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STABILITY OF MINIMIZERS OF REGULARIZED LEAST SQUARES
OBJECTIVE FUNCTIONS II: STUDY OF THE GLOBAL BEHAVIOR

S. DURAND* AND M. NIKOLOVA 1

Abstract. We address estimation problems where the sought-after solution is defined as the
minimizer of an objective function composed of a quadratic data-fidelity term and a regularization
term. We especially focus on nonsmooth and/or nonconvex regularization terms because of their
ability to yieid good estimates. This work is dedicated to the stability of the minimizers of such
nonsmooth and/or nonconvex cbjective functions. It is composed of two parts. In the previous
part of this work, we considered general local minimizers. In this part, we devive results on global
minimizers. We show that the data domain contains an opet, clense subset such that for every data
point therein, Lhe objective function has a fuite number of Jocal minimizers, and a unique global
minimizer which is stable under variations of the data.

Key words. stability analysis, regnlarized least-squares, non-smocth analysis, non-convex anal-
ysis, signal and howage processing

1. Introduction. This is the second part of a work devoted to the stability
of minimizers of regularized least squares ohjective functions as customarily used in
signal and image reconstruction. In the previous part [5], we considered the behavior
of local minimizers whereas now we draw conclusions about global minimizers.

Given data y € RY, we consider the global minimizers £ € R? of an objective
function £ : R x RY — R of the form

(1) E(x,y) = ||Lz — yl® + D(x),

where L : R? — RY is a linear operator, || . || denctes the Euclidean norm and
® : RP — R is a piecewise C™-smooth regularization term. More precisely,

{(2) @(z): Z wi(Giz),

where for every i € {1,...,7}, the function ¢, : R® — R is continuous on R" and C"™-
gmmooth everywhere except at a given 8; € R®, and G; : RP — IR* is a linear operator.
The operators (7; in the regularization term ® usually provide the differences between
neighboring samples of . Typically, for all 1 € {1,...,7}, we have 6; = 0 and g; reads

(3) wiz) = ¢(l2l)), Yie{l,....7}

where ¢ : Ry — R is an increasing function, often called potential function. Several
functions ¢, among the most popular, are the following [6, 1, 7, 9, 8, 11, 3, 12, 2]:

Lo (t)—]tf”‘ l<a<?,
Lorentzian B(t) = at? /{1 + ot?),
Concave P(t) = et} /(1 + a]tl)
{4) Gaussian (1) = 1 — exp {—ot?),
Truncated quadratic ¢(t) = min {at?,1},
( it <a,

12
Huber P(t) = { alo+2t—al) if |t >e

t
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The notations in this paper are the same as in part I. Recall that although &
depends on two variables (z,y), V€ and VZ€ will systematically be used to denote
gradient and Hessian with respect to the first variable . By B(z, p) we will denote a
ball in R™ with radius p and center x, and by S the unit sphere in R™ centered at the
origin, for whatever dimension n appropriate to the context. For a subset A € RY,
its complementary in R will be denoted A®.

We will consider minimizer functions with a special attention to those which yield
the global minimum of the objective function.

DEFINITION 1.1. A function X : O — RP, where O is an open domain in RY, is
said to be o minimizer function relevant to £ if every X (y) is o strict {i.e. isolated)
local minimizer of £(.,y) whenever y € O. Moreover, X s called o global minimizer
function relevant io & if £0., y) vewches s global minimum of X{y) for cocry y € O.

The goal of this second paper is to check first the unigueness and then the smooth-
ness of the global minimizer functions relevant to £ We will make the same basic
assumplions as in the previous part of this work.

H1. The operator L : R? — R? in (1} is injeciive, Le. rankl = p.

If @ is C™-smooth, we will systematically assume the following:

H2 V&(tv)

Otherwise, for ® piecewise C™ and of the form {2), the latter assumption is
reformulated in the following way:
Vipi{tu)
t

-2 0 uniformly withv € 5 ast — oco.

