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Abstract

In this paper we introduce a new method for image smoothing based on a fourth order PDE model.
The method is tested on a broad range of medical magnetic resonance images, both in space and time, as
well as on non-medical test images. Our algorithm demonstrates good noise suppression with preservation
of edges and contours and without destruction of important anatomical or functional detail, even at poor
signal-to-noise ratios. We have also compared our method with a related second-order PDE model and

find our method to perform overall better on the images being tested.
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I. INTRODUCTION

During the last two decades progress in medical magnetic resonance imaging (MRI) tech-
nology has created a large collection of imaging techniques, so-called pulse sequences, avail-
able to both clinicians and researchers. Each such pulse sequence exploits some specific
physical or chemical property of the hydrogen nuclei (protons) of small, mobile motecules
like water and certain lipids, and can depict structural and functional information from
living tissue at the sub-millimeter scale.

Even if the scanner technology has undergone tremendous improvements in spatial res-
olution, acquisition speed, and signal-to-noise ratio, MR images are still hampered with
degradations like signal intensity inhomogeneities (bias fields), noise, and other artifacts.
One of the limiting factors regarding performance and usefulness of quantitative MRI
diagnostics, such as voxel-based tissue classification, extraction of organ shape or tissue
boundaries, estimation of physiological parameters, e.g. tissue perfusion and contrast
agent permeability from dynamic imaging, is the amount of noise in the acquisitions. A
major source of this type of image degradation is random thermal noise entering the MR
data in the time domain [1] (explained in more detail in Section II).

To overcome the deficiencies of so-called acquisition-based noise reduction, such as in-
creased acquisition time (i.e. time averaging over repeated measurements) or decreased
spatial resolution {i.e. enlarging voxel volume), several post-processing noise reduction

methods have been proposed.
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The ultimate goal of post-scanning noise removal methods in MRI is to obtain piecewise
constant, or slowly varving signals in homogeneous tissue regions while preserving tissue
boundaries. Over the years, many different noise suppression methods have been pro-
posed. However, there is no single method that has shown to be superior to all the others
regarding goodness of noise removal, boundary preservation, robustness, user interaction,
applicability to the different MR acquisitions techniques, and computation cost. Thus,
improvements are still needed.

In the literature, both statistical approaches and diffusion filter methods have been
used to remove noise from digital images. An early study of “image improvement” in
MRI using statistical approach has been done in Godtliebsen [2] (see also [3], [4]). Using
Markov field models with maximum a posteriori (MAP) estimation of restored intensity
values by iterated conditional modes (ICM) and simulated annealing (SA}, it was found
that application of the best of these methods to an average of two measurements gave an
image of about the same quality as an average of four single measurements. Moreover,
the noise characteristics in spin echo Ti-weighted transverse images of the head (Fourier
reconstructed magnitude images) was investigated and it was found that the noise distri-
bution was normal with zero mean, that the noise in different pixels was uncorrelated, and
that the noise did not depend on the signal intensity level.

Soltanian-Zadeh and coworkers [5] have introduced an edge preserving, nonlinear filter
for multispectral (vector-valued) MR image restoration that uses the zero-mean white
Gaussian model for statistical noise. Their filter considers a neighborhood around each
pixel and needs specification of a threshold value for Euclidean distances between pixel
vectors based on noise standard deviation in the images, the contrast between adjacent
tissues, and partial volume averaging effects which are reflected in the sharpness of edges
in each image. Their noise suppression algorithm has been applied as part of preprocessing
in image segmentation and tissue characterization of brain tumors ([6]), but is not widely
used partly because it is restricted to multispectral MR image acquisitions.

On the other hand, considerable research interest and numerous applications in MRI
has been devoted to use nonlinear diffusion filters, see [7}, [8], [9], [10], [11], [12], [13], {14,
[15], [16], [17], [18], [19], [20], [21]. One of the common features of the nonlinear diffusion
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filters is to introduce a nonlinear diffusion term where the diffusion coefficient g(|Vul|?) is
small when the gradient (i.e. |Vu}) is large. The images are filtered by examining their
evolutions under nonlinear partial differential equations (PDEs). In contrast to linear
diffusion filtering i.e. Gaussian filtering, which is hampered with blurring and localization
problems, the nonuniform (anisotropic) process reduces the diffusibility at locations which
have a larger likelihood of being edges by using the “edge-stopping” function a(|Vul?) .
This idea was introduced in Perona-Malik [7] and it has been generalized to 3D images
by Gerig et al. [8], and to vector-valued images by Sapiro and Ringach (1996), making it
suitable to both 3D MRI and multispectral MRIL

Black et al. [9] studied the relation between anisotropic diffusion and robust statistics.
They implemented a robust estimation procedure that estimates a piecewise smooth image
from a noisy input image and demonstrated improved automatic stopping of the diffusion
process with preservation of sharper boundaries and better continuity of edges compared
to the Perona-Malik method. Their rationale for applying robust statistics to anisotropic
diffusion was from the case of piecewise-constant images but was not extended to more
general ones, like MRI, where there can be regions with slowly varying signal infensities
and unsharp tissue boundary zones due to partial volume effects.

