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Abstract

Given an image that depicts a scene with several objects in it, the goal of seg-
mentation with depth is to automatically infer the shapes of the objects and
the occlusion relations between them. Nitzberg, Mumford and Shiota formu-
lated a variational approach to this problem: in their model, the solution is
obtained as the minimizer of an energy. We describe a new technique of min-
imizing their energy that avoids explicit detection/connection of T-junctions.
Keywords: Segmentation with depth, 2.1D Sketch, Disocclusion, Varia-
tional methods, Functionals with curvature, Gamma convergence, Nonlinear
PDEs.

1. Introduction
We describe a new numerical technique for minimizing the Nitzberg-Mumford-
Shiota functional [16] that appears in the variational formulation of the segmen-
tation with depth problem. This is a segmentation model that allows regions to
overlap in order to take into account the partial occlusion of farther objects by
those that are nearer. The regions are endowed with an ordering relation indicating
which are in front of each other. The minimization of the functional yields both the
shapes of the objects in an image, with a reconstruction of the occluded boundaries,
and the ordering of the objects in space.

In [16] the authors do not attempt to solve numerically the variational problem
of minimizing the functional in general. Instead, they first compute edges and T-
junctions in the image, then minimize the functional combinatorically with respect
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to the ordering relation using the computed T-junctions. A drawback of this ap-
proach is that the preliminary edge detection step leaves gaps at the T-junctions, so
that a further junction restoration step is needed.

The technique presented in this paper is novel: unlike in previous approaches to
this problem, it completely avoids explicit detection and connection of T-junctions
in the given image f(x). Instead, we minimize the energy more directly: our
algorithm is based on evolving regions (or their boundaries given by a set of curves)
in the plane. In this respect, our approach is motivated by Chan and Vese’s work in
[5] and [17] on minimizing the Mumford-Shah segmentation functional.

Perhaps the hardest aspect of working with the Nitzberg-Mumford-Shiota en-
ergy is having to deal with the curvature of the boundaries of the regions: it contains
terms of the form

E :=

∫

∂A

φ(k) ds, (1)

where k denotes the curvature of the boundary of the set A and φ is a positive,
convex, even function. The presence of curvature makes it difficult both to dis-
cretize the functional E and to apply gradient descent with respect to the unknown
boundary ∂A (see for instance the approach used in [4]).

De Giorgi, Bellettini and Paolini described in [2, 3, 7] techniques for approxi-
mating such energies by much more tractable ones; the approximation takes place
in the sense of Γ-convergence. Our numerical implementation utilizes an approx-
imation to the functional E, with φ(k) = k2, by means of a sequence of elliptic
functionals. The approximation is inspired by a conjecture that De Giorgi made
in [7], and it was numerically experimented by one of the authors in [11] for the
segmentation (without depth) problem. Also, it has been recently applied to the
related problem of image inpainting in [8].

We present numerical examples on artificial images, resembling those consid-
ered in [16]. These examples show how our technique leads to interaction and
connection of T-junctions automatically.

2. Background: the 2.1D sketch model
Given a two-dimensional grayscale image f(x) : Ω → [0, 1] of a three dimensional
scene with several objects in it, the goal of segmentation with depth is to determine
the shapes of the objects that make up the scene, as well as their ordering in space.

This is an extremely difficult problem, not least beacuse in real scenes there
might not be a well defined order between the objects. Such is the case, for ex-
ample, when the objects exhibit self-occlusions and entanglements. It is therefore
necessary to make some simplifying assumptions.

The 2.1D sketch refers to a theory introduced by Nitzberg, Mumford and Shiota
in [15, 16] to tackle the segmentation with depth problem. Here, it is assumed that
f(x) is the two-dimensional image of a (simplified) three-dimensional scene in
which:

• Object surfaces do not exhibit self-occlusions.
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• Objects are not entangled: each object is either completely in front of or
completely behind any given other.

• The gray-scale intensity of each object is approximately constant.