H3. For ewveryi=1,...,7 and fort € R, we have — O uniformly with

u € 8% whent — oo.
The results presented in the following are meaningful if, for all ¥ € RY, the
objective function £(.,y) admits at least one minimizer.
LeMMA 1.2, Consider £ as given in (1) and assume that HI is sotisfled. Suppose
that ® satisfies one of the following conditions:
1. ® is C™ on RP with m > 2 and assumption H2 is satisfied;
2. ® is of the form (2) where for alli € {1,...,r}, y; is continuous on R and
C™ on R\ {8;} with m > 2, and the assumption H3 is satisfied.
Then for every y € RY, the objective function £{.,y) admits at least one global
minimizer.
It is easy to see that our assumptions guarantee that £(.,y) is coercive for every
y € RY [4, 10]. Hence the conclusion of the lemma. However, £(.,y) may have several
global minimizers. From a practical point of view, this means that the estimation
problem is not well formulated and that there is not enough information to pick out
a unique stable solution. We will confine our attention to the subset of R? composed
of data y for which £{.,y) has a unique global minimizer, i.e. for which the global
minimum of £(.,y) is reached at a unique point:

[ = {y € R?: &(.,y) has a unique global minimizer},

Our main result states that the interior of I’ is dense in R?. This result means that
in a real-world problem there is no chance of getting data y leading to an objective
function having more than one global minimizers. On T', we will consider the global
minimizer function X : T - RP—the function which ylelds x (y), the unique global
minimizer of £(.,y), for every y € I'. Under quite general assumptions, we show that
X is smooth on an open dense subset of I'. The global minimizer function X can also
be extended beyond the latter set. However, this extension may not be defined in a
unique way and it can be non-smooth and even discontinuous. An intermediate result
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says that for almost every y € RY, the objective function has a finite number of local
minimizers, corresponding to the same number of C™~! local minimizer functions.

2. {™-smooth objective function. The context of smooth objective functions
allows us to see easily the main reasons yielding the result alluded to above without
needing intricate developments.

THEOREM 2.1. Suppose £ is of the form (1} where @ is an arbitrary C™-function
on RP, with m > 2. Let the assumptions HI and H2 be true. Then we have the
following statements.

(i) The interior of I' is dense in RY.

(i) The globol mingmizer funclion AT — RPisC™ ' on an open, dense subset

of T

Belore to proving this theorem, we exhibit two auxiliary propositions.

PRroOPOSITION 2.2. Suppose also that ® is C™ and that the assumpiions HI and
HZ are true. Then there exists §y an open ond dense subset of RY such that every
y € Lo 45 contained i o neighborhood N € IRY, associated with an integer n > 0, s0
that for every ' € N, the relevant objective function £(.,y') admits af most n local
TRATATNEZETS.

Proaf. The set Qg evoked in the proposition can be taken as defined in (12) in
the first part [5},

Qo :={y e R : 2Ly ¢ VE(H,,0)} C €,
where we recall that
Hy = {z € R? : det V?&(z,0) = 0} .

As stated in Remark 3 in [5], the set £l is indeed open and dense in R?. The proof
of Proposition 2.2 relies on the following lemma.

LEMMA 2.3. Let the assumptions of Proposition 2.2 hold. Then for every open
and bounded subset N C RY, there exists a compact set C' C RP such that for every
y € N, every local minimizer & of E(.,y) satisfies £ € C.

Proof of Lemma 2.3. For every y € RY, if # € R is a minimizer of £(.,y), then
VE(Z,y) = 0, or equivalently,

VE(Z,0) = 2LTy.

Then all minimizers of all functions £(.,y) when y ranges over N, are contained in
the set

(5) {z € RF : VE(,0) € 2LTN}.

The set 2LT N is clearly bounded. Moreover, by H1 and H2 we have V&{z,0) ~
9LT Lz as ||z]] — oo, where 2LT L is invertible. Hence the set given in (5) is bounded
as well. O

We will show that if for some y € R? the property stated in Proposition 2.2 is not
satisfied, then this y belongs to 2§. So consider y € R? and suppose that for every
integer n > 0, there exists a point v, € B(y,1/n) such that £(., 1) admits at least n
different local minimizers. This gives rise to a sequence, indexed by n, every element
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of which is & set of n minimizers among all the minimizers of £(.,4,). For every n,
let d,, denote the smallest distance between two minimizers of £{.,y,) belonging to
the selected set of n minimizers. The set being finite, the distance d,, is reached for a
pair of minimizers, say £, and &,. Any such two minimizers satisfy

(6) VE(En,yn) =0 = VE(En, Yn)-
By the mean-value thecrem, there is &, € {tzf, + {1 — )&, : 0 <t < 1} for which
detV2E(Fn, yn) = 0.

Since V2T, y,) = V2E(T,.0). we deduce that &, & H.

