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Abstract

The pivoted QLP decomposition, introduced by G. W. Stewart [19],
represents the first two steps in an algorithm which approximates the
SVD. If A is an m-by-n matrix, the matrix A is first factored as
Allp = QR, and then the matrix R711; is factored as R7Tl; = PL7, re-
sulting in A = QIT, LPTII{, with @ and P orthogonal, L lower-triangular,
and IIp and II; permutation matrices. The ¢} and P matrices provided
approximations of the left and right singular subspaces, and the diagonal
elements of L are excellent approximations of the singular values of A.
Stewart observed that pivoting is not necessary in the second step, allow-
ing one to efficiently truncate the decomposition, computing only the first
few columns of B andn L and choosing the stopping peint dynamically.
In this paper, we demonstrate that this truncating actually works by ex-
tending our theory for the complete pivoted QLP decomposition {11}, In
particular, say there is a gap between op and oi41, and partition the
matrix L into diagonal blocks Liy and Ly and off-diagonal block Lo,
where L1 is k-by-k. If we compute only the block Li:, the convergence
of (o;(Ln)™" =~ Uj“i)/ojm1 for j = 1,...,k are all guadratic in the gap
ratio orii/or. Henee, if the gap ratio is small as it usually is when A4
has numerical rank k, then all of the singular values are likely to be well
approximated, This truncated pivoted QLP decomposition can be com-
puted in G(mnk) time, making it ideal for accurate SVD approximations
for low-rank problems.

1 Introduction

Many applications involve a large m-by-n matrix A with numerical low rank;
that is, with a few significant singular values and the rest close to zero. The
Singular Value Decomposition (SVD) of A4 is given by 4 = USV?, where U €
R™*™ jg the matrix of left singular vectors, ¥V ¢ R"*” is the matrix of right
singular vectors, and £ € R™*" is a diagonal matrix containing the singular
values. We would like to have a rank k approximation of 4 which ignores the
contributions of the small singular values. Tt is well known that the best such



approximation to A is obtained by simply truncating the SVD: A = 4, =
U2k VT, where Uy, is m-by-k, T, is k-by-k, and V. is k-by-n.

Our paper focuses on an approximation to the truncated SYD based on a
relatively new matrix decomposition. The pivoted QLP decomposition, intro-
duced by G. W. Stewart [19], can be viewed as an approximate SVD. If 4 is
an -by-n matrix, the matrix Ally is first factored as Ally = @R, and then
the matrix RTII, is factored as RTTl, = PLT, resulting in A = QI LPTII},
with @ and P orthogonal, L lower-triangular, and Iy and If; permutation ma-
trices. Stewart ohserved that the elements on the diagonal of L tend to be good
approximations of the singular values of A, and we [11] provided some theory
to explain this. We showed that if there is a substantial gap somewhere in the
singular values, then the pivoted QLP decomposition is likely to give good ap-
proximations to all of them. We showed this assuming that piveting is not even
performed on the second step.

Stewart pointed out that because pivoting is not crucial on the second step,
we can compute a version of the pivoted QLP decomposition which approximates
a truncated SVD. In computing this truncated pivoted QLP decomposition, we
can adaptively determine the rank r of the matrix, and thus where we need
to truncate, and the entire decomposition can be computed in O{mnr) time.
Al of this is possible because in computing the first, say, k1 columns of L, all
that is needed are the first k; rows of R. But these rows are available after the
first ky columns of R have been computed. So the entire computation can be
stopped after the k; rows of R and columns of L have been computed. This
makes the computation very cheap. That it can be restarted, performing the
same sequence on the next, say, ks rows of K and cotumns of L, allows us to
adaptively find a substantial gap in the diagonal elements of I, and hence the
rank of the matrix and the stopping point for the computation.

In this paper, we show that the trancated pivoted QLP decomposition for a
rank k problem approximates the first k singular values very well. In particular,
say there is a gap between oy and o1, and partition the matrix L into diagenal
blocks L;; and Lgo and off-diagonal block Ley, where Ly is k-by-k. If we
compute only the block Ly;, the convergence of (o;(L1,)~% — U;‘l)/cr;l for
i = 1,...,k are all quadratic in the gap ratio og.1/0r. We also compute the
operation count for the truncated pivoted QLP decomposition, showing it to
run in O{mnk) time, making it essentially a quadratic algorithm when the rank
k is small.