These assumptions allow objects in the foreground to occlude objects in the back-
ground. For simplicity, we will assume a strict ordering between the regions, so
that any two distinct objects cannot be at the same depth: one of them is necessarily
closer to the observer.

According to the Nitzberg, Mumford and Shiota theory such a simplified three-
dimensional scene is described by the following, which are the unknowns of the
2.1D sketch problem:

• The number n of objects in the scene.

• The regions R1, . . . , Rn that these objects occupy in the image plane (i.e.
their shapes).

• The approximate gray-scale intensities c1, . . . , cn of the objects.

• The order relation between the regions (out of n! possibilities).

Here, R1, . . . , Rn are subsets of the image domain Ω ⊂ R
2, and the constants

c1, . . . , cn are in [0, 1]. Since occlusions are allowed in this model, the regions Rj

need not be disjoint. Furthermore, since we are assuming a strict ordering between
the regions, we may adopt the following convention:

j < i =⇒ Rj is in front of Ri.

In the two-dimensional image, a region Ri might not be completely visible; parts
of it might be occluded by objects that are in front of it. The visible part R ′

i of the
i-th region Ri is given by:

R′
1 := R1, R′

i := Ri −
⋃

j<i

Rj, for i = 2, . . . , n.

Moreover we denote by R′
n+1 := Ω−∪n

j=1Rj the background region, and by cn+1

the corresponding gray-scale intensity.
The two-dimensional observed image u(x) corresponding to such a three–

dimensional scene can be expressed in terms of these unknowns (the regions Ri,
the constants ci, and the order relation) as follows:

u(x) =
n+1
∑

i=1

ciχR′

i
(x).

The goal of the 2.1D sketch problem is the inverse process of obtaining the re-
gions, the order relation, and the approximate gray-scale intensities from the two-
dimensional image.

3



In [15, 16] Nitzberg, Mumford and Shiota gave a variational formulation to this
problem by looking for a minimizer of the following energy:

E2.1 :=

n
∑

i=1

∫

∂Ri∩Ω
[α + βφ(k)] ds +

n+1
∑

i=1

∫

R′

i

(f(x)− ci)
2 dx, (2)

which is to be minimized over the number of objects n, the regions Ri, and the
constants ci. The function φ(x) is to be a positive, convex, even function such that
φ(x) = x2 when |x| is small, but with linear growth at infinity, in order to allow
corners along ∂Ri. The (open) set Ω is considered as a window on the image plane,
so that the contour integrals exclude portions of the boundary ∂Ri that lie outside
Ω.

In [16] an additional term is included in the energy to distinguish between
certain ambiguous scenes; for the present we will ignore it: it is neither a difficult
term to deal with, nor essential for the examples we will consider.

3. The approximation method
Our strategy for minimizing (2) is first to write down a sequence of approximating
functionals that are numerically more tractable. Our inspiration comes from the
notion of Γ-convergence and the many subsequent applications of this notion to
the approximation of functionals that appear in various contexts [1, 3, 10, 11, 12].
We use an approach proposed by one of the authors in [11] to construct our ap-
proximation. The Γ-convergence, introduced by De Giorgi, makes it possible to
go to the limit in the corresponding minimization problem: the minimizers of the
approximating functionals converge, in an appropriate metric, to the minimizers of
the limit functional. For the properties of Γ-convergence see [6], and [10] for a
simple explanation.

In this paper, we will concentrate on the case

φ(x) = x2,

thereby deviating from the original formulation proposed by Nitzberg, Mumford,
and Shiota. The motivation for doing so is to be able to use an approximation con-
jectured by De Giorgi in [7] for the term (1) with φ(x) = x2. Some disadvantages
of this are indicated in the conclusions section.

Particularly relevant to the present work is the paper [3] by Bellettini, where
an approximation for functionals of type (1) is proposed, and the Γ-convergence
of the approximations is rigorously established. We opted for the approximation
method of De Giorgi mainly because its numerical treatment seems to be simpler.