On the other hand, Lemma 2.3 tells us that all the minimizers of £(.,y,), for
every n, are contained in the same compact set, whose convex hull is also compact
and will be denoted €. Then 7, € (C as well. By the compacity of ) the sciuence
{#,} admits a subsequence which converges to a point ¥ as long as n — oo. Moreover,
C contams an increasing number (equal or larger than n) of minimizers when n — oo,
so dy, goes to zero when n -» oo. Hence, £, — & when n — oco. At the same time,
yn — Y by construction. Since (z,y) — VE&(z,y) is continuous, at the limit when
n — 00, the equation (6} yields

(7) VE(E,y) = 0.

Moreover, since Hy is closed, € Hy. Combining this fact with (7) shows that y € 5.
Ll

Extending the arguments underlying this proof, we can see that local minimizer
functions never cross on §1g.

REMARK 1. Let us consider two minimizer functions &) and X5 defined on an
open and connected domain O C y. We claim that either X; = A, on O, or

(8) Xi(y) # Xa(y), YyeO.

The reason is the following. Consider the set O := {y € O : X(y) = Xa(y)} and
suppose that O is nonempty and different from O. By the continuity of Aj, = 1,2,
the set O is closed in O. Focus on y belonging to the boundary of O in O. Then
there is a sequence {y,} with ¥, € O\ O, converging to y as n — oo, such that
X1 () # Xa(yn). Since Xy and Xz are continuous, the points &, := Aj{y,) and
# 1= Xa(yn) come arbitrarily close to each other as long as n — co. By applying the
reasoning developed next to (6), we deduce that detV2E£(X;(y),y) = 0, for ¢ = 1,2,
which contradicts the fact that y € {3y. Hence the boundary of Oin O is empty.
Since O is connected and open, the latter conclusion entails that either O=0,0r0
is empty.

The proposition below reinforces this observation.

PROPOSITION 2.4. Let the assumptions of Proposition 2.2 be true. Every open
set of R contains an open subset O on which £ admits exactly n minimizer functions
X, : O — RP,i=1,...,n, which are C™"! and are such that for all y € O, all the
minimizers of £(.,y) reed

(9) Xi(y),i=1,...,n
4



and satisfy
(10) E(Xu(w), ) # E(X(w),y), Vird € {1,...,n} with i # j.

Proof. Since £y is open and dense in R?, we can take our open set in {g. Let y
belong to this set. By Proposition 2.2, y has a neighborhood O composed of elements
y' for which £(.,y'} has at most n local minimizers, where n > 0 is the smallest
integer for which this property holds. Even if it means interchanging two clements
of O, we can assume that £(.,y) has exactly n local minimizers 2,4 = 1,...,n. By
y € Qq ¢ Q. each minimizer &, 4 = 1.....n, vesults from the application of 2 €7
minimizer function A%, te & = X(y). Bach A being defined on an open domain
containing y, we can additionally restrict O in such a way that it is connected and
included in the interscetion of these domains.

The statement {9) comes from the following two arguments. On the one haud,
every £(.,v"), for y' € O, has at most n minimizers. On the other hand, by Remark 1,
for every y' € O and 4,7 with ¢ # §, we have X;{(y') # A;(V).

The proofl of {10) relies on the following lemma.

LEMMA 2.5. Let &7 and X be fwo differentiable local minimizer functions rele-
vant to £, defined on the same open domain O C Q. Suppose we have

(11 E(X1(y),y) = E(Xa(y),y), Yy e O.
Then
Xi(y) = Xa(y), Vye€O.

Proof of Lemma 2.5. By differentiating the both sides of (11) with respect to y,
we obtain

DiE(X (), y) DX (y) + D2E( X1 (y),y)
(12) = D1E(Xa(v), v) DX (y) + DoE(Xaly), ),

where D;E denotes the differential of £ with respect to its ith argument—thus D& =
(VE)'—and DX; is the Jacobian matrix of X;. Since, for i € {1,2}, A’ is a minimizer
function,

DiE(Xi(y).y) =0, VyeO.
On the other hand, differentiating £(z,y} in (1} with respect to y leads to
(13) Dy&(z,y) = 2Lx ~ 2y.
Introducing these last two expressions in (12 }, shows that

LX) (y) = LA (y), Yy eO.

The conclusion follows from the injectivity of L. ]

We now pursue the proof of (10). For ail ¢,j € {1,...,n} with i # j let us
consider

Oy = {y € 0: E(X(y), vy = E(X(w), ) -
5



Introduce then the subset

é = O\ U Oi,j

i,j€{1,...,n}

Equivalently,
O={ye0: X)) # EX;(y),v), Vije{l, .. n}withi#j}

Since, for every i = 1,...,n, the function y — £(X;(y), vy} is continuons on O, every
Oy 4 is closed in O, By the same argument, O is open.