Tt seems that Rudin-Osher-Fatemi [11] was the first one to observe that if we minimize
the total variation (TV) norms of the images under some given conditions, we will get
some nonlinear diffusion filters. This idea gives a rigorous mathematical tool to introduce
nonlinear diffusion filters and it has been used as a regularization method for many other
applications where one needs to identify discontinuous functions. Motivated by the TV
filter, many other similar filters have been proposed in the literature, see (e.g.[12], {13],
[14], [15], [16], [17), [18], [19], {20], [21], etc.), The approach we shall take belongs to this
class of filters. We shall introduce a fourth-order PDE noise suppression method that
preserves boundaries and edges and works on 1D signals, as well as 2D, 3D and 3D+time
images. The main motivation for introducing the new filters is to overcome the over-
smoothing effect of the TV-norm filters, see Figure 6. The TV filters are able to remove
noise and preserve edges. However, they also smooth out some of the fine details in non-

blocky images. The method we shall propose has better capabilities in preserving some
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of the fine details while also is able to smooth out noise and preserve edges. In order to
test its practical potential we have applied our method to a wide range of real images,
including structural and functional MRI data sets. Compared with some other fourth
order nonlinear filters, see [17], [19], [21], [22], our approach is simpler and we only need
to know the approximate noise level to determine how much diffusion we need to add.
In [23], they try to reconstruct some 3D surfaces. The normal vectors for the surfaces
are smoothed first and a surface is then chosen to fit the smoothed normal vectors. This
process can be regarded as a two-step realization of a fourth order method which seems

to be an interesting variant for the approach we are propsing here.

The rest of this paper is organized as follows. Since MRI is main target for our noise-
removal method, giving rise to many image processing applications, we give in Section Il
a short review of the principles of MR Fourier transform image formation and how noise
is introduced into the reconstructed images. Section III introduces a general formulation
of the PDE model and in Section IV the Fourth-Order PDE is adapted to this frame-
work. Section V explains the numerical solution we have employed. In order to compare
the performance of our noise-suppression method with similar approaches, we have im-
plemented the second- order PDE model by Rudin et al. [11], and both models are then
tested using standard images with added noise. This comparison is reported in Section VI.
In Section VII we test our method more extensively. Firstly, on synthesized images and
natural scenes, then on a broad range of MR images obtained from MR phantoms, healthy
volunteers and patients. The test images are acquired on clinical scanners from two dif-
ferent MR laboratories, and challenges our method by containing various amount of noise
and structural detail. To investigate the potential clinical applicability of our method, we
have selected both 2D and 3D anatomical images as well as time series (1D signals) of
functional images from a routine brain perfusion examination. Finally, in Section VIII we
diseuss our findings and propose some directions for follow-up. This work is an extension

of the thesis [24].
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I1. MR IMAGE FORMATION AND NOISE

The following figure illustrates the principles of 2D Fourier transform imaging on clinical

MR scanners.
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Fig. 1. Principles of MR image formation. fn MRI we are sampling complez-valued signals S(kz, ky) in
the spatial frequency domain (k-space), being time-domain signals from two independent electronic sources (here
denoted the “real” and “imaginary” channel). The signal valucs in k-space (i.e. raw data) can be expressed as
S(kz,ky) = [[ plz,y) exp{—i(z ke +yky)} dzdy, where p(x,y) is the spatial distribution of proton spin density
that we want to measure. “Filling” of k-space is done by designing k-space trajectories, ¢ v (kz(t),ky(t)) =
7(j0t G.(r)dr, fot G, (7) dr), where the functions G=(t) and G,(t) are programmable time courses of the magnetic
field gradients {cf. the coils in upper right insert). <y is the gyromagnetic ratio of the imaged nucleus (protons).
Thus, during an imaging ezamination k-space is traversed by proper activation of the gradient system. Usuolly,
k-space points are separated by Ak, and Aky in the two orthogonal directions, and the NMR signols can be sampled
on a regular 2D grid. We see from the first equation above, that spatial distribution of proton spin density p(x,y)
in complez-valued vmage space (X and Y smoges), and the NMR signal S(k., ky) in complez-valued spatial frequency
space (R and 1 date matrices) define a Fourier pair. Thus, the image of proton spin densities {and other tissue
properties such as spin-spin and spin-lattice relozation) com be formed by applying o discrete, inverse Fourier
transform to the data matriz of k-space samples. Generolizotion to 3D imaging involves application of the third
gradient coil (G.(t)) in the same foshion. For wisual inspection or further processing the magnitude 1mage (Mag) is
used, end sometimes also the phase tmage (Phaj (with possible phase unwrapping). Bo denotes the static magnetic
field, M{r,t) is the magneifizetion vecfor at position r, rotaling ot {resonance) frequency w = vB. The total
magnetic field B is under control of the pulse sequence program ectivaling the gradient- and RF (radio-frequency)

coils. Fn receive mode, these coils {in quadrature) are also used to pick up the weak NMER signals.
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Today, variations of this Fourier transform imaging technique 18 the most widespread
MR method for obtaining structural and functional information from the living human

body.