We will keep track of the regions R1, . . . , Rn via approximations u1(x), . . . , un(x)
to their characteristic functions:

ui(x) : Ω → R, with ui(x) ≈ χRi
(x),

where the approximation takes place in the L1-topology. Moreover we define
Rn+1 := Ω and un+1 ≡ 1. We now explain how the various terms that appear
in (2) are approximated in terms of the functions ui(x). Let W (t) := t2(1− t)2.
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Length term: part of the boundary integral in energy (2) involves the length of the
boundaries of the regions Ri. A theorem of Modica and Mortola [12, 13] tells us
how these terms can be approximated:

∫

Ω
(ε|∇ui|

2 +
1

ε
W (ui)) dx

ε→0+

−−−−→
Γ

∫

∂Ri∩Ω
ds,

where convergence takes place in the sense of Γ-convergence, up to a (multiplica-
tive) constant that depends on the function W (t). The approximate functionals re-
main bounded as ε → 0+ only if ui converge, in L1, to the characteristic function
of a set Ri; the meaning of Γ-convergence is that the minimum possible value of
the approximate functionals along such a sequence tends to the length of ∂Ri ∩Ω.

Curvature term: based on a conjecture by De Giorgi in [7], we propose to ap-
proximate the boundary integrals in (2), including the curvature dependent part, as
follows:

α

∫

Ω
(ε|∇ui|

2 +
1

ε
W (ui)) dx +

β

ε

∫

Ω

(

2ε∆ui −
1

ε
W ′(ui)

)2

dx

ε→0+

−−−−→

∫

∂Ri∩Ω
(α + βk2) ds,

where all multiplicative constants of the approximation are absorbed into the weights
α and β of the functional E2.1. This convergence has not been proved completely;
an informal explanation can be found in [11], and some partial results can be found
in [2, 9]. The meaning of the approximation is the following: since the Modica-
Mortola functionals approximate the length of ∂Ri, and the curvature is the first
variation of the length functional, then the contour integral of the square of cur-
vature is approximated by the domain integral of the square first variation of the
Modica-Mortola functional; the factor 1/ε multiplying β is necessary to ensure the
convergence to the desired limit functional.

Fidelity terms: these are the easiest. Since ui(x) is an approximation to the char-
acteristic function of Ri, we have:

1− ui(x) ≈ χRc
i
(x),

ui(x)uj(x) ≈ χRi∩Rj
(x),

and so on. These observations lead to:
∫

R′

i

(f(x)− ci)
2 dx ≈

∫

Ω
(f(x)− ci)

2 η(ui)
∏

j<i

η(1− uj) dx,

where η(x) is a positive function increasing on x ∈ [0, 1] with η(0) = 0 and
η(1) = 1. In principle, η can be chosen to be as simple as η(x) = x2.
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Putting together the various terms discussed above, we arrive at the following
approximation to the Nitzberg-Mumford-Shiota functional:

Eε :=
n

∑

i=1

∫

Ω

[

α

(

ε|∇ui|
2 +

1

ε
W (ui)

)

+
β

ε

(

2ε∆ui −
1

ε
W ′(ui)

)2
]

dx

+
n+1
∑

i=1

∫

Ω
η(ui)(ci − f)2

∏

j<i

η(1− uj) dx,

(3)

which is to be minimized over the functions u1, . . . , un, and the constants c1, . . . , cn+1

(assuming for the moment that we know the number of regions n). To get the Euler-
Lagrange equations, we take first variations with respect to the functions uk; that
yields:

4β∆νk −

(

α +
2β

ε2
W ′′(uk)

)

νk + η′(uk)(ck − f)2
∏

j<k

η(1− uj)

−
∑

i>k

η(ui)(ci − f)2η′(1− uk)
∏

j<i
j 6=k

η(1− uj) = 0, (4)

for k = 1, . . . , n, where

νk := 2ε∆uk −
1

ε
W ′(uk). (5)

Equation (4) is fourth order in uk. Variations with respect to the constants ck give:

ck =





∫

Ω
fη(uk)

∏

j<k

η(1− uj) dx









∫

Ω
η(uk)

∏

j<k

η(1 − uj) dx





−1

, (6)

for k = 1, . . . , n + 1. Hence, as ε → 0+, ck approximates the average of the
original image f(x) over the visible part of the k-th region Rk, which is just the
value of the constant gray-scale intensity that minimizes the functional E2.1.

