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ENO-wavelet Transforms and Some Applications

Tony F. Chan
Hao-Min Zhou

Abstract. Standard wavelet linear approximations generate oscillations
(Gibbs’ phenomenon) near singularities in piecewise smooth functions.
Nonlinear ard data dependent methods are often considered as the main
strategies to avoid those oscillations. Using ideas from Essentially Non-
Oscillatory (ENO) schemes for numerical shock capturing to standard
wavelet transforms, we have designed an adaptive ENO-wavelet trans-
form for approximating discontinuous functions without oscillations near
the discontinuities. The crucial point is that the wavelet coefficients are
computed without differencing function values across jumps. The ENO-
wavelet transform retains the essential properties and advantages of stan-
dard wavelet transforms such as concentrating the energy to the low fre-
quencies, obtaining arbitrary high order accuracy uniformly and having
a multiresolution framework and fast algorithms, all without any edge
artifacts. We have also shown the stability of the ENO-wavelet trans-
forms and obtained a rigorous approximation error bound which shows
that the error in the ENQO-wavelet approximation depends only on the
size of the derivative of the function away from the discontinuities. We
briefly discuss several applications of the ENO-wavelet transforms, includ-
ing function approximation, image compression and signal denoising.

1 Introduction

In this chapter, we present wavelet algorithms designed to approximate piece-
wise continuous functions, for instance, piecewise smooth functions connected
by large jurnps. We begin with a summary of the basic idea of the design of such
ENOQO-wavelet transforms, and then show some theoretical results illustrated by
numercial examples. We will refer all implementation details and the proof of
the theorems to [11] and [46]. Some of the results and experiments have already
been published in our earlier papers, but many of them are new.

Wavelet theory is a very rich and well developed field in mathematics. It has
many successful applications, such as in the digital image processing, computer
graphics, numerical computations of partial differential equations (PDE’s) and
integral equations. There is a large literature on wavelet theory and its applica-
tions in the past two decades. Here we just list some mathematically oriented
books on this subject, see [13], [21], {38}, [42] and [33].
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wavelets as orthogonal basis functions of the L? space, the space of square in-
tegralable functions. Every function f(z) in L? can be decomposed into a sum
of wavelet functions with coefficients called wavelet coefficients, which are com-
puted by the L? projections of f(z) onto the wavelet basis. This procedure is
called a wavelet transform. According to their structures, wavelet coefficients
are divided into two parts, namely low frequency coefficients and high frequency
coeflicients (in the literature, they are also called scaling coeflicients and wavelet
coefficients respectively). They represent different natures of the function f(x).
Low frequency coeflicients describe the local averages of the function and high
frequencies reflect the local smoothness. Obviously, high frequency coeflicients
corresponding to smooth regions have small magnitudes, while the high fre-
quency coefficients depending on regions containing discontinuities have large
magnitudes.

Most applications of wavelet deal with the wavelet coefficients of the func-
tions. For instance, wavelet based function approximations usually use the
multiresolution structure [36] of the wavelet coefficients, and the fact of having
small high frequency coefficients in smooth regions to approximate the function
by reconstructing it using only a small portion of its wavelet coefficients. For
example, one can use only the low frequency coefficients to rebuild an approxi-
mation of the function, and this is called wavelet linear approximation.

It is well known that wavelet linear approximation can approximate smooth
functions very efficiently: it can achieve arbitrary high accuracy by selecting
appropriate wavelet basis, it can concentrate the large wavelet coefficients in
the low frequencies, and it has a multiresolution framework and associated fast
transform algorithms. However, the wavelet linear approximation techniques
cannot achieve similar results for functions which are not smooth, for exam-
ple piecewise continuous functions with large jumps in function value or in its
derivatives. Several problems arise near jumps, primarily caused by the well-
known Gibbs’ phenomenaon, see [38]. The reason for it is that the jumps generate
large high frequency wavelet coeflicients, and the linear approximations do not
use this information in their reconstruction, thus they cannot get the same high
accuracy near the points of discontinuity as in the smooth region. In fact, the
oscillations generated near the jumps cannot be removed by mesh refinement.

How to get rid of the Gibbs’ phenomenon, or more generally speaking, how
to better approximate the singularities in functions has become one of the very
active research topics in wavelet studies in recent years. Many methods have
been proposed by different authors. Most of them can be classified into two
types. The first one is to still use standard wavelet transforms but to improve the
approximations by post-processing the wavelet coefficients in different manners.
For example, nonlinear data-dependent approximations are used which retain
certain high frequency coefficients.

The most notable methods in these data-dependent methods are various
thresholding techniques, including hard and soft thresholding, see [23], [27], [26],

There are zeveral ways to introduce the wavelet theory. One ig to view
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[38] and Qorrgspgnding references listed there, The main idea of this thresholding
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approximation is to truncate both low and high frequency wavelet coeflicients
according to their magnitudes, not frequencies. For instance, hard thresholding
sets all coeflicients whose magnitudes are less than a given tolerance to zero
and retains the other coefficients unchanged. It has been shown through many
research efforts that such non-linear processes can effectively reduce Gibbs os-
cillations. Consequently, they have being widely used in many applications such
as image compression (e.g. Shapiro’s embedded zerotree wavelet (EZW) coding
scheme [40]) and denoising (e.g. Coifman and Donoho's translation invariant de-
noising [15]}, numerical solutions of partial differential equations (PDE's) [31]
and integral equations [7]. However, from a function approximation point of
view, these techniques often require more complicated data structure to record
the location of the retained wavelet coefficients and still cannot remove the ef-
fects of Gibbs’ phenomenon completely unless all jump-related coeflicients are
preserved. Recently, an interesting approach, which combines wavelet thresh-
olding techniques with PDE’s derived from variational principles (e.g. total
variation (TV)) to reduce the Gibbs’ oscillations, has been proposed in many
works for different purposes, please see [12], [14] and [22].

Unlike the first type of methods which still use the standard wavelet trans-
forms, the second type of methods works more directly on the wavelet trans-
forms. In many research studies, new wavelet-like transforms are introduced
50 that the singularities can be more efficiently represented. For instance, one
approach i8 to construct new orthonormal (complete or over-complete) bases
such as Doncho’s wedgelets [24], Candes and Donoho’s rigdelets [8], [25] and
curvelets [9], and Le Pennec and Mallat’s bandelets [35]. Another approach
is to modify the standard wawvelet transforms to avoid large high frequency
wavelet coefficients near jumps. A few papers in the literature have discussed
this approach. Claypoole, Davis, Sweldens and Baraniuk [19] proposed an adap-
tive lifting scheme which lowers the order of approximation near jumps, thus
minimizing the Gibbs’ effect. This scheme suffers from reduced approximation
accuracy near jumps, and some residual Gibbs® phenomenon still exists.