Noise in MRI enters the data samples in k-space. Here the noise voltage competes with
the NMR signal and is due to random fluctuations in the receiving coil electronics and
in the patient body (e.g. Brownian motion of spins). The variance of this thermal noise
can be described as the sum of noise variances from independent stochastic processes,

representing the body, the coil and the electronics [1], i.e.

02 (kir’ ky) = O—gody(km? ky) + Jfoil(k-'r’ ky) + J{iectronics (k$7 ky)

thermal

The noise-removal obtained by averaging n measurements, where noise in k-space is addi-
tive i.i.d. zero-mean Gaussian with standard deviation o, yields an improvement in noise
standard deviation of o, = o/y/n. This procedure of averaging, on expence of measure-
ment time, is used in the experimental part of this paper to obtain the “true” MR image
to compare our method with. Notice that in reconstructed magnitude images, the images
used in most medical applications, the noise will generally not be Gaussian distributed.
This is because computation of the magnitude image from the real and imaginary im-
age, reconstructed by the inverse Fourier transform, involves a non-linear operation which
maps a Gaussian distribution to a Rician distribution (e.g. [25]). Morcover, at high SNR
the Rician distribution approaches the Gaussian distribution, and at low SNR 1t tends
to be the Rayleigh distribution. Thus, there are signal-dependent noise characteristics in
reconstructed magnit’ude MR images. However, our noise suppression PDI method, like
most other de-noising methods, does not incorporate these noise-statistics subtilities in the
model (but see [26] for a “Rician noise” model using wavelets), and we have used addition
of i.i.d Gaussian noise in the experiments with non-medical test images to evaluate our
algorithm.

For more details on MR imaging principles and the presence of noise, see [1], {27}, [28],

[29], [30l, [31}, [32].
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I11. PDE-DENOISING

Let w(x,) be the true image and u(z, y) be its observation with random noise n(z, y)

for z,y € €. The noise model is then

ug(w,y) = ulz, y) +n{z, y).

In the following we assume that the noise level is approximately known, ie.

/ﬂ(u — ug)? dx dy = o°. (1)

Noise is recognized as fast oscillating signals over small areas. One of the essential ideas
for denoise digital images is to filter out the high frequency signals while preserve the
other important features of the images. Different functionals can be used to measure the
osciliations in the images. Lets us denote this operator R(u). Examples of functionals that
can be found in the literature are R(u) = [, g(u) dz, with g(u) = [Vu| or g(u) = |Aul,

A general formulation of the noise removal problem is then to solve (c.f. [19], [11})

min R(u)
subject to (1)

(2)

The denoise version of the observed image is given by minimizing the objective 2(u) (i.e
a measure of the oscillations in the image ) subject to constrains involving the statistics
of the noise.

Different functionals for R(u) have been proposed in the literature. In Rudin-osher-
Fatemi {11], R(u) is taken as R(u) = [, |Vu|dz. In [13], {16}, [17], some modified TV-norm
filters were applied. In Chan, Marquina and Mulet [19], they have used

R{u) = /ﬂ (aWu[g + ;Llﬁv(z)l;) dz. (3)

As the functionals get more and more complex, the computing time grows as well. It is
important to keep in mind the relationship between the computing time and the require-
ment of accuracy in the result. In 1D and 2D images this is not an important issue, but as
the number of unknown increases, the choice of functionals will have an significant impact

on the computing time.
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In medical diagnostics, 2D+time, 3D and 3D-time MR images are used, and the de-
noising process is quite expensive. We therefore propose an operator with an all over good

trade-off between noise removal, edge preservation and computing time.

IV. FourTe-ORDER PDE

We shall present the method only for 2D problems, but a generalization to 2D + time,
3D and 3D + #ime is straight forward. The numerical experiments will be done not only
for 2D, but also for 2D + time and 3D problems. In our proposed algorithms, we shall

use the following operator as a measure of the oscillations:

R(u) = f (e + i) dz dy 2,y € 0. (4)

In the original TV-norm filter [11], one is trying to minimize the total variation norm of
the function u. Here, we are essentially trying to minimize the total variation norm of
the gradient Vu. But, for simplicity for the implementation, we have dropped some of
the terms with mixed derivatives. In section VI, we shall give an explanation about the
advantages using this measurement.

Suppose that the noise level o2 in the image ug is approximately known as in (1).
We are now trying to get at new image u that solves the minimization problem (2}, i.e.
we are trying to minimize a semi-norm of the second order derivative under the noise
level constraint. A technique for finding minimum values of (4) subject to the noise level

constraint (1) are based on a Lagrangian function

1 .
Lu, A) = /(]umi + |uyyl) dz dy + 5,\(/ (- ug)? do dy — 0°). (5)
o) )
At any critical point of L(u, A) we must have
oL oL

— = — v =10, Yu.