We will explain in some detail our numerical treatment of equations (4), (5),
and (6) in the following section.

4. Numerical implementation
Our method for solving equations (4), (5), and (6) is based on an iteration (or time
marching) that requires suitable intial guesses for the regions Ri and the constants
ci.

Choosing an initial guess: a preliminary segmentation without depth (obtained
for instance by minimizing the Mumford-Shah functional [14]) is a natural way
to obtain initial guesses for the regions and the constants, as well as an estimate
for the number of objects in the scene. Indeed, it is reasonable to assume that
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each region found by a successful segmentation (without depth) algorithm should
be part of a single (but possibly larger) region found by the segmentation with
depth algorithm. In other words, when compared to standard segmentation, in
most situations segmentation with depth would be expected to yield fewer and
bigger regions.

More precisely, if A1, . . . , An+1 are all the regions found by a segmentation
(without depth) algorithm, so that:

Ω ≈

n+1
⋃

i=1

Ai,

then to minimize (2) we need to start with n functions u1, . . . , un and n + 1 con-
stants c1, . . . , cn+1 that are initialized as:

uj(x, t = 0) = χAσ(j)
(x) for j = 1, . . . , n,

cj(t = 0) =
1

∣

∣Aσ(j)

∣

∣

∫

Aσ(j)

f(x) dx,
(7)

where σ is a permutation on n objects, and An+1 is assumed to be the initial guess
for the background region. There are thus n! ways to initialize the segmentation
with depth algorithm based on the n regions found by a presegmentation. Our tech-
nique requires minimizing (2) separately for each possible initialization, because
(based on numerical experiments) different initial configurations often lie in the
basin of attraction of different local minimizers of (2).

Treatment of the PDE system: recall that the Euler-Lagrange equation for the
function uk turns out to be a fourth order, non-linear elliptic equation, the highest
order term of which is given by the biharmonic operator acting on uk. There are
many ways to approach its numerical solution; for instance, its parabolic version
(i.e. gradient descent for the associated energy) enjoys a certain similarity to the
Cahn - Hilliard equation, whose numerical solution has been extensively studied.
We found it convenient to replace each fourth order equation by the two coupled
second order equations expressed in (4) and (5), and compute the solution to the
following evolutionary equations up to a large value of time t:

∂tuk = 2ε∆uk −
1

ε
W ′(uk)− νk, and (8)

∂tνk = 4β∆νk −

(

α +
2β

ε2
W ′′(uk)

)

νk + η′(uk)(ck − f)2
∏

j<k

η(1− uj)

−
∑

i>k

η(ui)(ci − f)2η′(1− uk)
∏

j<i
j 6=k

η(1 − uj). (9)

For convenience, we imposed periodic boundary conditions (which we expect is
not a significant matter for the sample scenes we considered, where all objects are
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well separated from the boundary of the domain). We discretized equations (8) and
(9) in space and time. Let δt be the time step size, and let ul

k and ν l
k denote the

discrete time approximation to uk and νk at l-th time step (i.e. at t = lδt). Our
time discretization scheme is as follows:

ul+1
k − ul

k

δt
− 2ε∆ul+1

k = −
1

ε
W ′(ul

k)− νl
k, and

νl+1
k − νl

k

δt
−4β∆ν l+1

k +ανl+1
k = −

2β

ε2
W ′′(ul

k)ν
l
k+η′(ul

k)(ck−f)2
∏

j<k

η(1−ul
j)

−
∑

i>k

η(ul
i)(ci − f)2η′(1− ul

k)
∏

j<i
j 6=k

η(1 − ul
j).

