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Abstract

We present a theoretical study of the recovery of an unknown vector € RP (a signal, an image) from
noisy data ¥ € RY by minimizing with respect to x a regularized cost-function F(z,y) = ¥(z,y) + a®(z),
where ¥ is a data-fidelity term, @ is a smooth regularization term and o > 0 is a parameter. Typically,
U(x,y) = ||Az — y||* where A is a linear operator. The data-fidelity terms ¥ involved in regularized cost-
functions are generally smooth functions; only a few papers make an exception and they consider restricted
situations. Non-smooth data-fidelity terms are avoided in image processing. In spite of this, we consider
both smooth and non-smooth data-fidelity terms. Our ambition is to catch essential features exhibited by
the local minimizers of regularized cost-functions in relation with the smoothness of the data-fidelity term.

In order to fix the context of our study, we consider ¥{z,y) = E«: PlaFz — ), where ar are the rows of
A and ¥ is C™ on R\ {0}. We show that if 9(07) < 4'(07), typical data y give rise to local minimizers £ of
F(.,y) which fit exactly a certain number of the data entries: there is a possibly large set E of indexes such
that aj & = g for every i € k. In contrast, if ¥ is smooth on R, for almost every y, the local minimizers of
F(.,y) do not fit any entry of y. Thus, the possibility that a local minimizer fits some data entries is due
to the non-smoothness of the data-fidelity term. This is a strong mathematical property which is useful in
practice. By way of application, we construct a cost-function allowing aberrant data (outhiers) to be detected
and to be selectively smoothed. Our numerical experiments advocate the use of non-smooth data-fidelity
terms in regularized cost-functions for special purposes in image and signal processing.

Key words: inverse problems, MAP estimation, non-smooth analysis, perturbation analysis, proximal anal-

ysis, reconstruction, regularization, stabilization, outliers, total variation, variational methods

1 Introduction

We consider the general problem where a sought vector (e.g. an image, a signal) Z € R¥ is obtained from noisy

data y € R? by minimizing a regularized cost-function F : R® x R? — R of the form:
Flz,y) = ¥(z,y) + ad(z), (1)

where typically ¥ : R” x R — R is a data-fidelity term and @ : RF — R is a regularization function, with o > 0
a parameter. In many applications, the relation between x and y is modelled by y; = alz+n;fori=1,...,q,
where a7 : R — R are linear operators and n; accounts for perturbations. We focus on such situations and

assume that al, i = 1,...,q are known. The relevant data-fidelity term assumes the form

Ulz,y) = > wilolz 1) (2)

i=1



where ¢; : R - R, i = 1,...,q, are continuous functions which decrease on (—0oc,0] and increase on {0, +00).
Usually, o; =, for all 4. A pretty general choice is ¥{t) = [t|* which yields [31, 4]

q

Y(z,y) = Y lofz -yl (3)
-
Let A € R**? be the matrix whose rows are af‘ for ¢ = 1,...,q. This matrix can be ill-posed, or singular, or

invertible. Most often, ¥(x,y) = ||Az — ||, that is 1(¢) = t2. Such data-fidelity terms are currently used in
de-noising, in de-blurring and in numerous inverse problems [37, 35, 13, 33, 1, 14, 38]. In a statistical framework,
¥ accounts for both the distortion and the noise intervening between the original  and the device recording
the data y. The above quadratic form of ¥ corresponds to white Gaussian noise {n;}. Recall that many papers
are dedicated to the minimization of ¥(.,y) alone and of the form (3), i.e. F = ¥, mainly for 1(¢) = t* {22],
in some cases for ¥(t) = |¢| {8], but functions ¥(t) = {t|* for different values for p in the range {0, co] have also
been considered [31, 30]. Specific data-fidelity terms arise in applications such as emission and transmission
computed tomography, X-ray radiography, eddy-currents evaluation and many others [23, 20, 34, 10]. In general,
for every y, the data-fidelity term ¥(.,y) is a function which is smooth, and usually convex. The introduction of
non-smooth data fidelity terms in regularized cost-functions (1) remains very unusual. Ouly a few papers make
an exception; let us cite [2, 3] where ¥ corresponds to ¥(t) = [t]| and a; = 1, Vi. Non-smooth data-fidelity terms
¥ are avoided in image processing, for instance. In spite of this, we analyze the effects produced by both smooth
and non-smooth data-fidelity terms ¥. In the latter case we suppose that {t;} are any functions which are
C™-smooth on R\ {0}, m > 2, whereas at zero they admit finite side derivatives which satisfy 1{(07) < [ (0F).

The regularization term @ usually takes the form
-
(@) = S p(IGTal), (4)
im]

where GT : R? — R®, for s € N*, are linear operators, e.g. operators yielding the differences between neighboring
samples, ||.|| stands for a norm on R® and ¢ : R — R is a potential function. In a Bayesian estimation framework,
® is the prior energy of the unknown z modelled using a Markov random field [6, 17, 24]. Several customarily
used potential functions ¢ are [20, 29, 21, 33, 9, 7, 39, 36]

¥ ety =8, 1 <v <2,

Lorentzian () = vt2/(1 + vt?),
Concave (1) = vit|/{1 -+ vt]),

Gaussian () = 1 — exp (—vt?), ©
Huber ety =2 i t| < v, ot) = v{v+ 2t —v]) if [t > v,
Mean-field  (t) = - log (exp(~vt?) + 1},

where v > 0 is a parameter. Being convex and differentiable, the function L” for 1 < v < 2 is preferred in many
applications requiring intensive computation [9, 10]. In our paper, ¢ in (1) is any C™-smooth function, with
m = 2.

The visual aspect of a minimizer of a cost-function is determined on the one hand by the data, on the
other hand by the shape of the cost-function. OQur ambition is to catch essential features expressed by the local
minimizers of cost-functions of the form (1}-(2) in relation with the smoothness of the data-fidelity term .

Note that all our results hold for local minimizers, and hence for global minimizers as well; so we systematically



speak of local minimizers. There is a striking distinction in the behavior of the local minimizers relevant to
smooth and to non-smooth data-fidelity terms. It concerns the possibility to fit ezactly a certain number of the
data entries, i.e. that for ¥ given, a local minimizer & of F(.,y) satisfies a} & = y; for some, or even for many,
indexes i {§ 2). Intuitively, one is unlikely to obtain such minimizers, especially when data are noisy. Our main
result states that for F of the form (1)-(2), with ¥ non-smooth as specified, typical dato y give rise to local
minimizers & which fit o certain number of the data entries, i.e. there i5 a nonempty set b of indezes such that
al'® = y; for everyi € h (§ 3 and § 4). This effect is due to the non-differentiability of ¥ since it cannot occur
when F is differentiable (§ 5). The obtained result is a strong mathematical property which can be used in
different ways. Based on if, we construct a cost-function allowing aberrant data {outliers) to be detected and
to be selectively smoothed from signals, or from images, or from noisy data, while preserving efficiently all the
non-aberrant entries (§ 7). This is illustrated using numerical experiments.

Readers may associate cost-functions where ¥ is non-smooth (e.g. () = [t]) with cost-functions where ¥
is smooth and @ is non-smooth, e.g. ¥(z,y) = |4z — y||*> and (¢} = |t} in (4), as in total variation methods
(33, 1, 14, 12]. Since the latter methods arouse an increasing interest in the area of image and signal restoration,
we compare in §6 non-smooth regularization to the cost-functions considered in this paper. To this end, we use

some previous results |26, 27] {§ 6) and illustrate the strikingly different visual effects they produce (§ 7).