NI TR
Here, the differentiation means Gauteaux derivatives. This first optimality condition gives

oL 1 . 1

Ozaiiﬁ(umw)zdmdywiaz (6)

and this essentially recovers constraint (1). From the definition of L(u, A), it is easy to

calculate that

JaL / ( U Uyy ) /
—_— ey = S e+ oy | dr dy + XN (w— ug)v dx dy. (7)
du o \ Uzl [ty " Q(
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By using integration by part twice on (7), the second optimality condition implies that

w satisfies the following nonlinear partial differential equation

(=) + (ﬁ&’_)yyﬂ(uww)zo in 0 8)

|tz | Euyy|

and the boundary condition is given by

a) (ﬁfﬁ)m(l—%—')m:o, b) (f‘ﬁ)xm(%)ynzzo on 02 (9)

where n = (ny,n,) is the normal direction on 842
Different methods for solving the nonlinear equation (8) are available and we have chosen
to use a parabolic equation with time as an evolution parameter. This means that we solve

fort >0, z,y €

1y = —( tae )m - ( etz )yy — Alu — ug). (10)

|t |ty
By introducing time as an evolution parameter the nonlinear equation (8) can be solved
by using an explicit difference method for (10). As ¢ increases, steady state will be reached
and we get the denoised version of our image.
V. DIFFERENCE EQUATION
A typical digital image is often defined on a rectangular domain 2 with a regular mesh
r=1iAzx i=0,1,....1
y=73Ay j=01,....J

For image problems, we will take Az =1, Ay = 1 and I x J is the size of image support.
The iteration requires a start image Ui, and we use Ui = ug. Choose a time step At,

the numerical approximation of (10) could be given by
w =t — AtD,, [a(u")Dmul] — AtD,, [ﬁ(uE)DyyuI] — AN (! — ), (11)

here

L Uiy — 2+ Uislg C Uig—1 — 2 b Ui
(Dﬂﬂu)i.j - Az? ) (Dyyu)i,j - Ayg : (12)

and a(u) = Elr_“l’ B(U) = m
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It is easy to see that

1 if u 18 convex with respect to x
a(u)Dygu = undefined  if u is linear with respect to z (13)
-1 if u is concave with respect to x

If the image is planar in some region we get a zero divide in a(u)- and S(u)-term. To
avoid this problem a small parameter € > 0 is introduced and replace a(u) and S(u) by

a(u) = jpore and B(u) = rparre Tespectively. It is clear that

< 1 if u 1s convex with respect to z
a{u) Dypu = 0  if uis linear with respect to x (14)

> -1 if © is concave with respect to x

Numerical tests show that the value of € is not critical, but this parameter should not be
significant compared with D,,u unless u is almost planar, and therefore we have chosen
e =10"%

To incorporate the boundary conditions (9}, the approximations at the boundaries need
to be treated properly. To explain it in detail, let’s introduce two functions s{u) =
(1) Dyptt, f(5) = Dyys. In the implementations, the values of s and f for a given function

u are evaluated according to the following formulas:

a(u}i,j(Dw:nu)i,j if1 <<,
(s(u))ij = 0

ifi=1, or I.
(D35} il <i<l,
(f(s))ig =1 =s(sitry;—siy) Hi=1, (16)

x50y —siy) Hi=1
In (15), boundary condition (9.a) is incorporated and in (16), boundary condition {(9.b)
is incorporated. Similar treatment should be done for the y-spatial variable.
Under the assumption that steady state has been reached, a combination of (10} and
the approximated noise level (1) gives a dynamic updating of A. By multiplying (10) by

u — uy) and integrating by parts twice over {1 we then have
g I

1 U 1 U
A= —— ¥ (u— sdrdy — — W (o ~ dz dy. 17
02 /S; !u:c:cl(u Ud)m A 0—2 ) |uyyi(u Ud)yy v ( )
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Numerically = is approximated by (15) and (u — tg)zz by (12). In each iteration (17)

is used to update A in (11), i.e

i
Uz

1
M [t - e dody - e et v drdy (18)

VI. THE FOURTH ORDER PDIE COMPARED WITH A SECOND ORDER PDI

Tn this work, we shall only compare our proposed algorithm with the well-known al-
gorithm of [11]. To explain why our scheme has better properties than the scheme of
[11], we shall consider the schemes for one dimensional problems. The scheme of [11] is
obtained by choosing the R(u) functional as R(u) = [, [Vuldz. Correspondingly, in the
one dimensional case and for a given noisy image Ui, the algorithm of [11] takes the
following form:

ot —t 91 O i
T = —;(@wé;) - )\ (’U - 'Uim't) (19)

Our scheme reduces to the following for one dimensional problems:

I+1 { 2 2,1

ytt - 0 1 u
= — ( ) — M — vina) (20)

At B2 \|ul,i Ox?
Both algorithms are trying to remove noise the initial values. To see what kind of
fundamental differences these two updating formula may have, we look at two related

linear parabolic equations in the one-dimensional case, i.e. we consider

Vp = Vg v{0) =v(l) =0

€(0,1),t>0 (21)
Uy = Ugprs U(O) = UI(O) = U(i) = ’U,T(l) =0

These equations are the one dimensional counter part of equations (19) and (20) taking
A = 0 and fixing the nonlinear diffusion coefficient o:(u) and B(u) to be 1.

