, £, 0, to obtain different input channels for the
active contour model for vector-valued images. We normal-
ize the channels between O and 255.

2.2  Multi-Channel Model

Here we give the details of the multi-channel active con-
tour model without edges from [371, based on Mumford and
Shah segmentation [17] and the tevel set method [18].

Let up be the textured image, defined on a planar do-
main £} with real values (for simplicity only, but color tex-
ture segmentation could also be considered). Let uj, for
i =1,..., N, be N Gabor transforms of the original image
g, obtained for different parameters (F, 8, 0). These will
be the channels or entries in the multi-valued active contour
model.

Let C be the evolving contour. Each channel being a
different transform of the same image ug, we denote by ci_
and ¢’ the two averages of uj inside and outside the curve
C, respectively, for 7 = 1,2,...,N. Following [37], the
following energy was introduced, which, when minimized
with respect to e = (¢}, ...,c{), e= = (el,..., V), and
C, performs active contours, denoising and binary segmen-
tation:

N
1 ) .
— E Xl (z,9) — & |*dedy +
/{;zﬂda(C) N % 0( ) +|

f==1
N

1 . -
— iug(z,y) — ¢t [*dzdy.
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The positive scalars A; and y;, for ¢ = 1,...,, N are weight
parameters for each channel, Minimizing the above energy,
one tries to segment possible objects in the image with con-
tours given by (' and represented by the region “inside C*,




from a uniform background represented by the region “out-
side O,

In [37], the implementation has been done using the level
set method of S. Osher and J. Sethian [18], which gives
an efficient method for moving curves and surfaces, on a
fixed regular grid, allowing for automatic topology changes,
such as merging and breaking of curves ete. The curve C'is
represented implicitly, via a level set function ¢, such that
C = {(z,y) : ¢{z,y) = 0}, and ¢{z,y) > 0 inside C,
é(x,y) < O outside C.

Following [33] and [36], the above energy is then ex-
pressed in the level set forrmulation as follows. We recall
the Heaviside function H to be defined as:

1 ifz >0,
H(m)_{o ifz <0,

and the Dirac Delta function {z) = -L H(z), in the sense
of distributions. Then, rewriting ¥ in levet set form, we
obtaii:

B($,05.05) = f 5($)|V pldady +
193
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Minimizing the above energy with respect to the un-
known constant vectors € and €, we obtain the following
relations, embedded in a time-dependent scheme:

ct) = M
+ Jo H(®)dzdy
; Jo ub(1 — H{¢))dzdy
o~ (1) G

i.e. the averages of channels u} inside and outside the curve
C respectively, for ¢ = 1,2,..., N, where N is the number
of channels.

Minimizing the above energy with respect to ¢, and pa-
rameterizing the descent direction by an artificial time, we
obtain the following Euler-Lagrange equation for ¢:

g(& T, y) = ¢0(r€?y)1 N ) )
5? = 66(45)[51'51}()%%[ = % E¢=1 A (ug — ci}-)z
+4 50, iluh ~ )] in @,

E;gl -g?.; = on 912,

where we have regularized the Heaviside function H by a
smooth approximation H,, as € — 0, as in [36], [37], and
8. = H..

Starting with an initial contour, given by ¢g, at each
time step we update the vector averages & and #—, and
we evolve the PDE in ¢.

The obtained model detects contours both with or with-
out gradient, interior contours automatically, and is robust
to noise. The initial contour can be placed anywhere, not
necessarily completely enclosing the objects to be detected.

3 Experimental Results

In order to segment the textured image, we first convolve
the image with different Gabor functions. We have found
that the following parameters give satisfactory results: § =
{0, 7/6,w/4,w/3,x/2}, F = {60,90,120} (of a 256x256
image) and o == {.0075, .005, .0025} (see also [9]). Using
all the combinations of the parameters, we obtain 45 differ-
ent images as possible channels, Using all of these channels
for segmentation is cumbersome, especially as some of the
images are redundant while others do not help in detection.
Also, when we use all the possible transforms the compu-
tation time wifl be longer, and it may not give the desired
result due to conflicting information.

At this point we divide our model into two parts: “su-
pervised” texture segmentation, when the user chooses the
“best” Gabor transforms, to be used as input channels;
and “unsupervised” texture segmentation, where the Gahor
transforms to be used are chosen by a dynamic automatic
criterion.