Recently, we have proposed ENO-wavelet transforms for piecewise smooth
functions as an alternative for this problem by borrowing the well developed
Essentially Non-Oscillatory (ENQ) technique for shock capturing in computa-
tional fluid dynamics (e.g. see [32] and [41]) to modify the standard wavelet
transforms near discontinuities in order to overcome the Gibbs' oscillations.

ENO schemes are systematic ways of adaptively defining piecewise polyno-
mial approximations of the given functions according to their smoothness. There
are two crucial points in designing ENO schemes. The first is to use one-sided
information near jumps, and never difference across discontinuities. The second
is to adaptively form the divided difference table and select the smoothest sten-
eil {the support of the basis) for every grid point. ENO schemes lead to uniform
high accuracy approximations for each smooth piece of the function. We will
ondy use the first point in our design of the ENO-wavelet transforms.
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natural way to avoid oscillations in constructing the approximations. In fact, it
has been explored by Harten in his general framework of multiresolution [28],
[29], [30] and {4] (Sweldens’ lifting scheme {43] is similar to it). Recent studies
of Harten’s general framework and its application in data compression can be
found in [1], {2], [5], and [18]. Harten’s approach is to directly blend the two
ideas, and to fully implement the ENO schemes at every point. This consists
of using an adaptive ENO finite difference table to select the stencil and then
computing the decomposition as well as the reconstruction process. However,
Harten’s method cannot be directly applied to the more interesting and generally
used pyramidal filtering algorithms in which the standard wavelet transforms
are implemented. This is because we have to work only with fixed size and fixed
value filters in this context, and these rigid filters can not be directly used to
compute the adaptive divided difference tables at each grid point.

The ENO method retains a fixed wavelet transform and locally modifies the
function near discontinuities so that wavelet filters are applied to smooth data.
By recording how the changes are made, the original discontinuous function can
be exactly recovered by using the original inverse filters. Indeed, by applying the
idea of using one-sided information near the discontinuities, we directly extend
the functions from both sides of the discontinuities, thus we can apply the stan-
dard wavelet transforms on these extended values such that there are no large
coeflicients generated in the high frequencies and the low frequency approxima-
tions are essentially non-oscillatory, and therefore Gibbs® phenomenon can be
cormpletely avoided. The extension idea in wavelet methods, such as extension
obtained by spline wavelet methods, has been used in constructing wavelets for
closed intervals [3], [16] and [17]. However, those approaches usually modify the
wavelet basis at the boundary of the interval rather than the function.

In addition, in this modified wavelet transform, the low frequency part pre-
serves the piecewise smoothness of the original function. In particular, the
jumps in the low frequency part is not spread widely as in the standard trans-
form. Therefore, the same ENO idea can be recursively used for the coarser
levels of the low pass coeflicients. By doing so, the multiresolution framework
can be kept too.

The resulting wavelet transform retains all the desirable properties of the
standard transform: it is stable and can have uniformly arbitrarily high order
of approximation (with a rigorous uniform order of the error bound), it con-
centrates the large coefficients to the low frequencies, it preserves the multires-
olution framework and fast transform algorithms, and it is easy to implement.
Furthermore, since we do not fully adopt the ENO schemes, in particular, we do
not build the divided difference table and compare the smoothness of all possi-
ble stencils at every point, the extra cost (in floating point operations) required
by the modified ENO-wavelet transforms is insignificant. In fact, it is of the
order O{dl} where d is the number of discontinuities and {+ 1 the stencil length.
Compared to the cost of the standard wavelet transform, which is of the order

(‘.nmhiping the ENOQ) idea with the multiresolution data representation is a
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Ofnl) where n ig the size of the data, the ratio of the extra cost over that of ¢
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standard transform is of the order O %) which is independent of I and negligible
when n is large.

Besides, since the designed ENO-wavelet transforms play the same role as
the standard wavelet transforms in the applications, it is natural and even more
beneficial to use them in conjunction with the standard adaptive nonlinear tech-
niques such as hard and soft thresholding in many applications such as image
compression and denoising. We will discuss those applications briefly at the last
part of this chapter.

The arrangement of the chapter is as follows. In section 2, we start by
reviewing the standard wavelet transforms. Then we give a general idea to
construct the ENO-wavelet transforms. In section 3, we state the stability
results and an error bound for the ENQO-wavelet approximation which shows
that the error in the ENO-wavelet approximation depends only on the size of
the derivative of the function away from the discontinuities. Finally, in section 4,
we discuss some possible applications of the ENO-wavelet transforms including
function approximation, image compression and signal denoising, and we give
some mumerical examples.

2 The ENO-Wavelet Algorithm

In this section, we give the general idea to construct ENO-wavelet transforms
for piecewise smooth functions.

2.1 ENO-wavelet at Discontinuities

Before we present the adaptive ENO-wavelet transforms, we want to briefly
recall some basic knowledge in the standard wavelet transforms. In this section,
we do not intend to cover all fundamentals in wavelet theory, we just want to
use this opportunity to introduce some notations used in the standard wavelet
transforms so that they can be used in our ENO-wavelet transforms. For readers
who are interested in the standard wavelet theory, please see [13], [21], [38], [42]
and many other relevant references that we do not list here. We also want
to point out that in this chapter, we only discuss the design of ENO-wavelet
transforms using Danbechies orthonormal wavelet frameworks. The idea can be
casily extended to other types of wavelets such as biorthogonal wavelets, but
that is not our focus here.

To simplify the discussion, we assume zeros have been padded to the data
at the boundaries.

The standard wavelei, transforms are based on translation and dilation. Sup-

pose ¢{z) and ¢¥(z) are the scaling function and the corresponding wavelet re-
spectively with finite support [0, [] where [ is a positive integer. It’s well known
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that &{z) satisfies the basic dilation eguation
A q
!
$(z) = V2 o2z~ s); (2.1.1)
s=0

and (z) satisfies the corresponding wavelet equation:

[}
Y(z) = V2 he(2z - s); (2.1.2)

=0

where the ¢,’s and h;’s are constants called low pass and high pass filter coeffi-
cients respectively.
Wavelet 4{x) having p vanishing moments means:

/¢(m)$jdm =0, for §=0,1,---,p—1. (2.1.3)
We will use the following standard notations:

$14(z) = 28 (27w — 4), (2.1.4)

and ‘
Pii(w) = 22627z — ). (2.1.5)

Consider the subspace V; of L? defined by:
V; = Span{¢;:(z),i € Z},
and the subspace W; of L? defined by:
W, = Span{; :(x),i € Z}.