2 Truncating and Interleaving

2.1 Explanation of the Method

The QLP decomposition was introduced by G. W. Stewart [19}, who observed
its potency in rank revelation, singular value approximation, and gap revela-
tion. Let us call the diagonal elements in the R matrix of a (R factorization
of A the R-values of A. Noting that the R-values are rough approximations of



the singular values, Stewart suggested taking the pivoted QR factorization and
then triangularizing on the right, obtaining the factorization A = QI LPTTI{.
If we let O = QIl; and P = Iy P, then we have A = QLP7, called the QLP
decomposition of A. Note that the second step is equivalent to performing a QR
factorization on RT, obtaining RT = PTLT. Also note that L is lower triangu-
lar. So the decomposition amounts to taking two pivoted QR factorizations and
thus factorizing A into the product of an orthogonal matrix, a lower-triangular
matrix, and ancther orthogonal matrix. The diagonal elements of L are called
the L-vaiues of 4.

Stewart showed empirically that the L-vaiues track the singular values sur-
prisingly well—far better than the R-values. We showed in [11] that if there is
a gap between oy and gy and L is partitioned as

Ly 0
L= 1
(Lﬁi L22> ’ M
then the convergence of (O’j{Lll)—}mU‘;}'}/O’;l forj=1,...,k, and of (o;(Laa2)—
Or+i)/ Okt for j = 1,...,n—k are all quadratic in the gap ratio ox41 /0. These

results are true even assuming no pivoting in the second QR factorization.

Stewart noticed empirically that the pivoting in the second step was not
crucial, and pointed cat that the algorithm could therefore be truncated and/or
interleaved. Truncating is simply computing only the first k& rows of R and
colurnns of L, where k is perhaps the numerical rank of the matrix 4, thus
producing an approximation to a truncated SVD} of 4. Note that assuming
pivoting is not necessary on the second step, all that is needed to compute the
first k columns of L are the first & columns of R.

Interleaving is a method which allows us to dynamically determine what
k should be by alternately probing for gaps in the R-values and using the L-
values to confirm the gaps. For example, we can compute rows of R until we
find a substantial gap in the R-values, say after computing & rows of E. We
can now proceed to compute the first & columns of L. If the suspected gap is
verified by the L-values, we are finished. If not, we go back and compute more
rows of R until a gap again appears, say after k; more rows, then compute the
corresponding k; columns of L and see whether the gap is verfied. And so forth.

When interleaving, note that within each set of k; rows of R (columns of
RTY that are used to compute k; columns of L, pivoting is certainly possible.
Note also that when computing the k; colamns of L in the i-th pass, we need
the orthogonal transformations {presumably Householder transformations) that
upper-triangularized all the previous columns of L. So when interleaving in
problems where the number of rows of & and then columns of L being computed
in one pass (before going back to compute more rows of I} is rather large, or
in problems when many passes are required, it might be advantageous to store
the orthogonal transformations in block form (see, for example, [1] and [14]} so
that they can be more efficiently applied in the next pass.

Finally, note that there are two sets of orthogonal transformations, those



that upper-triangularize the k computed columns and rows of R (i.e., the first k
columns of ), };) and those that upper-triangularize the & computed columns
of L (i.e., the first k columns of P, P). The columns of ¢y, provide a basis for
the left superior singular subspace, while the columns of Py, provide a basis for
the right superior singular subspace. So we have approximations to all three
matrices in the truncated SVD: @y ~ Uy, L = ¥, and P, = VkT, where L is
k-by-k here. Stewart [19] provides bounds on how well Uy and V; are approx-
imated by @ and Py, respectively. We next turn to how well L approximates
b

2.2 Accuracy

We now assess the ability of the truncated pivoted QLP decomposition to cap-
ture the singular values. If the full pivoted QLP decomposition is A = QLPT,
let L be partitioned as in equation (1), and let R be similarly partitioned as

_ (B Bz
R= ( B
(Here Ry; and Lp; are both k-by-k.) We make the assumption that the initial
pivoting reveals the rank in the sense that

Z22ll < V{k+1)(n— k) ok, (2)
il’lf(R_u) Z Tk (3)

VEm—E+1)

The bounds {2} and (3) are for an RRQR algorithm by Chandrasekaran and
Ipsen [3]. (There is a better bound than (3) in Lemma 2.1 of [10].) The column-
pivoted QR factorization does not guarantee these bounds but usually delivers
them or comes close. We assume these bounds because we are trying to show
why the pivoted QLP decomposition usualy works so well. In the same spirit,

we also make the assumption that p = AlBa2ll - 1, which is almost always true
P inf(R;,)

if the gap between o} and oy is substantial.
We have the following theorem.