The case of supervised texture segmentation allows to
use fewest number of transforms in order to segment the
image, and as a result it does a very good job, with optimal
computational efficiency.

The case of unsupervised texture segmentation is similar
to the work of [11], [31]. The criterion that we used for the
automatic choice of the Gabor transforms is based on the
following: we want the images to have the highest intensity
differences relative to the mean of the image. Thus for each
transformed channel ¢ we calculate the following:

8i = et — ¢

k3

Only n channels corresponding to the first n largest val-
ues of s; are used in our active contour model as inputs, at
the initial time and at later times, Using this criterion may
require more channels to be chosen than in the supervised
case, because not all the picks are good, however this crite-
rion does a fair job of picking out automatically the “best”
channels. Then, we update the chosen transforms by this
criterion every 10-100 iterations. At every test, we have the
same number of transforms which will be used, for the same
experiment, but these transforms may dynamically change.

The following experimental results are presented. Each
figure shows the original textured image, the final segmen-
tation, followed by a sampling of the Gabor transforms (in




some examples, we also show the evolution of the contour).
In the unsupervised case, we show the final n channels is-
sued from the automatic criterion.

While the Gabor transforms have more intensity con-
trast, thus clearer edges then the original images, there is
siili a iot of detail texiure in them. By picking the proper
parameters, our Gabor-based active contour model is able
to segment the textured image.

We denote by X = (A1, ..., Ax}, and F = (1, ..., vw). If
X > 7, it forces the contour to decrease, this is necessary as
there is a lot of patterns in the object and the model favors
encompassing all of them rather than finding the largest ob-
ject. The large p allows the model to ignore small patterns
which still show in the Gabor transforms.

In Figure 1, there is a square in the middle of the image,
but it is very hard to distinguish it. The Gabor transforms
contrast the square, with the outside texture, and the active
contour model has no problem detecting the edges of the
square.

In Figure 2, a texture is oriented at 90 degrees to itself.
Again we find that the model segments between the differ-
ent orientations. In these first two examples, we use the
supervised choice of the Gabor transforms.

In Figure 3, we have a texture image with noise. Despite
the fact that the Gabor transforms were noticebly worse, the
model was still able to pick out the square object.

In Figure 4, we have an example of when the model does
not work. In this example we have a brick wall, and an-
other brick wall slightly staggared. The human eye can see
it clearly. However the Gabor transforms are not able to dif-
ferentiate between the two objects well since it’s the same
texture at the same angle. The model is not able to find the
boundary between the objects in this case.

In Figures 5 and 6, we consider the same images from
Figures 1 and 2, but this time we use the unsupervised ver-
sion of the model. It is still able to correctly segment the
images, even though some of the channels do not extract
the desired information.

In Figure 7, we have an example of a more complicated
textured image of two zebras. The supervised model seg-
ments the image well by discriminating the bodies from the
shadow and the background. Note that interior contours are
detected by the level set active contour model (under the
head of the larger zebra).

In Figures 8 and 9, we have used the unsupervised cri-
teria for choosing the Gabor transforms (we have four and
eight channels respectively). Notice that details are miss-
ing from both sets of transforms, but the obtained results
are very satisfactory. With the eight channels, some smaller
details are lost, compared with the supervised texture seg-
mentation from Figure 7.

Note that, even if the original textured images have
“clear” boundaries that human can perceive, in the Gabor

transforms, these boundaries are sometimes still very fuzzy
or blurred (see for example Figure 3 channel 2, or Figure 5
first two channels), and therefore these illustrates the need
of a model that can handle smooth boundaries. The ac-
tive contour model used here is very appropriate, because
it does not use the gradient as an edge detector, like in other
more classical models. In addition, discontinuous edges
with missing parts are very well recovered (as illustrated

in Figure 7).

4 Concluding remarks

In this paper, we have proposed a level set and Gabor-based
active contour model for segmenting textured images. For
the purpose of illustration, we have considered here only the
case of images with two textures. The general case, with
more than two textures to be segmented, can easily be con-
sidered, in the same framework, by using the multi-phase
level set segmentation models from [39] and [38], combined
with the Gabor transform, in a multi-channel] framework.
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