2 The problem of an exact fit for some data entries

We shall use the symbol ||.|| to dencte the fo-norm of vectors. Next, we denote by N* the positive integers
and Ry = {t ¢ R : ¢ > 0}. The letter S will systematically denote the centered, unit sphere in R", say
S := {x ¢ R™: ||z|| = 1}, for whatever dimension n appropriate to the context. For z € R™ and p > 0, we put
B(z,p) :={z' € R®: |z’ —z|| < p}. For any i = 1,...,n the letter e; represents the ith vector of the canonical
basis of R (e;]i] = I and e;{j] = 0, ¥4 # 1). The closure of a set N will be denoted N. For a subspace T, its
orthogonal complement is denoted T+, Tf f : R x R? — R depends on two variables, its kth differential with
respect to the jth variable is denoted D;? f. The notation f € C™(N) means that the function f is (™-smooth
on the set N. For a discrete, finite set A C {1,...,n}, with n € N*, the symbol # stands for cardinality and

he for complementary. Next we introduce a set-valued function which is constantly evoked in what follows.

Definition 1 Let H be the function which with every x € R? and y € RY associates the following set:

(z,y) — H(I,y):{ie{l,...,q}:a;mzyg—}. (6)

Given y and a local minimizer & of F(.,y), the set of all data entries which are fitted exactly by & reads

h := H(%,y). Furthermore, with every h € {1,...,q} we associate the following sets:

(h,y)— ©Ou(y) ={zeRP: alz =1y Vichand alz #y, Vi h}, (7)
h — Tn :={ueRP: alu=0, Vié€h}, {(8)
h — My :={{z,y) e RP xR?: alz =1v;, Vi € h and a] x # y;, Vi € A} (9)

Note that for every y and A # 0, the sets ©(y) and M, are composed of a finite number of connected

components whereas their closures O5(y) and My, respectively, are affine subspaces. The family of all Oy,



when h ranges over all the subsets of {1,...,q}, forms a partition of R”. Observe that for y € R? fixed,
{z € R” : (z,y) € My} = On(y). Notice also the equivalences:

H' ) =h & o' €Ouy) & (,y') € My (10)

The theory in this paper is developed by analyzing how the local minimizers of every F{.,vy) behave under

small variations of the data y. We thus consider local minimizer functions.

Definition 2 Let f : R x R? — R and N C RY. The family f(,N) == {f{.,y) 1 y € N} is said to admit o

local minémizer function X : N — RP if for any y € N the function f(.,y) has o strict local minimum at X (y).
The next lemma addresses local minimizer functions relevant to smooth cost-functions.

Lemma 1 Let F : RP x R? be a C™-function with m > 2. Fory € RY, assume that £ € R? is such that
D F(#,1) =0 and D?F(&,y) s positive definite.

Then there exist a neighborhood N C RY containing y and o C™ '-function X : N — RP such that for every
y € N we have D1 F(X (), y') =0 and DEF(X(y'),v') is positive definite. In particular, £ = X (y).

Equivalently, X : N — R? is a local minimizer function relevant to F(., N) such that DIF(X(y"),y") is
positive definite for every v/ € N.

Proof. Being a local minimizer of F(.,y), £ satisfies D1 F(%,y) = 0. We focus on the equation D F(z',y’) =
0 in the vicinity of (&,v) and notice that DfF(&,y) determines an isomorphism from R? to itself. From
the implicit functions theorem [5], there exist p1 > 0 and a unique C™ l-function X : B(y, p1) — R such
that D1F(X(y'),y") = 0, ¥y’ € B(y,p1). Furthermore, since y’ — det D?F(X(y),%') is continuous and
det D}F(#,y) > 0, there is pa € (0, p1] such that det DIF(X(y"),y") > 0, Vy' € B(y, p2). o

Remark 1 (on the conditions required in Lemma 1.) The minimizers of C™-functions of the form
Flz,y) = | Az — ylf* + a®(z)

are extensively studied in {16]. It is shown there that if rankA = p, and under some assumptions ensuring
that F(.,y) admits local minimizers for every y € RY, the data domain R? contains a subset N whose interior
is dense in RY, such that for every y € N, every local minimizer & of the corresponding F(.,y) is strict and
D3?F(#,y) is positive definite. Reciprocally, all data leading to minimizers at which the conditions of Lemma 1

fail, belong to a closed negligible subset of RY: the chance of acquiring data placed in such subsets is null. ¢

The central guestion of this paper is how the shape of a cost-function F favors, or inhibits, the possibility
that a local minimizer & of F(.,y), for y € RY, fits a certain number of the entries of this same y, i.e. that
the set h := H(Z,y) is nonempty. It will appear that this possibility is closely related to the smoothness of .

Recall some facts about non-smooth functions [32].

Definition 3 Let Ey € RP be an affine subspace and E be the relevant vector space. Consider a function

f:Ey — R, and let x € Ey and u € E. The function f admits a one-sided derivative at x in the direction of



u #£ 0, denoted by §g(x)(u), if the following {possibly infinile) limit exists:

i 82 1) = flz)
ti0 t

§f(z)(u) =
Ifu=0, put §f(z){(0}) =0.

The downward pointing arrow above means that ¢ € Ry converges to zero by positive values. If f is
differentiable at @, then 6f(z)(u) = Df(z)u. If f : R — R, we have §f(z)(1) = f'(z*). The left-sided
derivative of f at = for u is —§f(x)(—u). In the following, 6;F will address one-sided derivatives of F with

respect to its first argument.

3 Cost-functions with non-smooth data-fidelity terms

In § 3 and § 4 we focus on cost-functions which read

Flz,y) = ¥(z,y)+a®(z,y), (11}
q
\If(gg, y) - Z w(a’z‘m - y‘i): (12)
i=1

where 1 : R — R is C™ on R\ {0}, with m > 2, whereas at zero it admits finite side derivatives sat-
isfying ¢/(07) < #'(0%). The term @ : R” x R’ — R is any C™-function. This formulation allows us
to address data-fidelity terms composed of a non-smooth function ¥ and of a smooth function ¥, since
we can write down ®(z,y) = U(z,y) + ®(x) with & a regularization term. E.g., we can have ®(z,y) =
S (0BT z — yy,) + ¢i(GTz)), where ¢; : R — R and g; : R” — R are C™-functions, y,, € R* are data,
and B; € R¥*? and G; € RP*?, with p; € N* and ¢; € N*.

Remark 2 The results presented in § 3 and § 4 are developed for ¥ of the form (12), that is ¥; = v for all
i, but we should emphasize that they remain true for ¥ of the form (2), provided that all ¢4, fori=1,...,q,
have finite side derivatives at zero satisfying ¥.(07} < ¥{(07). The proofs are straightforward to extend to this

situation but at the expense of complicated notations which risk clouding the presentation.
We start by providing a sufficient condition for a strict local minimum,

Proposition 1 For y € R, let F(.,y) : R? — R be of the form (11)-(12) where & € C™(RP x RY) form > 1
and 1 € C™(R\ {0}) satisfies —oo < ¥/(07) < ¢'(0F) < +oo. Let & € R? be such that

1. the restricted function F ]@_—(y)(., v} : ©;{y) — R reaches a strict local minimum af &;
h
2. 0. F(&,y){v) >0, Vv e T;" NS,

where h = H(E,y), O; (y) and T, are determined according to (6), (7) and (8), respectively.

Then F(.,y) reaches o strict local minimum at Z.

Proof. The result is a tautology if h = @ since then ©;,(y) = R”. So consider that b is nonempty. First of all,

we put F into a more convenient form. Define

P(t) = (1) — 5 ('(07) +'(0%)) ~ (0). (13)

Ha| =+



Now we have

$(0F) = —¢'(07) > 0 and (0} =0, (14)
which will allow important simplifications. By means of J), the cost-function F assumes the form
Flz,y) = ¥(z,y)+(z,v), (15)
q
where T(z,y) = Zw{a T =)
q
and B(wy) = 3 LIV are )+ op(0) + 02(a,0).