Suppose O s empty. Since O 15 open, its interior is nonempty. Heace, there exist
i,7 € {1,...,n} for which the interior of O;; is also nonempty. Associating X, b
and O of Lemma 2.5 with &y, X; and the interior of Oy ;, respectively, we obtain that
Xy = Ay on this interior. This contradicts the fact that Vi(y) # A5(y), or ally € O.
Tt follows that O is nonempty. Then we can replace O by 0. The second statement
of the proposition is proven. ]

Proof of Theorem 2.1. This proof follows directly from Proposition 2.4. Actually,

we show a stronger result, namely that the theorem remains true if we replace I' by
i _ every local minimum of £(.,y) is

Lo := {y € reached for a unique local minimizer cr.

So, I'y is the set of all data points y € € for which £(.,y) reaches a different value
at each local minimizer. Hence the uniqueness of the global minimizer, i.e. I'g C T

We recall that for a local minimizer £ of £{.,y), the relevant local minimum is
the scalar £(&,y).

Let ¥ € RY and consider a neighborhood of y in R?. By Proposition 2.4, it
contains an open set & on which the conclusion of the proposition holds. Clearly, O
belongs to the interior of I'y. Since O can be arbitrarily close to y, we have proved
that the interior of Iy is dense in RY.

Let us now consider an arbitrary ¢’ € O. By (10), there is an index i € {1,...,n}
for which

EX( ) y) < €Wy Yie{l.. np\{i}

As the functions y" — £(X;(y"),y”) are continuous on (, there is a neighborhood
N C O of ¥ such that

E(X:(y")u"y < EX ")y LYY € N, Vi e {1, np \ (i)

Therefore X = X, on N which implies that N belongs to the interior of {y" € ' :
X is €™ at y"'}. We get the conclusion by noticing that N can be arbitrarily close
o Y. 1



3. Objective function involving nonsmooth regularization. We will now
consider regularization terms of the form (2) where for every ¢ € {1,...,r}, the
potential function @; : R®* — R is continuous on R® and C™ on R®\ {0;} for a given
8; € R®, and G; : R? — R’ is a linear operator. For every ¢ € {1,...,r}, the function
; is supposed to satisfy the same conditions as in the first part [5]:

H4. For every net h € R® converging to 0 and such that limp_o N(R) exists, the
limit limp..o Vi (8; + h) exists and depends only on limp_o N'(h).

In the expression above, N denotes the normalization application defined by
N (v} = v/{jv], for every vector v. We put again

h—U

{14) Ve (0,) ({l'mé .-\QJ’:)) = lim Ve (85 5 b)),
[
and then extend this definition to every v € R?,

Recall that we have also the two following assumptions for ¢y

H5. u — VT {0,)(u) is Lipschitz on S°.

H6. u— Vio(0; + hu) converges toa V1 :{8;) as h ™\, 0, uniformly on S%.
We will need two additional assumptions which are usually satisfied in practice. For
allie {1,...,r}, we assume that

H7. liminf inf 7 V2p;(z)v > —oo,
z-—0; vEST

and

HE., uT Ve (8:)(u) = uT Ve (0:)(v), Yue 8% and Yo e 5°.

Obgerve that by the definition of ¥V*¢; in (15), the inequality in H8 can be
extended to all u and v in R®.

ExampLE 1. To illustrate the two last assumptions, consider

¢i(2) = Blllz — 6l for 7€ RS,

where ¢ € C™(R..), m > 2, and ¢'(0) > 0. By applying (14)-(15), it becomes

Veile) = # (s - BTG 240
- ’ w . s
Ve (6} u) = ¢ (Oﬂm if 2=6;

Differentiating Vi; for z # 8;, we obtain

¢'(llz — 6:ll)

2, () —
Vel = g

r+ (#1010 - HESED) W - ) e -00)”

For any v € 5%, we have

'UTvzt,Oi(Z)'u _ ¢’ﬁiz_"9?€|E|) + ((ﬁn(nz _ 91“) _ qﬁ’;!LZ_—gfﬁl})) (’UT N(z _ ez))z

_ ¢z - 6il) 2 "
= Epi (1 (7 W = 0)7) = 6 (7 A (2 - )

7
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The first term is always positive. So the assumption H7 amounts to saying that

sk 7t n
1‘?{}3’1f ¢"(t) > —oo0.