The subspaces Vj's, —c0 < § < oo, form a multiresolution of L? with the
subspace W; being the difference between V; and Vi1, In fact, the L? space
has an orthonormal decomposition as:

=V;0d W, (2.1.6)
j=J

The projection of a L? function f(z) onto the subspace Vj is defined by:

filz) = Zaj,i¢j,i($), (2.1.7)

where

aj,isz(m)‘f’j,i(m)dx; i=-, =101, (2.1.8)
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coefficients in the literature). Similarly, we can project f(z) onto Wj by:

w@=2&%ﬁL (2.1.9)

which we call low frequency wavelet coefficients (they are often called scaling

where

6j,i:ff(m)¢j,i(m}d$- i=-,—=1,0,1, 0, (2.1.10)

which we call high frequency wavelet coefficients (often called wavelet coefficients
in the literature). In this paper, we use the term wavelet coeflicients to denote
both low and high frequency coefficients. Therefore, the function f(z) can be
decomposed by:

oo
F(@) = filz) + Y wilx). (2.1.11)
=y
The projection f;(z) is called the linear approximation of the function f(z) in
the subspace V;.
From (2.1.4) and (2.1.5), the projection coeflicients «;; and f;; of f(z) in
the subspaces V; and W; can be easily computed from the coefficients cj1q ; by
the so called fast wavelet transform:

i

Qi = Z CsCtjt1,2i4s) (2.1.12)
LA
and l
Bii = Zhsaj+1,2i+s- (2.1.13)
s=0

The standard linear wavelet approximation can achieve arbitrary high accu-
racy away from discontinuities, but it oscillates near the jumps. The intuitive
reason for the oscillations is that some stencils cross jumps and cause the cor-
responding high frequency coeflicients to becoming large and therefore, more
information is lost when the high frequency coefficients are discarded.

In Figure 1, we display a piecewise continuous function (left) and its DB-6
wavelet coefficients (right) with low frequencies at the left end and high fre-
quencies at the right end. From the right picture, we see that most of the high
frequency coefficients are zeros, except for a few large coeflicients which are
computed near jumps. Figure 2 displays the linear approximation (dash-dotted
line) compared to the initial function (dotted line). The right picture is the
zoom-in to show the approximation behavior near a jump. In this figure, we
clearly see oscillations (also known as Gibbs’ phenomenon) near discontinuities.

Since the oscillations are generated by discarding large high frequency co-
efficients which are computed on the stencils crossing discontinuities, to get
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Figure 1. The initial function (left) and its DB6 coefficients (right). Mest of the high
frequency coefficients (right part) are zero except for a few large coefficients computed
near the jumps..
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Figure 2. The approximation function (left) and its zoom in (right), Oscillations are
generated near the discontinuities in the linear approximation..
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rid of the oscillations, we want to avoid stencils crossing discontinuities, Thig
motivates us to apply the ENO idea to avoid stencils crossing jumps.

In addition to the standard wavelet transforms, our ENO-wavelet transforms
are composed of two phases: locating the jumps and forming the approximations
at the discontinuities. Firstly, to better explain the algorithm, we assume that
the location of the jumps are known, and we give the ENO-wavelet approxima-
tions at the discontinuities by using one-sided information to avoid oscillations.
Then, we give some methods to detect the location of the discontinuities.

We want to modify the standard wavelet transforms near the jumps such
that oscillations can be avoided in the approximation. From ENO schemes, we
borrow the idea of using one-sided information to form the approximation and
avoid applying the wavelet filters crossing the discontinuities. In order to sim-
plify the explanation, we also assume that the discontinuities are well separated
50 that the modification we will make at one jump wiil not interact the modifi-
cation at another jump. Therefore, we can just consider the local modification
near one jump. The main tool which we use to modify the standard wavelet
transforms at the discontinuities is function extrapolation in the function spaces
or in the wavelet spaces.

The first way is to extend the function directly at the discontinuity by ex-
trapolation from both sides. Then we can apply the standard wavelet transforms
on the extended functions and avoid computing wavelet coefficients using infor-
mation from both sides.

To maintain the same approximation accuracy near the discontinuity as that
for away from the discontinuity, the extrapolation has to be (p — 1)-th order
accurate if the wavelet functions have p vanishing moments. For instance, we
use constant extrapolation for Haar wavelet, (p — 1)~th order extrapolation for
Daubechies-2p orthogonal wavelets which have p vanishing moments.

We use the diagram in Figure 3 to show how to extend the function and
compite the ENO-wavelet coefficients.

As shown in Figure 3, the discontinuity is located between {x(2i-+1-2), 2(2i-+
[-1)}. We extend the function from both sides of the discontinuity using (p—1)-
th order extrapolation, i.e. we use the information from the left side of the jump
to extrapolate the function over 2(24-+1--1), - - -, #(24+-21—2); use the information
from the right side to extrapolate the function over £(2i),---,%(2i+ 1 2). And
then for i < m < i+ &k — 2, where | = 2k ~ 1, we can compute the wavelet
coefficients &;, and 8;,, from the left side, and compute @&;,, and ;.. from
the right side by using the standard wavelet transforms respectively.

In general, we have the low frequency wavelet coefficients on the finer levels
ingtead of knowing the function values themselves near the discontinuities. We
extrapolate these finer level coefficients from both sides of the discontinuities
to obtain the values of &.41,m and & y1,m, and use the fast wavelet transforms
(2.1.12) and (2.1.13) to compute the coarser level coefficients.

There are many methods to extrapolate the extended values. For example, a
straightforward way is to use p-point polynomial extrapelation such as Lagrange
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nolynomials or Taylor expansion polynomials. Tn our numerical experiments in
this chapter, we use Lagrange polynomial extrapolation for noise free data, and
least square extrapolation [45] for noisy data.

There is a storage problem for this direct function extrapolation or the ex-
trapolation of the finer coefficients. Indeed, it doubles the number of the wavelet
coeflicients near every discontinuity. To retain the perfect invertible property,
using the notation in Figure 3, we need to store the ENO-wavelet coeflicients
Gj,m and B from the left side, also &;m and F; ., from the right side. Thus,
the output sequences are no longer the same size as the input sequences. In
many applications, such as image compression, this extra storage requirement
definitely needs to be avoided.