=31

1l

Both ¥ and & satisfy the assumptions about ¥ and @, respectively. Henceforth, we deal with the formulation
of F given in (15). For notational convenience, we systematically write o for P, U for ¥ and ® for &.

Let us consider the altitude increment of F(.,y) at & in the direction of an arbitrary v € §
F(z +tu,y) — F(d,y) forteRy.

In order to avoid misunderstandings, v will denote a vector of T} and w a vector of fl"hi Using the fact that

every u € S has a unique decomposition into
U = 1 + 1 with mETﬁOManduleTﬁLﬂm, {16)
we decompose the altitude increment of F(.,v) accordingly:
Fli+tu,y)— F(Z,y) = Fl&+tw+tw,y) — FE+tw,y) (17)
+  F(&+tw,y) — F(&, ). (18)

The term on the right side of (17) is analyzed with the aid of assumption 2. In order to calculate the side

derivative §,.F(Z,y), we decompose F into

}—(m’:yl) = ¥ (3'" y’) +F ($f1y,)’ (19)
where ¥;(z',y) = Zz,{)(aT:r -y}
i€h
and Fi(a'y) = Y (ale o) +a(y).
ighe

This decomposition ig recurrently used in the following.

Remark 3 The function JFj, is C™ on a neighborhood of (&,y) which contains B(Z, o) x B(y, o) for

1
g = Wmmla & — i, (20)

I (21)
Indeed, for every (2',y") € B(&,¢) x B{y, o) we have

ieh® = |alz -y

fl

(@ 2 — yi) + o (' = &) + (3~ )| (22)

> |afz -y~ ol (@' ~ )| - v — vl

IV

m}tnla?ﬁ = %l = llelleor — 0 = (Jlaflec + L)& >0,
iche

since clearly flallee > 0 and o > 0. o



In contrast, ¥; is non-smooth at (&, y). Using Definition 3 we calculate that for every v € R”

s F (@ y)(w) = &¥(Ey)(w) + DF(Ey)u (23)
where §;%;(3,yHu) = ¥'(0F) Z lal |, (24)
ich

since Sip(al & — y:)(u) = Yimyo w(talu)/t = ' (0)|a¥ ], for every i € h, which result accounts for (14). Notice
that 6 (&, y)(u) = 6% (£,y)(—u) > 0, for every u € R”. Applying assumption 2 o both w € Tfj— and —u
yields
\DF; (& y)aw] <9'(07)> lafw|, Vu €T3 (25)
ich

Consider now the function

f:Ti-nsS — R,
[DF5(E,y)-u]
PO lafw]

ich

wo — flw)=

Since for every w € Tﬁ“ S, there is at least one index 1 € h such that alw # 0, this function is well defined

and continuous. If w — DF; (&, y).w is not identically null on Tﬁf‘, put

co = sup  f{w). (26)

meTi%ns

Since Tff NS is compact, f reaches the maximum value cg. By (25) we see that 0 < ¢y < 1. If DFj,(&,y).w =0,
Yu € Tff', we plit ¢g := 1/2. In both cases,

\DF; (2, 9) 0] < ' (01D lalw], Vu € T (27)
ich

Using (19), the right side of (17) takes the form

F(& +tuwg + tu,y) — F(E+ tw,y)

Wi (2 4t + tur, y) — Y32 + tw, v) (28)
+  Fil(E 4 tw + tu, y) — F(E + tw, y). (29)

First, we focus on the right side of (28). From the definition of h and (16),

T; (& +tw,y) = 0,
Tp(d+tw +tu,y) = > v(al (@+tw +tw)—y) = Pltalw).
ich ich

Applying Definition 3 to ¢/(07) shows that there is ng € (0, 0] such that

1

w_gﬂ > (0 — ““Tcﬁqp'((ff), vt € (0, [lallomo) ,

since (1 —¢g)/2 € (0,1). On the other hand, jaFu| < fla;}jj|lu]| < flalleo, Vu € B(0,1) and Vi € {1,...,¢}. Then

cp+1

te(0m) = wltaw) 2 —5—¥'(0")tlafw|, Yu €Ty nB,1).



Hence, taking t € (0, 7o) ensures that Yu € §, decomposed into 4 = % + w as in (16), we have
Cp + 1

T (@ +tw +tu,y) > ——t4'(01) > ol w . (30)
ich

Second, we consider (29). Define the constants
1 = min 31
s e Sl (1)
ey = clfc,b'(O"’) 46{], (32)

and notice that {31) implies

S lalw| > erflwll, Yw e T (33)

ich
Since F3(.,y) € C* (B(&,0)) [Remark 3], the mean-value theorem {5] shows that for every u € 5 and for every
t € [0,0) there exists 8 € (0, 1) such that

Fi (& +tup + ta, ) — Fpld + tw,y) =t F (2 +tug + Otw , u).u (34)
where u = ug + . is decomposed as in (16}). Moreover, there is i1 € (0,19) such that for every t € (0,m),
| D1F (2 + tup + 6w, y)ow. — DiF; (2, 9)w| <colwl]l, Yue S, VOe(0,1),

and hence

| DLF; (& + twg + 6w, y)a | < | D1F3(E, v)w | + coliw]l, Yue S, V8 e (0,1), (35)

where again u is put into the form (16). Starting with (28)-(29), we derive

F(& + tup + tw,y) — F(& + trw, ) (36)
1
> C°+ Sty (01)) e w | — t | DaF(E + tup + Otu, y) | [by (30) and (34)]
ich
Co + 1 +
> Lty (01)Y el w ) — £ | DuF (&, v)w |~ tealfu | [by (35))
i€h
l—¢ey, .,
> Sty (0h) > lod w | — teaflw | [by (27)]
ich
l—ecy ,
> =1 (0% Yty [l || — tezlea | by (33)]
1- I
= — M)l [by (32)] (37)
Consequently,
te(0,m) = F@+tw+iuw,y)-F@+twy) >0, Yue S withy #0. (38)

From assumption 1, there exists nz € (0,7;] such that
te(0m) = F(&-+twy) ~F(Ey) >0, VueTynB(0,1)\ {0} (39)

If wy = 0, then (38) holds since ||w || = 1, whereas if w = 0, then (39) is true since {w|| = 1. Introducing
{38) and (39) into (17)-(18) shows that if t € (0,72}, then F(& + tu,y)} — F(&,y) > 0 for every u € 5. o



Remark 4 The conditions required in Proposition 1 are pretty weak. Indeed, if an arbitrary function F(.,y):
R? — R has a strict minimum at Z, then assumption 1 is trivially true and necessarily & F (&, y){v) = 0,

vy e T, if- M S [32]. In comparison, assumption 2 only requires that the latter inequality be strict.

Observe that the above sufficient condition for strict minimum concerns the behavior of F(.,y) on two

orthogonal subspaces separately. This occurs because of the non-smoothness of 1.

4 Minimizers which fit exactly some data entries
The theorem below states the main contribution of this work.

Theorem 1 Consider F as given in (11)-(12) where ® € C™(RF X RY) for m > 2 and ¥ € C™(R\ {C}) has
finite side derivatives at zero such that ¥'(07) < ¢'(0%). Given y € R and £ € RF, let b= H(&,y), 0; (v}
and Ty, be obtained by (6), (7) and (8), respectively. Suppose the following:

1. the set {a; : i € h} is independent;
2. for every u € T; N 5 we have Dy (}-EW) {(#,4).u =0 and D? (.’Flm) (&, ¥)(u,u) > 0;
3. for every w € T:- 1S we have 61 F(2,y)(u) > 0.

Then there are o neighborhood N C RY containing ¥y and o C™ ! local minimizer function X : N — R”

relevant to F(., N) [Definition 2], vielding in particular & = X(y), so that for everyy’' € N,

al X(y) =y, if ieh,

1

X (40)
ol X(y) # v i iehe.
The latter means that H(X(y"),y") = h is constant on N.