For instance, for the concave function cited in {4), we find that ¢"'(0) = —2a. For
o = 1, the L% function is non-smooth at zero and we have ¢'(0) = 1 and ¢"(0) = 0.
Furthermore, the inequality required in H8 reads

¢'(0%) = (0" uTy, Vuve ST,

wlhich amounts to Schwary inequality.

Crossty speaking, the developments in the case of plecewise O regulavization
follow the same lines as those developed in the case of O -functions in § 2, and some
details can therefore be skipped. The next theorem is an extension of Theorem 2.1
and gives the main result of this paper.

THEOREM 3.1. Consider £ represented by {1) where ® has the form (2). For all
ic{l,...,r}, let @; be C™ on R\ {8;} with m > 2 and continuous at &; and let the
assumptions from HS to H8 be true. Suppose that HI is satisfied. Then we have the
following statements.

(i) The interior of I' is dense in RY.

(i) The global minimizer function X : T' — RP is C™~1 on an open, dense subset

af I".

The proof of Theorem 3.1 relies on the two propositions given below.

PRrROPOSITION 3.2. Let ® have the form (2) and let the assumptions HI, H3,
Hi, H7 and HS be true. Then there ezists Qo an open and dense subset of RY such
that every y € €y is contained in o neighborhood N € RY, associated with an integer
n > 0, so that for every y' € N, the relevant objective function £(.,y") admits at most
7 local minimizers.

Proof. Let Iy, be the orthogonal projection onto 7. For J € P({1,...,7}),
similarly to [5], we define

(16) Hi .= {xc0;: detV*(|o,)(x,0) =0},

{17) Wy = {w eTt: vTw< ZUTG?V+¢i(6i}(G’iU}, Yo e TJL} .
e

The set 2y is now constructed in close relation with Corollary 4.4 in the first part of
this work [5]:

(18) Qp = (1 @5nByca
JCPHL,r})

where we recall that

(19) Ay :={yeR?: 2Ny, LTy € V(€leo,) (H{,0)},

(20) By = {y eRY: 2Ly € VEH(Oy,0) + aT}WJ} ,

and 8Tf W; is the boundary of W, considered in Tj. As seen from Propositions 4.5

and 4.6, the interiors of the sets AS and BS are dense in R?. Hence the interior of {2
is dense in RY as well. Next we need a lemma which generalizes Lemma 2.3 in § 2.
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LEMMA 3.3. Let ® be as in (2) and let the assumptions HI and H3 hold. Then
for every open and bounded set N C R°, there exists a compact set C C RP such that
for every y € N, every local minimizer & of £(.,y)} satisfies & € C.

Proof of Lemma 3.3. Let £ € ©; be a minimizer of £(.,y). Then we can write
down that

V(lo,)(&,y) =0.
Equivalently,
v(gi(“)l )(i: D) = QHT‘; LTy_

Then all minhnizers of all functions £(.,y) when ¥ ranges over N, are contained in
the set

U {z€0s: V(o) 0) €21y, LTN}.
JeP({1,....n})

Each one of the sets composing this union is bounded because 2L N is bounded and
z — | V(€|e,)(z, 0} is coercive due to H1 and H3. Hence their union is bounded as
well. a

Below we develop the proof of Proposition 3.2. Similarly to Proposition 2.2,
we shall show that if y € R7 does not satisfy the conclusion, then it is not in §lg,
Counsider therefore a point y € RY such that for every integer n > 0, there is a point
yn € B(y,1/n) for which £(.,y,) has at least n different local minimizers. This gives
rise to a sequence, indexed by n, every element of which is a set of n minimizers
among all the minimizers of £(., ¥, }. Notice that for every J, the set @ is composed
of a finite number of convex subsets. For instance, we can consider the following
decomposition:

o VieJ
_ o, o iy
G)J—{:CGR 'G”‘x"[ka7é9k, Vk € Je }
8;,¥ieJ
— 2. 3 —_ [3]
- {:E € RY: Gz [ Yk € J¢ Qi € {1,..., s} such that [Grz];, # |0k);, }
& VieJ
— Dt — i
= U U {NR $Gix [,\[ka—ak]jkw, VkeJc}