By using separation of variables we get

T X e

()~ x(@) T~ X(@)

Thus, the solutions for the two linear equations of (21) should have the following forms:

T'(+ X
(t) _ (&) = —v'  withw > 0,7>0. (22)

oo

Z Xn {mr and ’U,(SE, t) - 2 Xn(x)e—(nﬁ)‘lt? (23)

n=1
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with

xulz) = A, cos(nrz) + By sin(nrz)

and

Xo(z) = A, cos{nrz) + By sin(nrz) 4+ C, cosh(nmz) + Dy sinh(nmx).

The coefficients in ¥n(z) and X,(z) are chosen to satisfy the initial and boundary
conditions. Suppose the initial values v{z, 0) and u(z, 0) are composed of signals of different
frequencies, L.e. v(z,0) = S0 B, sin(nrz) and u(z,0) = 307, By sin(nmz). Then the

solutions of (21) are given by

viz,t) = Zj—gnsin(nﬂ“m)e“(”“)gt and u(z,t) = Zanin(nﬁ“x)e“(W)qt. (24)
n=1 n=1

For a given frequency sin(nmz), the signal is damped out by a factor e~ ()t at time t by
the second order parabolic equation and it is damped out by a factor e~ ™'t at time ¢ by
the fourth order parabolic equation. Thus the fourth order partial differential equation
removes high frequency noise from the initial value faster than the second order parabolic
equation. It is expected that the nonlinear updating formula (19) and (20) would also
have some of the properties of the corresponding linear equations.

By a similar argument as given above it is easy to show that a 2m’th order PDE is able
to damp out a frequency sin{nmz) by a factor e~(»m™t  Higher order PDE’s damp out
signal with high frequency faster, but there is also some drawbacks. Let us consider the
following 2m’th order parabolic equation in 1D:

Uy = (—————Tﬂ—w) , with some proper boundary condition.
|| + €/ m

Here wu,, denotes the m’th order derivative of u. The term (fumlﬂ)m acts as a penalty
term to oscillation, and for m = 1 the right hand side equals zero if u is constant. iftm=2
the penalty term equals zero also if u is linear, and for m = 3 the penalty term is zero
when w is quadratic.

Assume we want to identify a homogeneous region which is exposed with noise. There

is no reason to expect that m = 2,3 is able to do a better job than m = 1. On the other

hand, we shall expect that m = 2, 3 would give a better resuit for non-blocky images. One
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question is that the higher order smoother is really better than the corresponding lower
order smoother or not and this should be answered in one numerical experiment in the

next section.

VII. EXPERIMENTAL RESULTS
A. Synthesized images and natural scenes

To compare the effect for the schemes with different m’s, we have implemented and
tested the second order (19), the fourth order (20) and the sixth order scheme in 1D. A
test image of constant, linear and curved regions is used. [t is important to note that all
parameters (stepsize in time and space, noise level and ¢) in the algorithm were identical,

except for the smoother during this evaluation.

(1 ) 0 i 20 s (] sn ™ [ w £

{(a) Original curve (b) Noisy curve

k3
£
g

3 i 3 0 E (] 50 3 1= B b (X ] 0o =) 2 0

(¢} m=1 (d) m=2 (e) m=3
Fig. 2. 1D image evaluation

The experimental results are displayed in Figure 2. As expected the staircase effect is

visible for m = 1. Higher order schemes do not have the stair-case effect, but for m =3
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we are not able to identify homogeneous region that well, as seen from the bars at (0,20)
and (100,120).

We have carried out different tests. For m = 1, the obtained images always suffer from
starcase-effect and over-smoothing or so called oil-painting effect. For m = 3, it is able
to overcome the problems associated with m = 1, but it is also producing oscillations in
homogeneous regions. The scheme with m = 2 seems to have a good balance between
these things.

In Figure 3, we report some 2D experimental results. One of the purposes for this
experiment is to show that the fourth order scheme, i.e. the scheme with m = 2, works
as good as the second order scheme (i.e. m = 1) even when the image is blocky, i.e. the
image is piecewise contants. Some of the blocks are as small 2x2 pixels and other as thin
as 1x10 pixels. The second order scheme is known to work for this kind of images. Our

new fourth order scheme works also very well.
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(a) Original image

(b) Noisy image
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{c) 4-order PDE

(d) 2-order PDE

Fig. 3. 2D image evaluation with different PDE’s
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(¢) d4-order PDE {d) 2-order PDE
Fig. 4. 2D image evaluation with different PDE’s

In the next test, we use the noisy version of the well known Lena image as input data.
From Fig. 4 it is easy to see that the second-order PDE is able to smooth out almost all
noise, but unfortunately, some of the contrast in the image as well. On the other hand, the
fourth-order PDE seems to preserve all the important information in the image, but also
some of the noise. To choose the desired PDE to solve the restoration problem among the
second- and fourth-order PDE, an evaluation of the trade-off between noise removal and
edge preservation is done. For this evaluation a special test image is used. Noise is only
introduced in one half of the image, depicted in Fig. 5. The restoration algorithm should
now do little or nothing in the left part (edge preservation) and reconstruct a denoised

version of the right part.
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Fig. 5. Noise introduced in right part