Proof. If b = 0, then 0;(y") = R®, Vy'. Applying Lemma 1 shows the existence of N ¢ R? and of a ¢™1
local minimizer function X relevant to F(., N). By the continuity of X, there is N C N where (40) holds, in
which case it is reduced to aT X (') # v, Vi€ {1,...,¢}.

In the following we consider that his nonempty. As in the proof of Proposition 1, we use the formulation of

F given in (13)-(15), and write 3 for 9 and ® for . This proof is based on two lemmas given next.

Lemma 2 Let assumptions 1 and 2 of Theorem 1 be satisfied. Then there exist v > 0 and a C™-function
X : B(y,v) — R” so that for every y' € B(y,v), the point &' := X{y’) belongs to ©;(y") and satisfies

Dy (Flgy) @ 9)u=0 and D} (Flg) @ v)ww) >0, YueT;\ {0). (41)
In particular, £ = X{(y).

Proof. We start by giving some comments about the restricted functions in {41).



Remark 5 For ¢ as in (20), the inequality reached in (22) shows that V(z',y) € B(Z,0) x B(y, o) we have
H{Z',y) C h. On the other hand, if ' € ©;(y), then H{z',y') 2 h. If we put

B; ((&,y),0) = (B(&,0) x B{y,0)) nM;, (42)
where M is given in (9), we have
(«,¥) € B ((#:9),0) = H@y)=h,

and By, ((£,y),¢) C M. By (7) and (10), for every (z',y") € Mj, we find ¥y (z',y") = 0 and hence Flm(m’,y’) =
Filg(a’,y'). Since Fj e C™ {B(%,0) x B(y,o}) [Remark 3], we get
h

Florgr(ev) € " (B; (B.1),0))  and Flgan(a',y) = F(=y'), V@y) € By (&v),0).

We now pursue the proof of the lemma. Let the indexes contained in horead h = {1,457 #R}- Let I,
be the #h X ¢ matrix with entries Igli, i) = 1for i = 1,... ,4th, the remaining entries being null. Thus
y = Ly € R*M i composed of only those entries of y whose indexes are in h. Similarly, put Ay = I A,
then A; € R#**P and Az = y;. With these notations, M;, = {(=',¥) e R" xRY: A;z’ — Iy =0} . By
assumption 1, rankA; = #h. Then for every y’ we have the following dimensions: dim ©;,(y") = dim Tj, =
p — #th while dim M} =p — #h + g. Recalling that AﬁA}: is invertible, put

—1
. AT T
P, = AT (4347) I, (43)
Let € : T35, — RP#* be an isomorphism. The affine mapping below

I': —Mf}: — Rpw#ﬁ,
(z',y') — Dy =Cil{a' -2 - P —v) (44)

is well defined for every 3 € RY since on the one hand & + P (3 ~ ) is the orthogonal projection® of £ onto

0; (y"), whereas 2’ € ©;(y’) by (10}. Consider also the following conjugate mapping

rt: RPFR BRI o (1),
(z,¢) — THUzny)=C lz+3+ Py —v), (45)
which is also well defined. Let

-1
o= G anin 1, (sup Il + sup 171) - (46)
2 €8 P vES

1The orthogonal projection of & onto @ (y'), denoted by £, is unique and is determined by solving the problem:

minimize ||&, -~ || subject to £, € O;(¥').
The latter constraint also reads Az&,r = y;‘; if we dencte y;I = Ipy'. It is easily calculated that the solution to this problem reads
P T A AT Y 4 a0
gy =& — A7 (Ah,Aﬁ) (Ahm yi_L) .

Recalling that A; & == Ity from the definition of ;1, we obtain that &, = 2+ P, (v - ).
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Clearly, 0 < vy < 0. It is worth noticing that

I'(z,9) € ©(y) N B(&,0) C O3{y), Y(z,9) € B0, ) x Bly, ), (47)

since on the one hand (45} shows that I'!(z, 1) € ©;(y’), on the other hand,
I (z,0) — &) < NS =l + 1Py — vl < (G + 1Pl v < o
Introduce now the function

Q:Rp_#ﬁ *xRT — R,
(z,y) — Gy =F; =y, ¥). (48)
Since for every ¢’ € R? we have
z=T(z",y) & 2 =TTy,
then
G, y) ) = File' v} = Flggn(esv), V(@) € By ((#9),9),
where the last equality comes from Remark 5. Now for every (z/, ') € B;, ((Z,v),), the derivatives of Flg-

e, )’
mentioned in (41), can be caleulated in terms of G and I':

Dy (-ﬂm) (', y")w

D} (Flsg) (2,9 (1, w)

DyG (T, 4", y') Crw, Vg € T, (49)

DG (T2, ), ¢ (Crws, Chw) , Vo € T, (50)

Since CY is an isomorphism, D T'(z’,3').u = Cj .0 # 0 for every wp € Tj, \ {0} whereas C;,. T}, = RP~#h_ Then
assaumption 2, combined with the fact that T'(%,y) = 0 by construction, yield

Dlg(oay) = 0
D2G(0,y)(uw,u) > 0, VueRF#R\ {0}

By Lemma 1, there exist v € (0, #] and a unique C™" !-function Z : B(y,v) — B(0, 1), such that
DG (Z(y"), ¥') =0 and DIG(Z(y), ') is positive definite, Yy’ € B(y,v), (51)

with in particular Z(y) = 0. Next we express the derivatives in (51) in terms of 7}, and I't. From (47) and
Remark 5 it follows that Fj, is C™ at every (I'(z,1"),y’) relevant to (z,v") € B(0, 1) x B(y,v) in which case
(48) gives rise to

DiG{z,y")u = leﬁ(FT(z,y'),y').Cglu, {(52)
D¥G(e,y)ww) = DIFTHz)Y) (CF'w Oy ). (53)

Put
X)) =THZ@),y), W €Blyv), (54)
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and notice that X(y') € ©;(y’). Then (51) implies that for every ¥’ € By, v},
DiF(X(Y),y)Cilu =0, Vue RP-#h,
D2, (X(),¥) (c 0 ) >0, VueR7#h\ {0}
Since C" u#0, Yue RP™ #h \ {0} and C"3 RP—#E — =T}, it follows that for every y’ ¢ B(y,v),
DiF; (X(y'), ¥') w =0 end DIF(X(y),y)-(w,w) >0, Vag € T; \ {0}.
Applying again Remark 5 allows us to write down that if y* € By, ),

Dy (Flsg3) (X, )0 =0 and D} (Flggy) (X (), 5") (0, ) > 0, Yo € Ty \ {0},

The proof of Lemma. 2 is complete. &

The next lemma addresses assumption 3.