Facing this challenge, we have proposed a better way, which we called coarse
level extrapolation, to accomplish our goals. The idea is to extrapolate the
coarser level wavelet coefficients near the discontinuities instead of the function
values or the finer level wavelet coefficients.

We still use Figure 3 to illustrate these schemes. We consider the left side
of the jump first.

In the direct function extrapolation case, the computation process is to di-
rectly extrapolate the finer level wavelet coefficients, and then compute the
extended coarser level wavelet coefficients é&;,,, and Bj,m, i<m<(E+k—2)
using the standard filters. We reverse the order of this process in our coarse level
extrapolation. More precisely, we extrapolate the coarser level low frequency
coefficients &;,, using the known low frequency coefficients from the left, and
extend the coarser level high frequency coefficients ﬁj1m to zero (or some pre-
defined values), then determine the extended finer level wavelet coefficients.

However, in Daubechies’ orthonormal wavelel transforms, we cannot arbi-
trarily prescribe both &; ., and ;. simultaneously. This is because they are
not linearly independent. Let's take m = 7 as an example. Assume that we have
prescribe both é;; and Bj’i as given values, this means that we have implicitly
extended the finer level values &1 2:40-1 and 41 214 satisfying:

. {3 . .
( Qj,i ) _ ijo Csjp1 2i4s T Clw10441 25411 + C1OG11 24+
By Yoo NsQia12irs + MGy gip—1 + by gip
As we have =L — M this implies that we can only prescribe one of the
Cia-1 <t

coarse level coefficients &;; and f;; and determine the other one by the above
relationship. Thus we have two choices:

(1) We can extrapolate the low frequency coefficients é; ., first, then deter-
mine the corresponding high frequency coeflicients 3; ..

(2) Or we can extend f;m to zero first, then determine the corresponding

Ctj,m.
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ENO-wavelet Extrapolation Scheme
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Figure 3. Coarse Level Extrapolation Tiustration. From the left side of the disconti-
nuity, we extrapolate the low frequency coeflicients &; . to determine corresponding
high frequency coefficients ;_‘;‘_.,-,m and store them. From the right side of the disconti-
nuity, we extend the high frequency coefficients 3; . to determine and store the low
frequency coefficients ¢ m..
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Using this coarse level extrapolation technique, we can easily solve the stor-
age problem which we have in the direct function extrapolation. In fact, we
just need to store the high frequency coefficients ,(;’j,m for choice (1) and the
low frequency coefficients &; ., for choice (2). In our implementation, we use
choice (1) for the left side of the jumps and choice (2) for the right side of the
jumps, therefore we store Bj,m and é;, ., for every m. This satisfies the standard
wavelet storage scheme, i.e. storing one low frequency and one high frequency
coeflicients for every stencil.

Since we know the way we extend the data at the discontinuities, we can
easily extrapolate the low frequency coefficients &; ., from the left sides of the
discontinuities. Using them together with the stored high frequency coefficients
Bj,m, we can exactly recover data at the left sides by applying the standard
inverse filters. Similarly, the data at right sides of the discontinuities can also
be exactly restored.

Of course, in the ENO-wavelet transforms, to retain the perfect invertibility
property, we need to store all adaptive information, i.e. the locations of the
discontinuities. In our implementation in this chapter, we just use one extra bit
for each stencil near the discontinuities to indicate it contains a discontinuity.
In the application of compression, which aims to reduce the total storage of
representing an image, these extra bits need to be taken into account carefully,
we will discuss it in the last section of this chapter.

For each stencil crossing a jump, an extra cost (in floating point operation)
is required in the extrapolation low frequency coefficients, which is of the order
O(1) per stencil, and in the computation of the corresponding high and low
frequency coeflicients, which is of the order O(l) per stencil. Overall, the extra
cost over the standard wavelet fransform is of the order O(dl) where d is the
number of discontinuities. Compared to the cost of the standard wavelet trans-
form, which is of the order O{nl) where n is the size of data, the ratio of the
extra cost over that of the standard transform is O(£), which is independent of
! and negligible when n is large.

2.2 Locating the Discontinuities

In the previous subsection, we showed how to modify the standard wavelet trans-
forms at the discontinuities to avoid oscillations if we know the exact location
of the jumps. In this subsection, we introduce the methods to detect the exact
location of the discontinuities for piecewise smooth functions with and without
noise. First we give a method for smooth data.

QOur purpose is to avoid wavelet stencils crossing discontinuities. Theoreti-

cally, a discontinuity can be characterized by comparing the left and right Limit
of the derivatives fim {(x} at the given point z, i.e. we call a point z a disconti-
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nuity if for some m < p, we have:

F =) # £ ().

We define the intensity of a jump in the m-th derivative at = as
@) = 1/ ) - F o)

It is well known that the high pass filters in wavelet transforms measure the
smoothuess of functions: they produce smaller values at smoother regions, and
larger values at rougher regions. In fact, it has been shown in [6], [34] and [44]
that if a function f(z) is Lipschitz p < p at &, Le. |f{z+6) — f(z)| < 8 for any
small §, the corresponding high frequency wavelet coefficients are of the order of
O(Az#). From this, it is easy to obtain that at smooth regions, the magnitudes
of high frequency coefficients |8; ;| have the order of | f®)(z}|0(Az?). By Taylor
expansion, if both |8;;_1} and |§;| are in a smooth region, we have

1B5.il = (1 + O(Az)}| By i,

where the constant in the termn O(Axz) depends on the high order (larger than p)
derivatives of f(z). On the other hand, if a stencil contains a discontinuity, no
matter a discontinuity in function value (m = 0) or in its m-th derivative, the
magnitude of the corresponding high frequency coefficient |5, ;] is of the order
of O{Az(™), ie.

B340 = £ (@o)iO(A™),

which is at least one order lower than that at the smooth regions.

Therefore, we can design a method to detect the discontinuities as follows:
For each standard stencil, suppose we know that the previous standard stencil
does not contain any discontinuities, if we have |8;;| < 718;,i~1|, where T > lisa
given constant, then we treat the current stencil as a smooth stencil. Otherwise,
we conclude that there are discontinuities contained in it.