{Fe}e{1,...,s}'° A€{-1,1}

where for a vector z, [z]x denotes its kth entry. Using also the fact that P{{1,...,n})
is finite, it is easy to see that there exist a set J of indexes and a subsequence of
{9}, denoted by {y,} again, such that for every integer n > 0, the function £(.,yn)
has at least n local minimizers belonging to the same convex subset 6, of ©;. Using
the same arguments as in the proof of Proposition 2.2, we see that there are two
convergent subsequences of local minimizers of £(,,4,) in Oy, say {,} and {&,}
such that the distance between them ||%, — &I || goes to zero as long as n — oc.
Similarly, the convexity of © ; allows the mean-value theorem to be applied. Then we
see that there exists &, € {t£], + (1 ~ t)&, : 0 < ¢ < 1} for which

(21} (in - 51‘7:1)11‘;{'2 (819J) (5511; yn)(in - 57;1) =0
9



As |i#, — @4l — 0 when n —» oo, all the three sequences, {#,}, {i,} and {Z.}
converge to the same point Z whereas ¢, — ¥ by construction. Now, two situations
can occur according to the position of Z. These are considered in Lemmas 3.4 and
3.5 below.

LEMMA 3.4. Suppose thot £ € ©4. Theny € Ay C Qf.

Proof of Lemma 3.4. Coming back to the definitions of A; and HY, we have to
show that V {£le,) (%,y) = 0 and detV? (£le,) (Z,y) = 0. As to the gradient, the
continuity of the function

(v,y) = V{&le,) (v, y) =Tz, (QLT(M ~n Y G?Vasi(G,n:))
ied
on O x RY entails that
V(Elo,) () = 1 V (Elo, ) (Ens i) =
Let us now check that V? (£lg,) (Z,v) is semi-posifive definite. Since every &,

is a local minimizer of £(.,yn) and £, € Oy, it is a local minimizer of {la,) (., ¥r)-
Then

UTVE (g|91) (i'n:yn) v>0, Yvel;

The continuity of the function

(Iay) - VZ (gler) (xiy) = HTJ (QLTL + Z G;sztpz(G,‘:c)Gt) ng
ieJe

shows that at the limit when n — oo,
vIV? (Elo,) (£,4)v >0, VoeT).

Yet consider subsequences of {#,} and {2, } such that {N (&, — &,,)} converges, and
denote

wi= lim N(Z, — £).
T 00

The facts that &, and &/, are in T}, for every n, shows that 4 € T;. Next we divide
(21} by {2, — 24||® # 0 and take the limit when n — cc. This yields

w!'V? (6391) (ff:’y) ©=0

It follows that det V2 (£lg,) (Z,y) = 0. Hence the result. 0

The other possibility is that # belongs to the boundary of @ in 8, which means
that £ € ©; with J > J, J # J.

LEMMA 3.5. Suppose that & € ©5. Then V (€ls,) (£,y) = 0.

Proof of Lemma 3.5. By J o J, we have T; C Ty, and hence IIp, o Iy, = Ilr,.
This allows us to write

e,V (€Ele,) (Ensyn) = Iz, o Uy, (QLT(LJ% RS GTV%(Gii“n))
i€ie
10



=1y, | 2L7 (Lép —yp) + Y GT Vepi(Giiin)
ieje
+ Y Oy, GTVei(Gidn).
e\

Since HTJ.G? =0, Vi€ J , the last term above vanishes, hence

TV (Elo, ) (B ) = Ly | 207 (i —ya) + D GT V(G
icJe

The obtained function is continuous with respect to T ) € {o e RP G #
6;, Vi€ Jt x R Since V (e, ) (En,¥n) = 0, ¥n, at the limit when n — co we get

o

J

2L (LE —y) + > GTVips(GiiE) | =0.
icJe

This completes the proof. ]

Hence, Z satisfies the necessary condition for minimum of &lg,. Next we will
exhibit a direction « € T, which shows that either y € A5 or y € Bj. As above, we
will take a convergent subsequence of M (%, — &/,) and consider
(22) w:= lim N{Z, ~ %)

ki amde
Since %, € ©, and £, € O, Vn, we see that u € T;. Two cases now arise which are
considered in the two following lemmas.

LEMMA 3.6. Suppose that £ € O5 andu e T'5. Theny € A5 C Qf.