A contour plot is used to visualize the ability to detect edges and remove noise, see
Figure 6. It is obvious that the contours shown in the left part of Fig. 6(c) matches the
original better than the contours in Fig. 6{d). The fourth order PDE is more local. Both
the second- and fourth-order PDE are able to smooth out the noise, as seen in the right
part of the images. However, many of the ”fine details” is also smoothed out by the second
order PDE, but preserved by the fourth order PDE. In fact, the over-smoothing effect of

the second order scheme is a problem in many applications.
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(c) 4-order PDE (d) 2-order PDE
Fig. 6. Evaluation of contour plot

In real life situations one usually do not have exact information about the noise level.
Therefore, a perturbation of the exact noise level is used as input parameter in getting the
results for Figure 7. The image consists of only two different intensity values (black and
white). This image has been used as a test case in [13], [14], [16], [17], {18], [19]. The edges
in the image are located along the vertical, the horizontal and the diagonal directions (cfr.
Fig. 7). The details depicted in Fig. 7(f) demonstrate that the operator g(u) works very
locally along the edges.
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(a) Original image (b) Input SNR==4 (¢) Output: 4-order PDE

{d) Zoomed upper right (e) Zoomed upper right {f) Zoomed upper right

corner of (a) corner of (b) corner of (c¢)
Fig. 7. 2D image evaluation

Our algorithm is trying to minimize the TV-norm of the gradient of the image funetions.
For simplicity of the implementations, we have dropped some of the terms with mixed
derivatives. Our algorithm is not rotation-invariant. To evaluate that our algorthm is
algorithmith respect to rotations, we rotate the image of Fig.7 by 20 degrees and then add

some noise. The original, noise and smoothed image are shown in Fig.8.

(a) Original image {b) Noisy image {¢) smoothed image

Fig. 8. 2D image evaluation of rotated object
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Even our fourth order scheme is not rotation invariant it is clear from Fig.8 that the
algorithm is able to recover the rotated image quite well. But we should mention that if a
noisy version of the non-rotated image is used instead, the time step can be increased by
a factor of 10.

In the next experiment, we want to show the capability of our algorithm for images with
a smooth transition between different intensity regions and when the noise level is relative
very large. In the figures signal-to-noise ratio (SNR) is used to denote SNR=5/a9, where
o, is the noise standard deviation and S is the average pixel intensity over a homogeneous

region. In Fig.9, we have SNR~ 6.5 and in Fig.10, we have SNR~= 3.7.

{a) Original image (b) Input SNR~z6.5 {¢) Output: 4d-order PDE

Fig. 9. 2D image evaluation of a face

(a) Original image {b) Input SNR=3.7 {¢) Qutput: 4-order PDE
Fig. 10. 2D image evaluation of a face

Even with an SNR of 3.7, the algorithm is able to reconstruct an image not too far
from the original. Notice how well the upper part of the lip is taken care of. One of

the difficulties with such noisy input data is that the algorithm have problems to find
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homogeneous regions, and therefore the results gets poorer. Also in this experiment a
perturbation of the exact noise level is used as input parameter.

In conclusion, these experiments demonstrate that our PDE method is robust, and the
only prior information that goes into the algorithm is the approximate noise level of the
input image. If we over estimate the noise level, i.e. the noise level we use is large than the
actual noise level, then we will add more diffusion to the denoised image and the 1mage
will be much smoother. On the other hand, we will add less diffusion if we under estimate

the noise level and the image will be less smoother.

B. Medical MRI tmages

Most digital 2D images have the same spatial resolution along the z and y directions.
In this case (11} can be evaluated pixel by pixel. However, in medical MRI applications,
volumetric (3D) images, and even time series of volume images (4D), are acquired. T he
spatial resolution cells of these volumes are very often non-isotropic. Moreover, in dy-
namic imaging the temporal sampling rate of the volume acquisitions will depend on the
performance of the gradient system, pulse sequence characteristics, and the selected num-
ber of slices making up each volume in time. Fortunately, the difference scheme used to
solve (11) can easily be modified to handle three spatial dimensions and time evolution
in dynamic MR imaging. The user also has the opportunity to give different spatial and
temporal resolution units as an input to the algorithm.

We shall first evaluate two different three-dimensional MRI datasets. Both datasets
were acquired on a Siemens Vision 1.5 Tesla MR scanner.

In the previous section the reconstructed image is compared with the known original
image. In the case of medical images, the evaluation of noise suppression is not that
simple. The main problem is the lack of an original image to compare our result with.
Therefore an acquisition-based noise reduction method is used to obtain the “ideal”, or
“true” image, as was also done in [2]. The "ideal” image is obtained by everaging 4 (AC=4)
repeated measurements. For our algorithm, we just pick one of the 4 measurement and
try to remove noise from it.

From [25] we know that Rician distribution approaches a Gaussian distribution at high

SNR. By averaging over repeated measurements the SNR will increase and the Rice dis-
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tribution should tend to a Gaussian distribution. This averaging process should therefor

provide us with the desirable reference image.