Lemma 3 Given & € R? and y € R?, let h = H{Z,y) £ . Let assumption 3 of Theorem 1 hold.
Then there exists g > 0 such that

y € B(#,p) and 7' € O,y )N B(&,p) = §F(y)(w) >0, Vu €T NS (55)

Proof. We decompose F according to (19). Let o and B; ((£,y),0) be defined according to (20) and (42),
respectively. Remark 5 applies on B; ((£,v},0) and, similarly to {23)-(24), for every {z',v") € By (%, v),0) we
have
61 F (' v (u) = 9'(0) Z laTu} + D1 Fj (', '), VueRP (56)
ich
By the continuity of D1F;, there is u € (0,0] such that for every (z',y") € Bj {(Z,y), 1),

. 1-
| D1Fs (& o), — le,«l(:c,y),lg_| < Cﬂw’{OJr)clHuiHa Yy € Tﬁl, {(57)

where ¢y € (0,1) and ¢y > 0 are the constants given in (26) and (31}, respectively. We derive the following
inequality chain which holds for all {z',") € B}, ((£,y), ) and for all y_& Tf;L:

Dy Fy ',y |

< D7, (O")ellu | by (57)
< wy/(0%) Zla NSECY by (27) (55)
ich
< a w’(oﬂZia’:’m+1;zc°¢'(o+>2|a3’ui| by (33)
ich ich
S + L —— 4/ (0") Z lad |- (59)
ich

On the other hand, (56) shows that for every (z',3'} € B} ((2,y), #) and for all w € T}—Il .S we have

OFE, Y w) = W ON D lafwl - |DuF (e, v w
ich

(1 - ﬂ) W1 Jalw| >0, [by (59)].

ieh

v
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The last inequality is strict since for every y € T’::" M S, there is at least one index i € h for which a?uﬂL #£0. 0

We now complete the proof of Theorem 1. Consider v > 0 and g > 0 the radii found in Lemmas 2 and
3, and X the function exhibited in Lemma 2. By the continuity of X, there exists £ € (0, min{y, v}] such
that X(y") € B(#,p) for every ' € B(y,£). For any 3 € B(y,£), consider the point 2’ := X(y'). From
Lemma 2, ' € O (y') and &’ is a strict local minimizer of .7-'|~éw£@~;~)~(., y"). From Lemma 3, 51 F(2,y)(w ) > 0,
Yu € Tﬁl N S. All the conditions of Proposition 1 being satisfied, F{(.,y’) reaches a strict local minimum at 3'.

Tt follows that X : B(y, £) — R? is the sought ™! minimizer function. o

‘We now focus on the assumptions involved in this theorem. Assumption 2 is nothing else but the very
classical sufficient condition for strict local minimum of a smooth function over an affine subspace. Assumption

3 was used in Proposition 1 and was discussed therein.

Remark 6 (on assumption 1.} The subset {a; : i € .i?/} in assumption 1 is determined by {6). With the
notations introduced in the beginning of Lemma 2, y;, := Iy € R#h belongs to the range of 4;, denoted by
R(4;). Since dim R(A;) = rankA;, it follows that if rankA; < #h, then all y; belonging to R(A;) belong
0 a subspace of dimension strictly smaller than #h. Thus, assumption 1 fails to hold only if y is included in
a subspace of dimension smaller than g. But the chance that noisy data y belong to such a subspace is null.
Reciprocally, assumption 1 is satisfied for all y € RY except those belonging to a closed, negligible subset of RY.

It is worth emphasizing that the independence of the whole set {a; : ¢ € {1,...,¢}} is not required. Thus,

Theorem 1 addresses any matrix A whether it be ill-conditioned, or singular, or invertible. <
Theorem 1 entails sotne important consequences which are discussed next.

Remark 7 (Stability of minimizers.}) The fact that there is a ™1 Yocal minimizer function shows that, in
spite of the non-smoothness of F, for any y, all the strict local minimizers of F(.,y) which satisfy the conditions
of the theorem, are stable under week perturbations of data y. This result extends Lemma 1 to non-smooth
functions of the form (11)-(12). Moreover, if for every y € R?, the function F(.,y) is strictly convex, then the

unique minimizer function X : RT — R?, relevant to F(.,R9), is C™~! on RY. &

Remark 8 (Stability of 5.) The result formulated in (40) means that the set-valued functiony’ — H(X{(y"),v/)
is constant on N, t.e. that H is constant under small perturbations of y. Equivalently, all residuals {(af X (3")—y])

forie h are null on N. <

Remark 9 (Data domain.) Theorem 1 reveals that the data domain R” contains volumes of positive measure
composed of data that lead to local minimizers which fit exactly the data entries belonging to the same set.
(E.g., for A invertible, & = 0 yields h = {1,...,¢} and the data volume relevant to this ks R?) Fora
meaningful choice of v,  and a, there are volumes corresponding to various iz, and they are large enough so
that noisy data come across them. That is why in practice, non-smooth data-fidelity terms yield minimizers

fitting exactly a certain number of the data entries. The resultant numerical effect is observed in § 7. &

Next we present a simple example which illustrates Theorem 1.
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Example 1 (Non-smooth data-fidelity term.) Consider the function

q

q9 2
Flay) = la—wl+ay 3,
i=1

i=1
where « > 0. For every y € R?, the fanction F(.,y) is strictly convex, so it has a unique minimizer and the

Iatter is strict. Moreover
q
mcjn Flz,y) = z;ﬂiln Fl@i, us)
bl
ax? _
where flzg, ) = |- wl+ - for i=1,...,q.

For y € RY, let £ be the minimizer of F(.,y). Now B = {i: 2; = yi}. For every ¢, the fact that f(.,y;} has a

minimum at £; means that & f(£;,1;)(u) > 0, for every u € R. Then for every v € R we have

if ich® & & #yi, then &if(z,y)(u) = Df(wy)u= (sign(zi —y) +az)u>

if 1 ¢ FL & I = Wis then 51f(:ft.i,y7;)(u} = iu! + (Cty.,;) a0
From Proposition 1, the entries of the minimizer function A are
o fe 1 1
if i2h® & |y > =, then Ai(y) = = sign(y,);
o
. 1
ifich & |yl < o then Xy} = w

Theorem 1 applies provided that |y;| 5 1/ for every i € h, which corresponds to assumption 3. In such a case,

we can take for the neighborhood exhibited in Theorem 1

g
N = B(y,£) with £E=min} |y~ —
ju=1 [

7
We see that v’ — H{X{y"),v') reads

HX(Y),y) = {z e{l,....q}: |yl € é}

and is constant on V. The above expression shows also that the cardinality of b increases when o decreases.

We now itlustrate Remark 9. For A < {1,...,q}, put
1. 1., ¢
Vi, = {y eRY: |yl < E,V‘L € h and |y > a,\‘fz €h }

Obviously, every ¥ € V}, gives rise to a minimizer &' of F(.,y’) satisfying H(',3") = h. That is, the function
y — H{X(y),y') is constant on V. Note that Vp = {y € R? : lg;} > 1/0,Vi} and that Vp = P if a = 0.
Moreover, for every h C {1,...,q}, the set Vi has a positive volume in RY, whereas the family of all Vj,, when

h ranges over the family of all the subsets of {1,...,q} (including the empty set), is a portition of R7. ¢

5 Smooth data-fidelity terms

In this section we focus on smooth cost-functions with the goal to check whether we can get minimizers which

fit exactly a certain mumber of data entries. We start with an illuminating example.
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Example 2 (Smooth cost-function.) For A € R?*? and G € R™? with r € N”, consider the cost-function
F R xR? R,
Flz,y) = Az - y|* + o Gz|*. (60)

Recall that since [37], cost-functions of this form are among the most widely used tools in signal and in image
estimation |25, 22, 35, 13]. Under the classical assumption kerAT A N kerGTG = B, it is seen that for every

y € R, F(.,y) is strictly convex and its unique minimizer Z is determined by solving the equation
DF(#,y) =0 where DF(Z,y) =2(Az — )T 4 + 2037 GTG.
The relevant minimizer function & : RY — R reads
X(y) = (ATA+aGTE) AT 4. (61}

We now determine the set of all data points y € RT for which & := X (y) fits exactly the ith data entry y;. To

this end, we have o solve with respect to y the equation
T -
a; X(y) = yi- (62)

Using {61}, this is equivalent to solving the equation

I

0, (63)
al (ATA+aGTEy AT — el

pi{e)y
where pi{a)

We can have p;{a) = 0 only if & belongs to the discrete set of several values which satisfy a data-independent
system of g polynomials of degree p. However, ¢ will almost never belong to such a set, so in general, p;(@) # 0.