Proof of Lemma 3.6. By developing (21) and dividing by |l£, — £,11® # 0, we
obtain

N(in = 80)T2LTLN (8~ 3p) + > N(En — 35)TGTVE0i(Gi80)GiN (8, — #7,) = 0.
igJe

Noticing that J¢ = Jeu (f \ J), we put the last equation into the form

(23) N (G — 30)T2LT LN (i — )

(24) + 37 N — ) TCTV20i(Giln) GiN (& — )
igJe

(25) == N Nl - 2)TCTV0i(Gin)GiN (3 — £,).
i€ \J

We will consider separately the limit of (23)-{24) and (25) when n — co. Noticing
that GuN (£, — 21) — Giu, (23)-(24) becomes

wT2LTLu + ) wF'GIV20i(GiE)Giu = uTV? (Elo;) (2,0) u.
igJe
il



Noticing that for every n, the point &, € ©; is a local minimizer of £(., ), and so
it is a minimizer of €]o (., ¥} as well. Consequently,

vTV2 (Elo;) (En 0) v = vV (Elo;) (En,yn) v 2 0, Vn, Yo €T}
As n —» 0o,
(26) o V2 (Ele,) (8,0)v >0, VueT;
In particular, for v = 4 we deduce that (23)-(24) has a positive limit which is
(97) w2 (Ele Y (£,0)u 2 0.
Let us now exanine the upper bound of {28) as n - oo Using the identity
GiN (&, = &Y = |GN{(E, — FIN{Gi(E, — 47,)), we obtain
N (i — 2T GIV0(Gin)GN (B — 3)
=GN (n — &) N (Giln — 30))" @il Gin) (Gildn = 57)
z | GiN(En — 35)I1° inf, vTpi(Gydin)v.

Furthermore, for every i € J \ J we have GyN (&, — £5,) — 0 and G;Z,, — 6; as long
as n — co. At this point, assumption H7 shows that

Hminf N {2, — 20)TGTV20,(G3.)GiN (& — £1,) > 0.

n—od

It follows that the limit of (25) satisfies
limsup— > N(dn — 3,)7G] V2@i(Gifn)GiN (En — &7
7100 iej\J
=— 3" Wminf N (&n — &,)" G} V3pi(GiZn)GiN (& — &) S 0.

e NI
As (23)-(24) and (25) have the same limit when n — oo, the latter result, combined
with (27), shows that
(28) 'V (Elo,) (&,0)u=0.

Joining (26) to (28) and the fact that V2E|e,(%,0) is symmetric, we see that
% € Hi where Hy was defined in (16). The latter, combined with Lemma 3.5 shows
that y € A5. By (18), y € Q§. O

LEMMA 3.7. Suppose that £ € ©5 and u € Ty \T5. Theny € B; C Qf.
Proof of Lemma 3.7. Being a minimizer of £(.,y,), for every n, the point &,
satisfies

(29) At E(Zn, yn ) (V) > 0, Vv e R
We now expand this side-derivative,
A E (@ yn) (V) = 2T LT (Lt — yn) + 3 v Gf Vipi(Gidin)
i€ je
+ Y VTG Vi (Gida) + K,
i€\
12



where K = 3, ;vTGTV ¥ 0;(6;)(Gyv) is independent of nn. Take a subsequence {&,}
for which N(G;&,, — 6;) converges for every i € J \ J. When n — oo, we have

lim d¥E(En, yn)(v) = 20TLT(LE —y) + 3 2T GT Vi (GiE)
=00 -
igJe
+ 3 TGTV i (0:)( lim N(Gidn — 9)) + K.
ied\NT
Using assumption I8, the last term can be upper-bounded:

c,'TCTV+;;‘(/}£)( Hin M{GE, -~ 8)) < 'z,!TGzFV*;;L(Gl)(C,z.!}

n— O

It follows that d¥E(E, y)(v) > lim, oo dTE(E,, 1) (v). Putting this together with
(28) we see that

(30) dte(z, yiv) > 0, Yve RP.

In other words, Z satisfies the necessary condition for minimum.

Consider convergent subsequences of {N(%, — Z)} and of {N(&, — Z)}. Since
u ¢ Ty, at least one of the following limits, v = lim, o N{E, — Z) and v =
limp— o0 N (&), — &}, does not belong to T'j. For definiteness, suppose v ¢ T;. By the
latter, the projection of v onto le is non-null. Put w =N (HTIyu) and notice that

w € Ty, because v € Ty and T3 C T, Since V (Elo, ) (En, Yp) = 0, we deduce that
(31} dTE(Fn, yn){w) =0, Vn.
Moreover, noticing that Gyw = 0 for every i € J, we have
> wTGTV* () (Giw) = 0.
ied
Thus we obtain
dHE(En, y) () = 207 LT (LEn—pa)t Y w' GTVii(Gin)+ ) w G Vipi(Gidn).
i€ de i€ J\J