At each time step, ul+1
k (x) and ν l+1

k (x) are obtained from ul
k(x) and ν l

k(x) by
solving the two equations above. Their right hand sides depend only on ul

k and
νl

k, while their left hand sides are constant coefficient linear elliptic operators on
ul+1

k and ν l+1
k . At each time step, we discretize these elliptic equations in space by

means of a finite difference approximation; then we use the fast Fourier transform
to solve them. The small parameter ε, which has to be of the same order of the
space grid size [11], constitutes the main restriction on how large the time steps
can be chosen.

Treatment of the constants: in general, the constants ck need to be updated at
each time step according to formula (6). However, in many cases it might be rea-
sonable to assume that distinct regions obtained via (pre)segmentation (as initial
data) will remain distinct even after the segmentation with depth procedure. This
would be an appropriate assumption, for example, when the initial guesses for the
approximate intensities ck are well separated from each other, and all the initial re-
gions have large area. Then the initial approximate intensities c1, . . . , cn+1 would
also be the final approximate intensities. In that case, c1, . . . , cn+1 need not be
updated in computations, once they are obtained from the (pre)segmentation. For
the numerical examples we present in this paper, we tried it both ways; it did not
make much of a difference, confirming this discussion.

5. Sample computations
In this section, we present computational results that use our approach on two
synthetic images.

Two regions and a background: we start with an image, the leftmost in Figure 1,
that clearly has two distinct regions on top of a background. The image is simple
enough that any reasonable segmentation algorithm would decompose it as:

• The bright vertical bar with approximate intensity 1.

• The broken fork, with approximate intensity 0.48.
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They appear on a dark background of approximate intensity 0. For the purposes
of this paper, we can assume that this presegmentation step has already been ac-
complished successfully. The second and third images in Figure 1 show the initial
regions which we assume have been obtained. Let us refer to these two regions as
A and B, in that order.

The central task is to minimize (3). As explained in Section 4, we have to
consider separately the two different ways of assigning A and B as initial guesses.
The first option, which we denote AB, is:

• u1(x, t = 0) =Characteristic function of the bar, and c1 = 1.

• u2(x, t = 0) =Characteristic function of the fork, and c2 = 0.48.

whereas the second option, denoted BA, is to take:

• u1(x, t = 0) =Characteristic function of the fork, and c1 = 0.48.

• u2(x, t = 0) =Characteristic function of the bar, and c2 = 1.

In both cases, c3 = 0.
The top row of Figure 2 shows the two regions found as the minimizer under

Hypothesis AB. Since in this case the vertical bar A is assumed to be in the fore-
ground, the fidelity terms in the energy do not prevent the second region (which is
initially the broken fork B) to spread underneath A. And in fact, as shown in the
figures, the two teeth of the fork propagate under the bar, and form what is in some
sense the most likely completion. The energy of the final configuration (which
seems to be a local minimizer) turns out to be about 3.48.

The bottom row of Figure 2 illustrates the minimizer found this time under
Hypothesis BA. The energy of the final configuration in this case (which again
seems to be a local minimizer) turns out to be around 4.23.

The result of the computation is summarized in the following table:

Order Minimum Energy
AB 3.48
BA 4.23

Based on these minimal values of the energy in the two possible scenarios, the first
hypothesis wins. The conclusion is that the scene consists of a bright vertical bar
partially occluding a fork on a dark background.

Notice how under hypothesis AB the four T-junctions formed by occlusion on
the left side of the bar connected up with the four other T-junctions on the right
side of the bar. This all happened automatically, without explicitly detecting the
junctions and trying out different ways of connecting them.

Three Regions and a Background: Figures 3 and 4 illustrate the results of a
numerical experiment with a scene that is composed of 3 regions of approximately
constant intensity on a dark background.
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Once again, we assume that a successful (pre)segmentation algorithm is avail-
able that decomposes the original image shown in the upper left hand position in
Figure 3 into the three regions (plus the background) also shown in the same figure.
Let A denote the ellipse, B the half bottle shaped region, and C the crescent shape.
Note that in general the presegmentation need not be of particularly high quality,
since these regions will merely be used as initial guesses.