Then (63) implies y € {p;(e)}*. More generally, we have the implication

g
Fie {1,...,q} such that Xi(y) =y = y¢€ U{pj(a)}J‘.
=1

Since every {p;(a)}' is a subspace of R? of dimension ¢ — 1, the union on the right side above is a closed,
negligible subset of RY. The chance that noisy data come across this union is null. Hence, the chance that noisy
data y yield a minimizer X (y) which fits even one data entry, i.e. that there is at least one index ¢ such that
{62) holds, is null. o

The theorem stated below generalizes this example.

Theorem 2 Consider a C™-function F : R® x R — R, with m > 2, of the form (1)-(2), and let h C {1...,q}

be nenempty. Assume the following:
1. Yi=1,...,q, the functions ¥; : R — R satisfy () >0, Vte R;
2. A is invertible (recall that for every i =1,...,q, the ith row of A is ol );

3. there is an open domain Ny C RY, so that F(., Ng) admits a C™* local minimizer function X : Ny — R?,
such that D2F(X(y),y) is positive definite, Vy € No;
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4. for every x € X(Ng) C RP and for every i € h we have D*®(z).[A™}; # 0 where {A™}]; denotes the ith

cobumn of A71, fori=1,...,q.
For o given set of constants {8;,i € h}, and for any N C Ny a closed subset of RY, put
Thi={yeN:a] X{y)=vi+6; Vich}. (64)

Then T, is o closed subset of RY which is negligible with respect to the Lebesgue measure on RY.

Proof. For every h nonempty we have
Ty = m T{i}-

ich
It is hence sufficient to show that Ty is closed and negligible in RY for some 4 € h. For simplicity, in the
following we write T; for Ty;). Since &' is continuous on N, every T; is closed in IV, and hence in RY. Our
reasoning below is developed ad absurdum. So suppose that Y; is of positive measure. Then T; contains an

open, connected subset of RY, say N C T, c N. We can hence write down
af X(y) =yi+0;, VyelN. (65)
Differentiating both sides of this identity with respect to y yields

al DX(y) =el, VyeN. (66)

We next determine the form of DX. Since for every y € N the point X(y) is a local minimizer of F(.,y), it
satisfies D1 F(X(y),y) = 0. Differentiating both sides of the latter identity leads to

DYF (X(y),y) DX(y) + D12F (X(y),y) = 0, VyeN. (67)
The Hessian of z — F(z,y), say H(z,y) := DiF (z,y), reads

H(z,y) = Di¥(z,y) +aD?®(z)
= AT Diag (zb(:c, y)) A+ aD*®(z), (68)

where for every x and y, 1,/)(2:, y) € R is the vector whose entries read
p(x,y))s = vf(alz — ), for i=1,...,q
By assumption 3, H (X (y),y) is an invertible matrix, ¥y € N. Furthermore,
Dy F(z,y) = - AT Diag (d)(m,y}) .

Inserting the last expression and (68) intoc (67) shows that

DX(y) = (H(X(), 1) " A" Dig (¥(X(),0), VyeX. (69)
Introducing now (69) into (66) yields

of (H(X(y),9))"" AT Ding ($(X(w),0)) =, Wye . (70)
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By assumption 1, Diag (v,b(ét’ (y),y)) is invertible for every y € N. Its inverse is a diagonal matrix whose
diagonal terms are (¢} (a7 X(y) — yi))_l, for i = 1...,q. Noticing that

T

e

el (Diag (r)}(ﬂ:(y), y))) - (T Xi(y) —3)’

we find that (70) equivalently reads

'lub:’(a’f‘x(y) - y‘i) .CL;T (H(X(y)a y})—l = BTA_T: Vy € N,

1

where A~T = (AT)WI. Then, taking into account (68},

{of X(y) —yi) of = eT AT (AT Ding ($(X(w),1)) A+ aD2 (X)), Vye N
By the invertibility of A {(assumption 2), and noticing that el 4 = a7, the latter expression is simplified to
[ (TRl - ) af =] (T X(y) - v) ol +acl ATDRR(R()), Vye N,

and finally to
D?®(X(y)).A"e; =0, Vye N.

However, the obtained identity contradicts assumption 4. We conclude that Tp is negligible. o

Let us comment the assumptions taken in this theorem. Recall first that assumption 3 was discussed in
Lemma 1 and in Remark 1. In the typical case when W is a data-fidelity measure, every i is a strictly convex
function satisfying v;(0) = 0 and ¥4 (t) = ¥:(—1).

Remark 10 (on assumption 2.) This proposition also addresses the case when
F(z,y) = | Az — y||* + a®(z) with rankd =p <gq.

Indeed, for p < q, F can equivalently be expressed in terms of a p x p-matrix A with rankA = p, in place
of A. Every minimizer & of F(.,y) satisties 24T A2 + aD®(i) = 24Ty. Then equivalently, F(z,y) = ||Az —
AT ATy|| + a®(x) where we can put § := A~T ATy to be an equivalent data vector of length p. Clearly, &

satisfies the same conditions for minimum.

Remark 11 (on assumption 4.) By the invertibility of A (assumption 2), we see that [A™%]; = A~1e; # 0,
for every ¢ = 1,...,q. It would be a pathological situation to have some of the columns of A~ in ker D?®(z),
for some z. For instance, focus on the classical case given in (4) with G¥ : R — R. Let G denote the r x p
matrix whose rows are GT, for i = 1,...,7. Then D?®(z) = G"Diag (3{Gx)) G where 3(Gz) € R is the vector
with entries [3(Gz)]; = ¢"(GFz) for i = 1,...,7. Focus on the case when "(t) > 0, ¥t € R (e.g. ¢ is strictly
convex) and @ yields first-order differences between neighboring samples. Then KerD?®{z) is composed of
the constant vectors, &[1,...,1]7, x € R. Then assumption 4 is satisfied provided that A~! does not involve

constant columns.

Remark 12 (Meaning of the theorem.) If for some y € R? a minimizer & of F(.,y) satisfies an affine
equation of the form a,f;»ri' = y; + §;, then Theorem 2 asserts that ¢ belongs to a closed, negligible subset of RY.
There ig no chance that noisy data y vield local minimizers of a smooth cost-function F(.,y) satisfying such an

equation.
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The next proposition states the same conclusions but under different assumptions.

Proposition 2 Consider a C™-function F : RPxRT — R, withm > 2, of the form (1)-(2) andleth C {1...,q}

be nonempty. Assume the following:

1. there is a domain Ny C R? so that F(., Ng) admits a C™ ! local minimizer function X : No — RP, such
that D3F(X(y),y) is positive definite, Yy € Ny;

2. for everyy € Ny and for every i € h there exists j € {1,...,q} such that the following function K; ;
Kogly) =0 (aF 20) — ] ') af (HXG),9) " a,
where H was gwen in (68), is nonconstant on any neighborhood of y.
For {6; e R:4 € h} given, and for every N C Ny @ closed subset of RY, put
Yhi={yeN:a] X(y) =yi+6, Vich}. (71)
Then T, is a closed negligible subset of RY.