We will calculate the limit of all the terms in d*£(£,,, yn){w} when n — co. The lmit
of the first two terms on the right side of the equation given above is easily obtained
by continuity. Let us focus now on the limit of Vip;{Gi,) for i € J\ J. We start by
considering the case when Giw # 0. We have

= N(G; lirréoN(:En 3]
= N(G) = N(Gw).
The last equality comes from the fact that for i € J we have Gyv = Gyllp.v +
J
Gyllp,v = Gillprv = Gaw||Ilpavl, since lp;v € T and hence Gillr;v = 0. Thus,
J F

for i € J\ J and Gyw # 0, we find that w7 GT Vi (Gign) — wl GT V' i(6:)(Giw).
13



Otherwise, if Gyw = 0 for some i & j\J, obviously ’wTG;?V%(Gijn) =0 =
wl GTV i (6;}(Gsw). Consequently,

lim d*E(En, yn)(w) = 20T LT(LE ~y) + Y w'GI V,(Gik)
n—rOC
ieJe
+ > wTGTV T (8. )(Giw)
ieJ\J
= dTE(Z,y)(w).

Using {31}, at the limit we get dFE(F, y)(w) = 0. However, w € T3 which shows that
#. although heing a loeal minimizer of &lg (1 1), does not satisfy the condition (1)

of Proposition 4.3 in the previous part [5]. Then y € B as given in (20} Using (18)
we see that y € 5. a

We can now extend Remark 1 to the class of objective functions considered in
this section.

REMARK 2. Consider two minimizer functions Ay and s defined on an open and
connected domain O € Qy. The we have either A7 = Ay on O, or

Xi{y) # Xaly), YyeO.

The arguments are similar to those given in Remark 1. Put O := {y € O : Xi(y) =
Xy(y)} and suppose that O # @ and O # O. Clearly, O is closed in O. Focus
on y belonging to the boundary of O in O. Then there is a sequence {y,} with
yn € O\ O and y, — y when n — oo, such that X1(y,) # Xa(y,). Since Ay and A5
are continuous, the points Z,, := X;(y.} and Z}, := X5(y,) come arbitrarily close to
each other as long as n — oco. Then we apply the same reasoning developed after (21)
and deduce that y € Q5. This contradicts the fact that O C Q.

Proprosrrion 3.8, Let the assumptions of Proposition 8.2 hold. Then every
open set of RY contains an open subset O on which £ admits n minimizer functions
X, O — RP, i =1,...,n, which are (™} and such that for all y € O, all the
manimazers of £(.,y) read

and satisfy

(33) E(Xi(y)y) # E(XG{(),y), Vi, g e {L,...,n} with i # j.

Proof. We take into consideration that the smoothness of @ is not exploited in
the proof of Proposition 2.4, but is in the proofs of Proposition 2.1, Remark 1 and
Lemma 2.5. The generalization of these statements to the conditions of Proposi-
tion 3.8 is then sufficient to prove this proposition. The first two statements have
been generalized in Proposition 3.2 and Remark 2, the last one is given in Lemma 3.9
below.

LEMMA 3.9. Let X and Xy be two differentiable local minimizer functions rele-
vant to £ and defined on the same open domain O C Q. Suppose, we have

(34) E(X:(y),y) = E(X{y),y), YyeO.
14



Then

Xi(y) = Aly), YyeO.

Proof of the lemma. Let us consider y € O. Then there are two sets of indexes J

and Jo

such that we have Xj(y) € Qy, and Aa(y) € Q,. By Proposition 4.3 of the

previous part [5], ¥ is contained in a neighborhood N C O such that for all ' € N
we have in addition X, (') € Q@ and Xa(y') € Q. On this neighborhood, (34) can
eguivalently be written

(35)

Eloy, () = Ela,, (l)). Yy e N

By differentiating both sides of (35) with respect to y', we obtain

(36)
(37)

D1 {(Elq,, ) (M), v DAY) + DE(X (), y)
= D1 (Ela,,) (%), v") DXa{y) + D& (X2(y). ),

Since, for i € {1,2}, &; is a minimizer function relevant to £iq, ,

Dy (EEQJl_) (X(y"),y) =0, Vy eN.

By using also the expression of Dy& given in (13), equation (37) yields

L(Yl('y’) = LXQ(’Q’), Vy, & N.

The conclusion follows from the injectivity of L. O
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