The choice of constant v depends on the grid size Az, and also the intensity
of the jumps. In fact, the ratio between a high frequency coeflicient at the rough
regions and that at the smooth regions is of the order of |[f(™) (z)IO{Az{™#)),
When Az becomes small, this ratio is large. We can choose 7 as any number
such that

(1+0(Az)) < 7 < min{|[f" (2)]j0(Az~P)}, (2.2.1)
provided the above minimal number is larger than 1+ O(Az). This is always
true for piecewise smooth functions with small enough grid size Az. Obviously,
the jump detection procedure can capture all jumps in the m-th derivative with
intensity larger than O(Az(?~™}). On the other hand, when a jump in the m-th
derivative has small intensity, which is even less than O(Az®~™)), this jump
can not be detected by the above described method. However, the error caused
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by missing this jump iz alse very small, which is at the same order of the error
bound we will give in section 3. In practice, especially when we just care about
the jumps in function values, we have a large range to select 7.

The extra cost introduced by this comparison jump identification method
over the standard wavelet transforms is just the comparison |84 > 7|81
for each stencil.

The above described detection method may not be reliable if the function
is polluted by noise, especially when the noise is "large”. This is because the
high frequency coefficients 3’s may not be able to measure the correct order
of smoothness of the functions. Indeed, the high frequency coefficients have
the arder ||f® (z) + on®) (2)}[JO(AzP), where n(z) is the random noise and o a
positive number indicating the noise level. In general, the derivatives of the noise
n®)(z) have large values. The noise term on(® (z) can dominate the function
term f(P)(z) if the noise level o is large and thus, the high frequency coefficients
A’s may not be able to detect certain discontinuities, e.g. if the jump is small
or the discontinuity is in the higher derivatives. In this situation, we need to
use heuristics to locate the exact position of the essential discontinuities [11].

2.3 A Simple Example

In the last part of this section, to better illustrate the idea of the construction
of ENO-wavelet transforms, we give a simple example in the ENO-Haar case.
We consider computing the transform coefficients of the following initial data
containing two discontinuities at [0, 1] and {2, 10] respectively:

(00001 1 1 2 10 11 12).

The standard Haar produces the low and high frequency coefficients:

1 2 12 23 _ 1 8 _ 1
o=(0 % F % B)s=(0 % 0 % %)
We notice that comparing to their neighbors, there are two relatively large high

frequency coeflicients corresponding to the two jumps. The corresponding linear
approximation by setting # = 0 is:

(0005 05 116 6 115 115},

which does not recover the discontinuities correctly.
Using the ENO-Haar wavelet, we break the initial data sequence into three
smooth pieces as shown in the following two rows:

y 1 1 1 1 w
g 0 0 =z z 10 11 12 ;'

where x, ¥, z and w are some smooth extensions of the corresponding pieces. In
fact, we extend = in a way such that the low frequency coefficient &2 (boxed in




ENQO-wavelets _ 15

{2.3.1)) hased on the stencil e
on the stencﬂ (0,0) giving x = 0. Similarly, we extend y in a way such that the
high frequency coefficient §; (boxed in (2.3.1)} is zero giving y = 1. Therefore
we compute the high frequency coefficients B» based on stencil (0,2} and the
low frequency coefficients &; based on stencil (y, 1) by using the corresponding

standard filters giving fo = 0 and d& = % Similarly, we determine w = 0

the ster 3 the sar the ious oy, which ig

ril (O _fa_*) is the same ag the previous oy, which is baged

2
according to dq == ag (boxed in (2.3.1)), then compute 5’4 = %, and z =10 by

B4 = 0 and then @, = 3\/92:. Thus we have the coefficients:

Y ==

2 2 |2 2
V2 ) V2 ﬁ — @ 0 2 (2 3 1)
, s . {2.3.
0 @ 20 23 0 0 ~5
Vi V2 2
Since we know how we extended &g, B2, &4 and B4, we do not need to store
them. In fact, we just need to store the low and high frequency coefficients as:

2 2 20 23 — 2. A
a=(0 % % % H)e=(000 % %),
which have the same storage schemes as the standard Haar wavelet transform.
When we reconstruct the linear approximation, we can first recover da, Sz,
&4 and B4 by the same way as in the forward transform, and then apply the

standard inverse filters to the smooth data to build the approximation. In fact,
in this case the linear approximation is

(00001 1 1 1 10 115 11.5).

We notice that the first discontinuity is perfectly retained, and the second one
is more accurate than that of the standard transform, although it is not exactly
recovered. More importantly, this approximation preserves the discontinuities
sharply in contrast to the standard Haar wavelet which takes the average at the
discontinuity.

‘We would like to close this section by making the following two remarks,

{i) The ENO-wavelet transforms are just simple modifications of the standard
wavelet transforms near discontinuities. The computational complexity of
the algorithms remains O(n) and they are relatively easy to implement.

{ii) Like other wavelet transforms, 2-dimensional or even higher dimensional
transforms can be formed by tensor products. In the numerical example
section, we will give a 2-dimensional example.

3 'Theory: Error Bound and Stability

In this section, we present the ENO-wavelets approximation error bound for
piecewise continuous functions and the stability of the algorithm. We do not
give proof. They can be found in [11] and [46].
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(Given a function f(z) in L2, in standard wavelet theory [38] [21] [42], it can
be linearly approximated by its projection f;(z) in V; as in {2.1.7) and (2.1.8).
Thig linear approximation has a standard error estimate which we state in the
following theorem, see also [42].

Theorem 1. Suppose the wavelet ¥(z) generated by scaling fimction ¢(z) has
p vanishing moments, f;(z) is the approximation of f(z), which has bounded
p-th order derivative, in V; with basis ¢;x(x), then,

1F(z) = £i(2)]] < C(AZPIF P (), (3.1)

where Az = 277 and C is a constant which is independent of j.

This theorem holds for the L? norm in general. Moreover, if the scaling
function and its wavelet have finite support, then it also holds for the L* norm.

In this theorem, we can see that the approximation error is controlied by two
factors. Oneis the p-th power of the spatial step Az, the other is the norm of the
p-th derivative of the function. This error bound does not hold if the function
does not have finite p-th derivative. This implies that the approximation could
be poor for irregular functions even if the spatial step Az is small. For plecewise
continuous functions, especially functions with large jumps, the approximation
error cannot be controlled as for smooth functions, In fact, in the standard
approximation function f;(z), oscillations are generated near the discontiruous
points and they will not disappear even if the spatial step size is reduced (Gibbs’
phenomenon).

In contrast, in our ENO-wavelet transforms, since no approximation coeffi-
clents are computed using information from both sides of the discontinuities, we
can obtain a similar error estimate without taking derivatives across the jumps
if they are well separated. In order to assure such error bound, we need to
introduce the following definition.