Proof. As in the proof of Theorem 2, we focus on T; for i € h and develop our reasoning by contradiction.
So suppose that Y; has a positive measure in RY. Using the same arguments as in the proof of Theorem 2, we
deduce that Y; must contain an open ball N. Then (65) and {66) are true. In particular, comparing (66) for
y' # y with the same equality for y yields

oI DXy} = al DX(y), Yy € N. (72)

Notice that AT Diag (?/)(w, y' )) is a matrix whose jth column reads " (a?m —y}).a;. Introducing (69} into (72)

show that the latter is equivalent to the system
Ki,j(y’) = }Ci,j(y)’ Vi€ {11 e :q}; V’y' € N.
The obtained resuit contradicts assumption 2. It remains that T, is negligible. o

Remark 13 (on assumption 2.) Although a general proof of the validity of this assumption appears to be
more intricate than important, we conjecture that it is usually satisfied, except possibly in some pathological
cases. The intuitive arguments are the following. Let us focus on the classical case when ® is as in (4). The

entries of H(x',y'} read

q T
[H @ YV n = O Mmt(a5a — ) + > 62,07 (Gjz"), for (m,n) € {1,...,p}?, (73)
=1 d=1
where 1jm, 7 = 1,...,q and K, j = 1,...,r are constants that are calculated from G and A. From Cramer’s

rule for matrix inversion, for every j, the term o (H(z',y')) " a; is the fraction of two polynomials. The entries

of the numerator read S5 mn([H (2, y')],, »)°) ¥(m,n) € {1,... ,p}? with s mn € R, for s=0,...p~ 1. In the
denumerator we have vs,m»([H(z',y' )}, »)° Y(m,n) € {1,... P} with Yepmn € R, for s =0,...p. For X a

minimizer function and j and 4 given, K; ; has the form

?.:;]): Z(m.n) ‘Bsamsn([H(X(y’)r yf)}m,'n)s

Kl =9 g 0 ) S e, )

(74)
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Assumption 2 requires that for 4 € h, there is at least one index j € {1,..., ¢} for which the relevant function

K; ; does not remain constant on any neighborhood of y.

6 Non-smooth regularization versus non-smooth data-fidelity

In this section we compare cost-functions involving non-smooth data-fidelity terms to cost-functions involving
non-smooth regularization terms. The visual effects produced by these classes of cost-functions can be seen
in§ 7.

Cost-functions with non-smosth regularization typically have the form {1) where ¥ is a C™-function, m > 2,
whereas  is as in {4) with @ non-smooth at zero, The most often, Uz, y) = | Az —y|? Non-smooth functions ¢
are for instance the L' and the concave functions in {5}, Since {33, 18], such cost-functions are customarily used
in signal and image restoration {18, 1, 14, 11, 12, 38]. Visually, the obtained minimizers exhibit a stair-casing
effect since they typically involve many constant regions—see for instance Figs. 6 and 10 in § 7. This effect is
discussed by many authors [18, 15, 14, 12]. In particular, the ability of the L!-function to recover non-correlated
“nearky-black” images in the simplest case when G, = ¢;, Vi, was interpreted in [15] using mini-max decision
theory. Total-variation methods, corresponding to ¢(t) = [f| also, were observed to yield “blocky images”
[14, 12]. The concave function was shown to transform a ramp-shaped signal into a step-shaped minimizer [19].

A theoretical explanation of stair-casing was given in [26, 27, 28]. It was shown there that regularization
of the form (4) with ¢ non-smooth at zero yield local minimizers & which satisfy G;& = 0 exactly, for many
indexes i. For instance, if Gf, i=1,...,r, vield first-order differences between neighboring samples {(if = is a
signal of R?, Gz = x; — T4y for i = 1,...,p— 1), the relevant minimizers # are constant over many zones. If
G;f, i=1,...,r, yield second-order differences, then & involves many zones over which it is affine, efc. More
generally, the sets of indexes i for which G;# = 0 determine zones which can be said to be sirongly homogeneous
[27]. Stair-casing is due to a special form of stability property which is explained next. Let a data point y give
rise to a local minimizer # which satisfies GT# = 0, Vi € h where h # @. It is shown in [26, 27, 28] that y is in
fact contained in a neighborhood N € RY whose elements ' € N (noisy data} give rise to local minimizers 2’
of F(.,%"), placed near to &, which satisfy G714’ = 0 for alli € h. Since every such N is a volume of positive
measure, noisy data come across these volumes and yield minimizers satisfying GT#' = 0 for many indexes i.
Notice that this behavior is due to the non-smoothness of ¢ at zero since it cannot occur with differentiable
cost-functions [27}.

The behavior of the minimizers of cost-functions with non-smooth date-fidelity, as considered in Theorem 1,
is opposite. If y leads to a minimizer & which fits exactly a set h of entries of y, Theorem 1 shows that y is
contained in a neighborhood N such that the relevant minimizer function & follows closely every small variation

all data entries y! fori € h when y' ranges over N. Thus al X (¢') is never constant in the vicinity of y for i € h.
T T
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7 Non-smooth data-fidelity to detect and to smooth outliers

Qur objective now is to process data in order to detect, and possibly to smooth, outliers and impulsive noise.

To this end, take a; == 1 for evety i € {1,...,¢} in (2). Focus on

q r
Fle,y) =z —m)+a oGl z) (75)
=1 il
where GT : R? — R for i = 1,...,r, yield differences between neighboring samples {e.g. Gy =2~z iz

is a signal), ¥ and ¢ are even and strictly increasing on [0, 00), with #'(0%) > 0 and ¢ smooth on R. Suppose
that & i3 a strict minimizer of F(.,y) and put B == H{Z, ). Based on the results in § 4, we naturally come to
the following method for the detection of outliers. Since every y; corresponding to 1 € h is kept iutact in the
minimizer £, that is &; = 34, every such y; can be considered as a foithful dete entry. In contrast, every y; with
i€ he corresponds to #; # 1; which can indicate that this y; is aberrant. In other words, given y € R?, we
posit that ¢, the complementary of b = H(X(y),v), provides an estimate of the locations of the outliers in y.
The possibility to keep intact all faithful data entries is both spectacular and precious from a practical peint of

view, e.g. to pre-process data.

Remark 14 (Stability of the detection of outliers.) If a minimizer & of F(.,y), for y € R, gives rise to
b = H(&,y), Theorem 1 ensures that all data 3’ placed near to y yield minimizers &’ which recover exactly the
same set of outlier positions he. Hence, the suggested method for detection of outliers is stable under small

data variations.

We can also envisage to smooth outliers since the value of every 1, for i € ftc, is obtained from the values of
neighboring data samples through the terms acp(G?:?;} for § neighbor of . Small values of o make the weight of
¥ more important, so the relevant minimizers & fit larger sets of data entries, i.e. his larger. At the same time,
all samples Z; for i € he incur an only weak smoothing and may remain close to y;. In contrast, large values of
¢ improve smoothing since they increase the weight of ®. To resume, small values of o are more adapted for
the detection of outliers while large values of @ are better suited for smoothing of outliers. We are hence faced
with a compromise between efficiency of detection and quality of smoothing. The next example, as well as the

experiments presented below, corrobarate this conjecture.

Example 3 Consider the following cost-function:
q p—1
Flz,y) = Z |z — wil + QZ(-’L‘i —zi41)”.
i=1 =}

Let % be a minimizer of F(.,y) for which o= H{%,y) is nonempty. Focus on i € he. Since &; # y;, then

OF(z, PR . . .
0= -""é("&wyl = sign(&i - yi) + 20:((&: — Ei1) — (£im1 — 24))

which yields

L B+ B sign(@ — )

2 4ex (76)
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Hence, #; takes the form (76) only if we have
. Tjm1t+ 1 1 Tiy+Ei41 1
either y; > =i b ——, O Y L ———— — —.
% 5 Tip T 2 io
Remark that (76) does not involve y; but only the sign of {&; — ;). Thus, if y; is an outlier, the value of %;
relies ouly on faithful data entries y; for j € k, by means of £;—; and #;41. Moreover, the smoothing incurred
by &; is stronger for large values of a, since then £, is closer to the mean of #;..; and %;;.;. Otherwise, if i € h,
we have §F(&,yMe;} > 0, which ylelds
. P TR Ti1+2ip1 1
I, = & e s T e o ——
Py ) I dor
This inequality is easier to satisfy if v is simall in which case nunerous data samples ave [itted cxactly, whercas

only a few samples are detected as outliers. o

Concrete results depend on the shape of %, », {G7 } and of . We leave this crucial question for future

work. In order to recover and to smooth outliers, we take the following cost-function:

Flz,y) = Z!m y1§+az Z z; —zyiY for v e (1,2, (77)

=1 JEN(4)
where for every i = 1,...,p, the set N'(i) contains the indexes of all samples j which are neighbors to ¢. In all
the restorations presented below, N(i) is composed of the 8 nearest neighbors. Since [9], we can expect that
v > 1 but close to 1 allow edges to be better preserved when outliers are smoothed. Based on this, all the
experiments with (77} in the following correspond to v = 1.1.