The first MR data set consisted of isotropic 1 x 1 x 1 mm® FLASH 3D head acquisitions
from a healthy volunteer (f13d_6b195.wke, TR=20ms, TE=6ms, FA=30°, matrix=256x256,
32 slices). To our disposal we had the magnitude images from k-space averaged data using
1, 2, 3, and 4 measurements from the same slice positions. Input data to the algorithm
is the data set with one measurement (AC==1, TA = 2min 46sec). The de-noised result
is then compared to the observed average of four measurements (AC=4, TA = 10min
57sec), here taken to be the “ideal” image. The “ideal” image, the input image , and the

output image produced by our algorithm are shown in Figs. 11(a),(b) and (c), respectively.

Due to the isotropic voxels in this data set, the partition Az = Ay = Az is used in this
caleulation. One arbitrary slice from the 3D data set is given in Fig.11
The six transacted test-tubes located in the anterior part of the head coil were filled with

reticulated foam and polystyrene spheres and used for texture analysis, reported elsewhere.

{a) AC=4 {b) Input AC=1 (c) Output: 4-order PDE

Fig. 11. Evaluation of our smoothing algorithm, implemented for isotropic 3D images. Only one of the

32 contiguous slices, transectioning the lateral ventricles, is shown.

To better evaluate the performance of our algorithm, details from the same slice are

depicted in Fig. 12 and Fig. 13.
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(b) Input AC=1 {c} Outpui: 4-order PDE
Fig. 12. Detail from Fig. 11

On the anterior, right side of the head, three of the foam-filled test tubes are visible,
and their content are recognized as rather homogeneous regions in Fig. 12(c). This is in
accordance with the “ideal” image in Fig 12(a).

When zooming further, it is possible to see that even the image based on four measure-
ments is affected by noise. The output from the restoration algorithm therefore seems to

be even better than the “ideal” image.

{b} Input AC=1 (¢) Output: 4-order PDE
Fig. 13. Detail from Fig. 12

In addition to visual comparison of the output with the “ideal” image, we have also
computed the difference between the input and the output. This will better reveal where

details have been lost. The difference image is shown in Fig. 14.
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(a) Difference image
Fig. 14. Difference between input and output image, Le. Fig. 11: {b) - {c}.

Here, it is easy to see that the major difference between input and output is noise, as
it should be. However, some weak contours of the skull and the test tubes can be seen,

showing that our de-noiser have a slight smoothing effect also at tissue boundaries.

The second MRI data set is from an MR phantom consisting of a tube filled with plastic
straws embedded in Gd-doped agarose gel with tissue equivalent T1 and T2 relaxation
times. This straws phantom was imaged with a spin-echo (SE) pulse sequence using the
same MR scanner as above (TR=150ms, TE=15ms, FOV=75x150mm?, matrix=256x512,
thick=2mm, 5 slices). The SE pulse sequence was designed to generate 8 single measure-
ments together with 7 k-space averages from measurements 142, 14243, ... 142448,
respectively, before magnitude images were calculated (cf. [33]). We applied our restora-
tion algorithm to one of the eight single-measurement datasets (AC=1), which all had
poor SNR compared to the seven averaged data sets. The results are then compared with

the observed average of eight SE measurements, taken to represent the "ideal” image.
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(2) AC=8

(b) Input AC=1

(c) Output: 4-order PDE

Fig. 15. The plastic straws MR phantom used to test our de-noiser’s preservation of edge information.

Each pixel is approximately 0.15 x 0.30 mm?2. The k-space average of eight measurements {AC=8) was

taken to represent the “ideal” image. Only one of the five transaxial slice images is shown.

This peculiar, high spatial resolution data set is chosen to test if our restoration algo-

rithm is capable to work as locally as it should. Notice how thin the straws walls are in

Fig. 15. These tiny, circular contours could thus be sensitive to all kind of algorithmic

influence and smoothing effects of our de-noiser. Figure 16 shows the results in more

detail.

(a) AC=8

(b) Input AC=1

{¢) Output: 4-order PDE

Fig. 16. Detail from de-noising of the high spatial resolution straws phantom image.

For parabolic PDE based noise removal algorithms a common problem is that the re-

constructed image will be a little blurred, because every pixel is somehow influenced by

the surrounding ones in each iteration, as seen from (12). From the results depicted in
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Fig. 16, it is clear that our restoration algorithm preserves the thin walls very well, while
the interior of the straws are getting smoothed. The de-noised image is remarkably similar

to the “ideal” image, which have almost three times (v/8) better SNR than the input image.

A desirable generalization of our noise removal algorithm is to include the time domain
as well, such that it could work on time series of images (e.g. 2D--time) obtained from
dynamic or functional MRI examinations. Time series of images are obtained in various
situations, such as fMRI brain activation studies using the so-called Blood Oxygenation
Level Dependent (BOLD) contrast technique, and for tracking a bolus of intravenously
injected contrast agent while it passes through a vascular tree or a capillary bed in breast,

prostate, kidney, heart or brain.