As there are now three regions in the presegmentation, it is possible to assign
them in 3! = 6 different ways as initial guess. As before, we minimized our
approximation to the Nitzberg-Mumford-Shiota energy starting with each. The
results of the experiment are summarized in the table below:

Order Minimum Energy
ABC 4.21
ACB 4.21
BAC 6.08
BCA 6.53
CAB 4.71
CBA 6.53

The two orderings ABC and ACB come out on top with the least energy among
all possible 6 orderings; the remaining four lead to significantly higher minimum
energies. The appropriate conclusion seems to be:

The scene consists of a bright ellipse that partially occludes the bottle shaped
object and a round object. The relative depths of the bottle shaped object and the
round object cannot be determined.

It is hardly surprising that the algorithm fails to distinguish between ABC and
ACB: the original image in Figure 3 gives no clues about the relative depths of B
(the half bottle) and C (the crescent).

6. Conclusion
In this paper we described a technique for minimizing the Nitzberg-Mumford-
Shiota energy that avoids detecting and subsequently connecting T-junctions in the
given image explicitly. One of the main drawbacks of our current implementation
is that it deviates from the original model of Nitzberg, Mumford, and Shiota where
the function φ(x) is supposed to have linear growth at infinity. This difference is
important. Indeed, let us evaluate the boundary integral in (2) with our choice of
φ(x) = x2 on a disk Dr of radius r:

∫

∂Dr

(α + βk2) ds = 2π

(

αr +
β

r

)

r→0+

−−−−→∞, (10)

as long as β > 0. Consequently, under an iterative minimization technique small
disks would tend to grow, raising a stability issue. Secondly, the number of regions
in the segmentation cannot decrease in the course of the minimization, because
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this can happen only if at least one of the regions shrinks down to a point, which is
prevented from (10). Note that to decrease energy (2) it might be advantageous to
merge two regions whose grayscale intensities are approximately equal into a sin-
gle region. Because of the said reasons, our current implementation does not allow
such a possibility to be explored automatically in the course of a minimization. In
order to overcome these drawbacks we are currently working on the problem of
finding a numerically feasible approximation to (2) with φ(x) having linear growth
at infinity.

Another major issue is having to carry out n! minimizations when there are n
regions in the presegmentation. This issue is shared by other approaches to the
solution of the 2.1D sketch problem. Indeed, in Nitzberg, Mumford, and Shiota’s
implementation, as described in [16], the number of minimizations required is on
the order of 2n4

, where n is the number of contours detected in the original image
(which can be a lot larger than the number of regions). An improvement might
be achieved by carrying out the procedures described in this paper locally (over
subsections of the image) where there might be only a few objects present so that
n! is not too large; the question is then how to gracefully combine results obtained
from various subsections to reach a global conclusion.

Acknowledgements: The authors would like to thank G. Bellettini, F. Santosa
and J. Shen for many useful discussions.
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Figure 1: From left to right, these figures are the original image used in the first numerical example
and the two regions obtained from it by the preliminary segmentation (without depth) procedure. The
resolution of the images is 128 × 128.

Figure 2: The top row of figures represents the minimizer obtained by our approach under order
hypothesis AB, where the left figure is the front and the right figure is the back region found. The
minimum energy reached in this case was: 3.48. The bottom row of images represents the minimizer
obtained under the competing order hypothesis BA. The minimum energy in that case turned out to
be: 4.23. The constants used in the computation were: α = 10

−4 , β = 5× 10
−7, and ε = 0.01. We

took 500 time steps of size δt = 16 for each hypothesis.
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Figure 3: The upper left hand image shows the original image used in the sample calculation with
three regions on a background, and the remaining three show the regions obtained from it by the
preliminary segmentation (without depth) step. The resolution is 128 × 128.

Figure 4: The front, middle, and back figures, in that order, obtained as the minimizer in the
computation with three regions on a background, corresponding to the order hypothesis ACB. The
minimum energy in that case turned out to be: 4.21. The constants used in the computation were:
α = 2 × 10

−4, β = 4 × 10
−6 , and ε = 0.01. We took 2000 time steps of size δt = 2 for each

hypothesis (the remaining five of which are not shown).
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