The minimizer £ of F(.,y), for y € RY, is calculated by continuation. Using that the Huber function (5),

_ t? if [t <w,
hult) = { W+ 2t =) if |6 >y, here v>0,

satisfies 1,(¢) — [t| when v | 0, we construct a family of functions 7, (.,y) indexed by v > O

Folm,y) =Y oo’z — y;) + B(a).

i=1

Being strictly convex and differentiable, every F,(., y) has a unique minimizer, denoted by £, which is calculated
by gradient descent. Since by construction having v > v’ entails F.(z,y) = Fis(z,y), V& € RP, we see that
F.(2,,1) decreases monotonically when v decreases to 0. It is easy to check that moreover, as v | 0, we have
FulZu,y) — F(&,y), and hence £, — %, since every F,(.,y) has a unique minimizer and the latter is strict.
Total variation methods are similar from numerical point of view since they involve ¢(f) = jt|. Many authors
used smooth approximations [33, 38], e.g. ¢, = V2 + v. However, approximation using Huber function has
the numerical advantage to involve only quadratic and affine segments. At the same time, the fact that 1, is
discontinuous at £ is of no practical importance since the chance to get a minimizer #, involving a difference

whose modulus is exactly v, is null [27].

First experiment

The original image = in Fig. 1{a) can be supposed to be a nolsy version of an ideal piecewise constant image.

Data y in Fig. 1{b) are obtained by adding aberrant impulsions to x whose locations are seen in Fig. 4-left.
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Recall that our goal is to detect, and possibly to smooth, the outliers in y, while preserving all the remaining
entries of y.

The image in Fig. 2(a) is the minimizer of the cost-function F{.,y) proposed in (77), with » = 1.1 and
@ = 0.14. The outlers are well visible although their amplitudes are considerably reduced. The image of the
residuals i — 2, shown in Fig. 2(b), is null everywhere except at the positions of the outliers in y. The pixels
corresponding to non-zero residuals (i.e. the elements of hc) provide a faithful estimate of the locations of the
outliers in y, as seen in Fig. 4-middle. Next, in Fig. 3(a) we show a minimizer Z of the same F{.,y) obtained for
o = 0,25, This minimizer does not contain visible outliers and is very close to the original image x. The image
of the residuals ¥ ~ £ in Fig. 3(b) is null only on restricted areas, but has a very small magnitude everywhere
beyond the outliers. However, applying the above detection rule now leads to numerons false detections, as seon
in Fig. 4-right. These experiments confirm our conjecture about the role of cv.

The issue of the minimization of a smooth cost-function, namely F in {75) with ¥(t) = ¢{t) = ¢* and
o = 0.2, is shown in Fig. 5(a). As expected, edges are blurred whereas outliers are well seen. The residuals in
Fig. 5(b) are large everywhere, which shows that £ does not fit any data entry. The minimizer in Fig. 6(a) is
obtained using non-smooth regularization, where F is of the form {75} with (¢} = t?, ¢(f) = [t| and o = 0.2.

In accordance with our discussion in § 6, £ is constant on very large regions.

\\“\\

A Av“b‘ 2
' s

\i\'\'\\!\,\\\t

,.....b‘v A\*'

{b) Data y = x-+outliers.

Figure 1: Original x and data y degraded by outliers.
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{a} Restoration & for oo = 014,

(b} Residuals y — .

Figure 2: Restoration using the proposed cost-function F with non-smooth data-fidelity in (77) for » = 1.1 and
er == 0,14, The residuals provide a faithful estimator for the locations of outliers.

Second experiment

The original, clean image T is shown in Fig. 7(a). The dsta y, shown in Fig. 7(b), are obtained by adding to =
770 impulsions with random locations and random amplitude in the interval {0,1.2).

In Fig. 8(a) we show a zoom of the histograms of x (up) and of y (down). Fig. 8(b) shows the result from
applying to y two iterations of median filtering. The obtained image contains only a few outliers with weak
amplitude but the entire image is degraded and especially the edges are blurred. The £;-norm of the error
& —xi|1 = 37, |#i — 24| is 523. The next two restorations in Fig. 9 are obtained by minimizing the cost-function
F with non-smooth data-fidelity proposed in (77) where v = 1.1. The minimizer in (a) corresponds to o = 0.2
and it fits exactly the data everywhere except for several hundred pixels where it detects outliers. This detection
gives rise to 50 erroneous non-detections and to 15 false alarms, the remaining detections being correct. The
next image (b) is obtained for o = 0.55. The minimizer & does not contain outliers any longer but it fits exactly
only a restricted number of the data entries. Nevertheless, it remains very cloge to all data entries which are
not outliers, since the £;-norm of the error is 126. This minimizer provides a very clean restoration where both
edges and smoothly varying areas are nicely preserved. The restoration in Fig. 10(a)} results from a smooth

cost-function F as in (75) with ¥(f) = ¢(#) = #* and « = 0.2. This image fits no data entry while edges are
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(a) Restoration & for o = 0.25.

{b) Residuals y — £.

Figure 3: Restoration using the proposed cost-function F in (77) for # = 1.1 and o = 0.25. The outliers are
well smoothed in 2 whereas the residuals remain small everywhere beyond the outliers locations.

smooth. Fig. 10(b} illustrates the stair-casing effect induced by non-smooth regularization. This minimizer

corresponds to F as in (75) with 1(¢) = 2 and ©(t) = |t|, for @ = 0.4 and it still contains several outliers.

8 Conclusion

We showed that taking non-smooth data-fidelity terms in a regularized cost-function yields minimizers which fit
exactly a certain number of the data entries. In contrast, this cannot occur for a smooth cost-function. These
are strong properties which can be used in different ways. We proposed a cost-function with a non-smooth data-
fidelity term in order to process outliers. The obtained results advocate the use of non-smooth data-fidelity

terms in image processing.
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(b) Residuals y — .

Figure 6: Restoration involving non-smooth regularization: F is as in (75) with (t) = t* and @(t) = ||, for
o = 0.2. The minimizer % is constant over large regions.
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a) Original image x b} Data y = z + 770 outliers.
£

Figure 7: Original image = and data y obtained by adding to « 770 outliers with random location and random
amplitude.

360 T

2501

200

150

L] 05 1 18 2

(a) Histograms: x (up), y (down). (b) Restoration by median filtering.

Figure 8: (a) Zoom of the histograms of the original = {up) and of the data y. (b) Restoration using 2 iterations
of median filtering.
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{(a) Minimizer obtained for o = 0.2. (b) Minimizer calculated for & = 0.55

Figure 9: Minimizers obtained using the proposed cost-function F in (77), involving non-smooth data-fidelity.
(a) For & = 0.2 there are 720 correct and to 65 erroneous detections of outliers. Outliers are only weakly
smoothed. {b) For a = 0.55 outliers are well smoothed and the error is weak.

(a) Smooth cost-function. {b) Non-smooth regularization.

Figure 10: Minimizers obtained by minimizing F of the form (75). (a) For (¢} = ¢ = ¢(f) and o = 0.2,
Outliers are well seen whereas edges are degraded. (b) For ¢(¢) = t* and (t) = ||, and & = 0.4. Only several
outliers remain visible. Stair-casing is well present.
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