Given a function f{z) which has discontinuous set D, i.e.
D={z;: f(z) is discontinuous at z;}.
Denote £ by the closest distance between any two discontinuous points, i.e.

t = inf{|z; — z;i: 2, 2; € D}

Definition 1. For a given wavelet flter with stencil length 14+1, we say a projec-
tion of f(z) in space V; with spatial step Az = 279 satisfies the Discontinuity
Separation Property (DSP) if (I + 2)Az < t.
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A projection satisfying the DSP implies that any one discontinuity is located
at least one stencil plus two data points away from other discontinuities. In other
words, there are no two consecutive stencils containing two discontinuities. This
property will avoid the modifications near one discontinuity interacting with the
modifications near other discontinuities.

In fact, for any piecewise discontinuous function, a projection will satisfy
this DSP if § is sufficiently large, i.e. if the discretization is fine enough. On the
other hand, at the place where the DSP is invalid, the approximations produced
by the ENO-wavelet transforms are comparable to that by the standard wavelet
transforms, see [11].

With the definition of DSP, we are ready to state the error estimate in the
following theorem.

Theorem 2. Suppose the scaling function ¢(z) and its (x) have finite support
in [0,{], ¥(x) has p vanishing moments, f{x) is a piecewise continuous function
in an interval [a,b] with bounded p-th derivatives in each piece of smooth re-
gions, and f;(x) is its j-th level ENO-wavelet projection obtained by using the
extrapolation methods given in section 2 with choice of T satisfying (2.2.1). If
the projection f;y1(z) satisfies the DSP, then

17(z) = £ < C(Ax)?IIF P (@) a o0, (3.2)
where Az = 277 and D is the set where f(x) has jumps in the function value
or up to the p-th derivatives. The norm {| - || can be either the L? or the L®

norm.

This thecrem implies that the error is uniformly bounded in the smooth
regions as well as the discontinuous regions if the jump can be correctly detected.
In fact, as we mentioned in section 2.2, with the choice of = satislying (2.2.1},
all jumps in the m-th derivative with intensity larger than O(Az®~™)) can
be captured by the jump detection mechanism for smooth data. On the other
hand, although the detection algorithm fails at the small jumps with intensity
less than O(Az{P~™)), the error caused by missing these jumps is small, and is
of the same order of the error generated in smooth regions and can be absorbed
into the right hand side of (3.2). Therefore, comparing to the standard error
estimation, ENO-wavelet approximation achieves the bound as if there is no
discontinuity. In other words, this is the best possible error bound we can hope
for. Considering the ENQO-wavelet algorithms, which essentially consists of two
steps: locating discontinuities and extrapolation using one-sided information
in addition to the standard wavelet transforms, this is not a surprising result,
because basically at each side of a discontinuity, the ENO-wavelet transforms
perform the standard wavelet transforms to the extended function which is
smooth. Therefore, they can approximate each side of the jump as accurate as
if the function is smooth.



18 T. Chan and HM. Zhou

For the same reason, it is also not surprising that if the discontinuities can
be correctly identified, both forward and inverse ENO-wavelet transforms for
piecewise discontinunous functions are stable with respect to small perturbations.
Here, we summarize the stability results into the following theorems.

Theorem 3. Given a piecewise smooth function f(x), and a function f (x) which
is a perturbation of f(x) satisfying

£ (=) = flz)l} <, (3.3)

where € Is a smooth positive number. Suppose one uses an ENQG-wavelet trans-
form with a detection algorithm which can capture the correct discontinuous
points in both f(z) and f{z), and denote their ENO-wavelet coefficients (in-
cluding both low and high frequency coeflicients) as o and & respectively, then

llo - &lf < Ce, (3.4)

where C' is a constant independent of f(x) and e.

Theorem 4. Given f(z) a piecewise smooth function, denote I as the jump
set detected by a ENO-wavelet transform, and « the ENO-wavelet coeflicients.
Assume & is a perturbation of « with

where € is a small positive number. If f(z) is the ENO-wavelet reconstruction
with jump set D from coefficients &, then

17(2) = f(@)l| < Ce, (3.6)

where constant C is independent of f(z) and e.

‘We note that due to Theorem 4, the inverse transforms are always stable.
This is because the inverse transforms depend only on the extrapolation schemes
and the standard inverse wavelet transforms, and there is no detection process
involved. Therefore, the stability of the extrapolation schemes and the standard
wavelet transforms guarantees the stability of inverse ENO-wavelet transforms.

4 Applications

In this section, we briefly discuss some applications of the ENQO-wavelet trans-
forms.
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4.1 Function Approximation

Constructing approximations to the piecewise continuous functions is a very
natural application of the degigned ENO-wavelet transform. One simple way is
to use the low frequencies f;{x) to approximate f(x) directly. Here, we use some
1-D numerical examples to illustrate the approximation abilities of the ENQ-
wavelet transforms. We will demonstrate the error bound 3.2 given in section
3. In particular, we show results for the ENO-Haar, ENO-DDB4 and ENO-DB6
wavelet transforms.

In all examples, for simplicity, we just consider functions with zero values
at the boundary. For non-zero boundary functions, we can easily extend the
function by zero and treat the boundaries as discontinuities.

To illustrate the performance of ENO-wavelet transforms, we show graphical
comparisons of the standard wavelet approximations and corresponding ENO-
wavelet approximations. In addition, we compare the Lo, and Ly errors of
the standard wavelet approximations and the ENQO-wavelet approximations at
different levels by measuring K., ; = inf; || f(z) — f;{z)||, which is computed
by finding the largest difference on the finest grid, and B, j = ||f(z) — f;(z)|]2-
Using them, we compute the orders of accuracy defined by:

Orders = lo 00,1
rer s g Fos 1
and B
Ordery = log, —2%,
2 82 By

which indicates the order of accuracy of the approximation in the L., norm and
Ls norm respectively.

Since we consider noise free examples in this part, we use the method for
noise free data described in section 2.2 to detect the positions of the disconti-
nuities. And we select a = 2 (as used in the algorithms in section 2) for all 1-D
examples.

Firstly, we compare the approximations for smooth functions. Table 1 shows
the results of comparison of DB4 with ENO-DB4 approximations for the func-
tion f{z) =exp[-(3 + 25),0< 2 < 1,

We see from the table that for smooth functions, the ENO-wavelet trans-
forms have exactly the same approximation error as the standard wavelet trans-
forms. Both of them maintain the approximation order 2, which agree with the
results in Theorem 1. In fact, we notice that in this situation, no singularity
is detected, the ENQ.wavelet algorithms perform the standard transforms for
completely smooth functions as we expected.