We have tested a spatio-temporal implementation of our de-noiser on a routine brain
perfusion study. We used 3D+time data from a gradient-echo echo-planar imaging (GE
EPI) sequence on a Siemens Vision 1.5 T scanner (TR=2000ms, TE=60.73ms, FA=90°,
FOV=240mm x240mm, matrix=96x128, slice thickness=bmm, inter-slice gap=1.5mm}.

Fifteen slices were repeatedly measured every 2 second, for a period of 1 min and
20 second, such that each slice were scanned 50 times in succession. After about three
measurements a rapid injection of an MR contrast agent was injected intravenously. As
the bolus passed the microcirculation of the brain, a magnetic susceptibility-induced signal
drop could be observed in those voxels covering perfused brain tissue. Due to expensive
computation of 4D data, we selected one slice, transacting the brain at the level of the
lateral ventricles, and applied our 2D+time de-noising algorithm to this image time series.
In the upper part of Fig. 17 this slice is shown at time ¢ = 0. In the lower part, the signal
intensity versus time from a selected pixel is shown. Tissue covered by this pixel is clearly
perfused as we see a marked decrease in signal intensity from time frame 10, with signal
minimum about 20 s (frame 13) after bolus injection.

Another (annoying) source for the variation in the pixel time course is noise. Notice
how the signal oscillates even before the contrast agent has reached the brain (frame 1 to

frame 8), and it is also hard to decide where in time the signal recovers towards baseline
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after bolus passage. Since estimation of local cerebral blod flow (rCBF), local cerbral
blood volume {rCBV), and mean transit time (MTT) of plasma in the capillary bed is
essentially dependent on the decision of start and stop points in time for the signal drop,
and also on the area under the signal intensity curve during bolus passage, time-course
restoration and proper de-noising will be very helpful.

In this medical context, we therefor tested our 3D (i.e. 2D and time) noise removal

algorithm with different weight for smoothing in time and space.

Pp28a - slices@/t5 yow=79 colk=48 (trame #1750} |

frama nUmger

{a) One pixel evaluated in time
Fig. 17. 2D-+time evaluation

In contrast to previous cases, we do not have an “ideal” time course to use In an
evaluation. Fven worse, the injected contrast agent forces each pixel to change its signal
in time, and recirculation and leaking effects might occur, so averaging over repeated
measurement would not be feasible. However, we would expect in the “ideal” situation
that the pixel-intensities should be almost constant both before and after the signal drop
due to bolus passage. If the restored image time-series approaches this “ideal” situation we
would judge the method to be potentially useful. Another method to assess the goodness
of de-noising is to compute and display the difference between the observed time course

and the restored time course.
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(a) Input (b) Output: 4-order PDE (¢} Difference
Fig. 18. 2d+time evalnation

The measured perfusion time series and the PDE smoothed time series are given in
Fig. 18 (a) and (b), respectively. Notice how easy it is to estimate the start and the end
of the V-shaped signal drop in the output. We will also remark how well the minimum
point of the signal drop is preserved. The fast oscillating signals in Fig. 18 (c) indicate

that main difference between input and output is noise.

(a) Input (b} Output: 4-order PDE (c) Difference
Fig. 19. 2d-+time evaluation

In Fig. 19 another pixel time-course is evaluated. In order to retain the minimum point
in the V-shaped curve, the pixel-intensity is unfortunately not constant from slice 20-50,

but it is a big improvement from the input data.

We would like to add that our algorithm seems to work for a large set of perfusion pixel
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time-courses being tested. A next step will therefore be to conduct a more rigorous evalu-
ation on a larger set of perfusion examinations. To be relevant for clinical use, estimation

of the physiological parameters described above {e.g. [34]), should also be incorporated.

V1II. CoNcLuDING REMARKS

Tn this paper we have developed a fourth-order PDE model for noise suppression that is
tested on a broad range of medical magnetic resonance images as well as on non-medical
test images. Our algorithm demonstrates good preservation of edges and contours with-
out, smoothing out important anatomical or functional detail, even at poor signal-to-notse
ratios. We have also compared our method with a related second-order PDE model and

find our method to perform overall better on the images being tested.

To compute a de-noised version of the input data, the user has only to specify a rough
estimate of the noise level which can be fixed for a certain type of MR examination or
pulse sequence. The algorithm is applicable to both 2D and 3D anatomical images as
well as time series of planer and volumetric images. Such 2D-time or 3D+time images
result from dynamic and functional MRI examinations, which are becoming increasingly
important in clinical practice. Moreover, our method allows the step-size in the z, v, 2,
and ¢ directions to be adjusted according to the pulse sequence being used and thereby
the spatial anisotropy of the voxels and the temporal sampling rate, in case of dynamic

imaging.

A next step will be to investigate the de-noising effect in relation to state-of-the-art
tissue classification and physiological parameter estimation procedures (e.g. SPM (35],
[36], [37], AFNI [38], [39], FreeSurfer [40], [41], Makeperf [34]). In this evaluation both
simulated data (e.g. BrainWeb simulated brain database [42], [43]) and real MRI data
from medical routine should be used, and our method should be compared to a carefully

selected set of competing de-noising algorithms that works in both space and time.
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