Next, we apply Haar and ENO-Haar, DB4 and ENO-DB4, and DB6 and
ENO-DB6 transforms to a piecewise smooth function and compare the approx-
imation error. Figure 4 shows the comparison of the order of accuracy in the
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level | DB4 E,, | ENO-DB4 E,, | Ordery,
4 3.316e-5 3.316e-b
3 7.650e-6 7.650e-6 2.104
2 1.590e-6 1.580e-6 2.232
1 2.972e-7 2.973e-7 2.406

Table t. The Comparison of maximum error of the standard DB4 and the ENO-DB4
approximations for the smooth function f(z) = exp[~(2 + 25)],0 < & < 1. They
have the same error and both achieve second order of accuracy which agrees with the
results in Theorem 1 for the smooth functions..

Lo and Ly norm. It is clear that both L., and L2 order of accuracy for ENO-
wavelet transforms are of the order 1, 2 and 3 for ENO-Haar, ENO-DB4 and
ENO-DB6 respectively. And they agree with the results in Theorem 2. In
contrast, standard wavelet transforms do not retain the corresponding order of
accuracy for piecewise smooth functions.

To see the Gibbs’ oscillations, we display the 4-level ENQO-DB6 and standard
DB6 approximations to a piecewise smooth function in Figure 5. In the left
picture, we show the original function (dotted line), the standard wavelet linear
approximations {dash-dotted) and the ENO-wavelet approximations (solid line).
The right pictures is the zoom-in of the left picture near a discontinuity. We
clearly see the Gibbs’ oscillations in the standard approximations; in contrast,
the ENO-wavelet approximations preserve the jump accurately.

In Figure 6, we also present the standard DB6 wavelet coefficients (dotted
line) and the ENO-DB6 wavelet coefficients (solid line) respectively. The left
part corresponds to the low frequency coefficients and the right part the high
frequency coeflicients. We notice that there are some large standard high fre-
quency coefficients near the discontinuities. On the other hand, no large high
frequency coefficients are present in the ENO-wavelet coefficients. This illus-
trates that the ENO-wavelet coefficients have better distribution than standard
wavelet coefficients, i.e., no large coefficients in the high frequencies and the
energy is concentrated in the low frequency end.

4.2 Tmage Compression

Digital image compression aims to reduce the storage requirement of digital
images with (or without) losing information (they are called lossy (or lossless)
compression). Wavelet based lossy image compression algorithms have been the
leading methods in high ratio (the ratio of original file size over the compressed
file size) compression. The most notable work in this area goes to Shapiro’s
EZW compression [40]. Many studies have been conducted along this direction,
including the remarkable work of Said and Pearlman’s coding algorithm based
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Figure 4. The approximation accuracy comparison of ENO-wavelet and wavelet
transforms. Both Lo (left) and Lo (right) order of accuracy show that ENO-wavelet
transforms maintain the order 1, 2 and 3 for ENO-Haar, ENO-DB4 and ENO-DB6
respectively and they agree with the results of Theorem 2. In contrast, standard
wavelet transforms do not retain the order of accuracy for piecewise smooth functions.
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Figure 5. The 4-level ENO-DB6 (solid line) and the standard DB6 (dash-dotted line)

Approximation. The standard DB6 generates oscillations near discontinuities, but the
ENO-DB6 does not..
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Figure 6. The 4-level ENO-DB6 coefficients (solid line) and the standard DB8& coeffi-
cients {dotted line). There are large high frequency coefficients near the discontinuities
in the standard DB6 transform but not in the ENO-DB6 transform..

on set partitioning in hierarchical trees (SPIHT) [39].

A wavelet based image compression algorithm usually consists of three steps,
namely transform, quantization and coding. Transform means that instead
of working directly on the pixel values of the digital images themselves, one
uses wavelets transforms to compute the wavelet coefficients so that the spatial
correlations between pixels in the original images can be decoupled. In other
words, in smooth regions where the pixel values are close, the generated high
frequency coefficients have small magnitudes and eventually will not be retained.
Quantization refers to truncating the real valued wavelet coeflicients into a finite
set of fixed values so that they can be used in the coding process. In thig step,
the small wavelet coefficients are usually quantized to zero. Therefore, the
more small wavelet coefficients a transform generates the better compression
it achieves. Obviously, this step is a lossy and non-invertible process. Coding
converts finite quantized wavelet coeflicients into binary bit streams for storage.

How to use ENO-wavelet transforms together with quantization and coding
steps to form complete image compression algorithms is an ongoing research
topic. Many open questions, especially those questions related to the quantiza-
tion and coding steps, need to be answered. In this chapter, we do not intend to
answer those questions. Instead, we focus on the transform step and discuss the
potential of using ENO-wavelet transforms to obtain more efficient compression
algorithms. We show pictures to illustrate such potential.

As we have explained, one of the most important reasons for the success
of wavelets in image compression is their ability to approximate smooth func-
tions efficiently. Many classes of digital images can be modeled as piecewise
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smooth functions connected by large discontinuities (edges and boundaries of
objects}. Using a small number of coeflicients one can obtain very high accu-
racy approximations to the smooth regions. On the other hand, jumps (edges)
indicate important features and should be retained. Standard wavelet trans-
forms require many coefficients to represent jumps (edges) and tend to generate
a Gibbs phenomenon called jump (edge) artifacts when compression techniques
are applied.

In addition, in order to reconstruct the edges correctly, not only does one
need to store those large jump related high frequency coefficients, but also to
record their positions {(coordinates). Otherwise, the decompression process will
not be able to put them in the correct places to rebuild the images. In fact,
recording the position information often consumes more space than remember-
ing those coefficient values themselves. How to code the positions of the large
coefficients is the most important question answered by EZW and SPIHT al-
gorithms, where the tree structures are used to code both the positions and
coefficient values. Therefore, if one can reduce the number of large high fre-
quency coefficients, a better compression may be obtained.

ENO-wavelet transforms give methods which can reduce the number of large
high frequency coefficients. ENQO-wavelet transforms maintain all advantages of
the standard wavelet transforms, such as multiresolution data structures and
concentrating energy to fewer large coefficients. Their performance in smooth
regions is the same as that of the standard wavelet transforms. More impor-
tantly, ENO-wavelet transforms do not generate large high frequency coefficients
near jumps because all filters are applied to smooth functions; thus more effi-
ciently represent jumps {edges).

We give a 2-D testing image example to compare the standard Haar and the
ENO-Haar reconstructions by keeping certain number of coefficients. Here we
use tensor products of 1-D transforms. The original image is shown in Figure 7.
Figure 8 is the 3-level standard Haar reconstruction and Figure 9 is the 3-level
ENO-Haar reconstruction. Both use only the low frequencies and store the same
number of coeflicients (g of the original data). It is clear that in the standard
Haar case, the function becomes much fuzzier than the ENO-Haar case. This
llustrates that the ENO-Haar reconstruction can reduce the edge oscillations
for 2-D functions.

In practical compression algorithms, it is rare to use only the low frequency
coefficients to build reconstructions. In fact, it is very common to use thresh-
olding techniques. As we mentioned in the introduction, we can also combine
ENQO-wavelets with thresholding technigues. We show the standard hard thresh-
olding reconstructed image by retaining the largest 64 x 64 coeflicients in Figure
10. We note that more details are recovered, but the edges are still quite fuzzy.
Similarly, we can apply the same thresholding techniques to the ENO-wavelet
transforms. In Figure 11, we give the reconstructed image by using ENO-Haar
hard thresholding technique by keeping the largest 64 x 64 ENO-Haar coefli-
cients. In this image, edges and more details are preserved.
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Figure 7. Original 2-d Image.
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Figure 8. The 3-level standard Haar Approximation, the edges are fuzzier than that
in the next picture. Most detail information is lost..
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ENO-Haar, level=3, keep 64x64 coefficients
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Figure 9. The 3-level ENO-Haar Approximation. Edges are preserved sharply, more
detail information is retained. .
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Figure 10. The 3-level standard Haar hard thresholding approximation. More details
are preserved. Edges are still fuzzy..
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ENO-Haar, Hard Thresholding, level=3, keep 64x64 coefficients
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Figure 11. The 3-level ENO-Haar hard thresholding approximation, Most of the
edges and interior information are retained and less severe edge artifacts are generated
comparing to the previous images..
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to obtain the perfect reconstruction property, we need one extra bit to record
the location of each jump in the ENO-wavelet transforms. This extra bit is the
price we pay to reduce the magnitudes of all high frequency coefficients related
to jumps (the number of jump related large high frequency coefficients could be
as many as 52‘—1— at one jump, where | + 1 is the length of the high pass filter).
In principle, storing those extra bits should be cheaper than storing those large
high frequency coefficients and their positions. Furthermore, there is a strong
correlation among the spatial positions of those extra bits because they are
usually along the edges of the images. Therefore, the extra bits corresponding
to the same spatial location in different level of decompositions can also form a
tree structure between different levels. Al of these suggest that we may further
compress those extra bits. However, the best way to accomplish this is under
investigation.

Of course, in the context of compression, we should not, forget that in order

4.3 Signal Denoising

Similar to the standard wavelet transforms, it is also very natural to use ENO-
wavelet transforms in signal denocising. In this case, the extra bits used to
indicate discontinuities in the signal are no longer a problem. Therefore, the
design of the algorithms becomes more straight forward. As we said in the
introduction, one can modify a signal denoising method based on the standard
wavelet transforms to a method based on the ENQO-wavelet transforms, simply
by replacing the standard wavelet transforms by the ENO-wavelet transforms,
for instance, the translation invariant wavelet denoising method [15] can be used
to together with the ENO-wavelet transforms.

The major advantage of the ENO-wavelet based denoising over the standard
wavelet denoising is that ENO-wavelet transform denoising can remove the os-
cillation without smearing edges, while the smearing problem is a drawback for
standard wavelet denoising algorithms. ENO-wavelet transforms use filtered
(less noisy) values to form extensions at jurnps which makes the method more
stable and more effectively denocises near discontinuities. However, as we ex-
plained in section 2.2, the presence noise makes it harder to detect jumps. One
often needs to use some heuristic to find the correct locations. Edge detection
methods can be used together with the ENO-wavelet transforms.

To illustrate the idea, here we just give an 1-D signal denoising example by
using simple linear thresholding (truncating ali high frequency coefficients). We
apply the ENO-DB6 wavelet transform to a piecewise constant signal polluted by
(Gaussian random noise (see Figure 12). Here, since we have noise in the data, we
do not use 2-nd order polynomial extrapolation as we did to the smooth data,
instead, we use least square extrapolation at jumps. Despite the presence of
noise in the initial data, the level-6 ENO-DB6 reconstruction {solid line in Figure
13} still retains the sharp edges (see zoomn-in picture in Figure 14) compared
to the standard DB6 reconstruction (dotted line in Figure 13) which produces
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Figure 12. Noisy piecewise constant signal polluted by Gaussian white noise.

oscillations at the discontinuities and also smears them.

Acknowledgement. This work is supported in part by grants ONR-NO0017-
96-1-0277, NSF DMS-0973341, NSF DMS-0073916 and ARO DAAD19-99-1-
0141.

References

[1} S. Amat, F. Arandiga, A. Cohen, R. Donat, G. garcia and M. von Oechsen,
Data Compresion with ENO Schemes: A Case Study, ACHA 11, 273-288
(2001)

[2] S. Amat, F. Arandiga, A. Cohen and R. Donat, Tensor product multires-
olution anelysis with error control for compact image representations, to
appear in Signal Processing, 2002.

[3] L. Anderson, N. Hall, B. Jawerth and G. Peters (1993). Wavelets on closed
subsets of the real line, in Recent Advances in Wavelet Analysis, Schumaker
L.L. and G. Webb (eds.), pp. 1-61, Academic Press, New York, 1993.

[4] F. Arandiga and R. Donat, 4 Class of Nonlinear Multiscale Decomposi-
tions, Preprint, 1999,

[5] F. Arandiga and R. Donat, Nonlinear Multiscale Decompositions: The ap-
proach of A. Harten, Numerical Algorithms 23 {2000) 175-216.

{6] A. Arneodo, Wavelet Analysis of Fractals: From the Mathemaotical Con-
cepts to Fzperimental Reality, in Wavelets: Theory and Applications, Ed.
G. Erlebacher, M. Hussaini, L. Jameson, Oxford Univ. Press, 1996.



ENO-wavelets 31

DEEG and ENO—DB6 low pass denolalng

a0 T

s Standard DRE
— ENO-DBS

Figure 13. The comparison of the 6-level ENO-DB6 denoising (solid line) with the
standard DB6 denoising (dotted line) by truncating high frequencies. The ENO-DB6
reconstruction retains the sharp jumps but the standard DB6 one does not, please see
the zoorn in picture. .
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Figure 14. A zoom-in of the denoising example at a discontimmities. The ENO-DB8
reconstruction retains the sharp jumps but the standard DB6 one does not..
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