Theorem 2.1 Let A be an m-by-n matriz, m > n, and let op(A) > op1(A),
k < n. Let (R; Ri2) be the first k rows of the R-factor in the pivoted QR
factorization of A. Let LT, be the R-factor in the unpivoted QR factoriza-
tion of (RT,RT)T. Assume that the bounds (2) and (3) hold and that p =
[ Raall/infR11) < 1.

Then forj=1,...,k,
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Proof:

Since p = [JRaz|l/inf(R;;) < 1, by Theorem 2.1 of {13] we have |[Laa|| <
HR22|] and inf(L11) > inf(R11), so that p' = ||Lao|l/inf(L11) < 1. Hence for
i=1,...,k, Theorem 3.1 of [13] gives

ai(L11) Izl
-J—Uj—-—— >1-0 (El — (p’)ﬂl[inf(Lu)]g) ’

or

L _ | L1aff?
oi(Li)" — o7 <o;(Lu} o ([1 — (p’}ﬂ[inf(lau)]z> »

From this, the result follows:

oi(bi) ' =07 < oi(Lu)” 10( ILl?L‘: Ln)z)
] "”R;zi‘@u) ) ®
< oj(Ri)” O( - %R::;E(QLH) ) (©)
< oy(Ru)” Cﬁﬂn (Formap)

2 g 2
) o1 { Thtt n? || Bl
< oy(Bn) (@)“%U4mwmmW)'m

The inequalities (5} and (6} follow from Theorem 2.1 of {13], and (7) follows
from the bounds (2) and (3). O

In lieu of Theorem 3.1 of [13] in the proof above, we could have used a result
of Eisenstat and Ipsen, Corollary 5.4 in {6]. It provides a slightly better bound,
but the improvement would not show up in our proof since we take only a first
order approximation in going to the big oh notation.

Theorem 2.1 shows that the convergence of (g;(L1;) ' ~ o7 ')/o; ! for j =

..k are all quadratic in the gap ratio o) /op. Hence if the gap ratio is
small, then all of the singular values are likely well approximated. The theorem



does not address individual elements, only the upper and lower blocks. But
asymptotic results describing how the norm of the matrix is being concentrated
on the diagonal may be found in [4] and [11]. Most of the examples Stewart
considered in [19] have at least one large gap in the singular values, and Theorem
2.1 indicates why the (truncated) pivoted QLP decomposition tends to do well in
such cases. Low-rank problems are certainly one such case. Note that Theorem
2.1 is actually just a restatement of part of Theorem 3.3 of {11], which deals
with the full pivoted QLP decomposition. This is because the L7 matrix is the
same whether we truncate or not.

2.3 Operation Counts

In addition to being accurate, the truncated pivoted QLP algorithm is fast when
k is small. To QR factorize k columns of an m-by-n matrix using Householder
transformations requires about 2mnk — k%(m + n) + 2/3k* flam, where a flam
is a floating-point addition combined with a floating-point multiplication (see
p. 96 of {18]). Note that pivoting adds only an O{mn) term, so we need not
distinguish when we are pivoting. Computing the compiete QLP factorization
requires computing all n columns of the QR factorization of the m-by-n matrix
A and computing all n columns of the QR factorizatoin of the n-by-n matrix
RYT. This gives a total flam count of

. . 2 : . 2 1
2mn? —n*(m +n) + §n3 +2n® —ni(n+n)+ gng =mn® + gng.
Computing the truncated QLP factorization, in which we compute only the
first r rows of R, requires computing the first r columns of the QR factorization
of the m-by-n matrix 4 and computing all r columns of the QR factorization
of the n-by-r matrix (Rf R%,)T). This gives a total lam count of

2 . 2 e 1
2mnr —r’(m +n) + -3:?‘3 + 2072 —ri(n +7) + —3—?"3 = Zmnr — mr® + §7‘3.
If 7 is small {r < n/2), then the truncated QLP can be computed in O(mn)
time compared to O(mn?)} time for the full QLP decomposition. This is a huge
savings.

2.4 A Numerical Example

To show an exampie, we start. with a 100-by-100 diagonal matrix having entries
100, 10, and the other ninety-eight evenly spaced between 1072 and 107%. We
then multiply by a random orthonormal matrix to obtain the matrix A we
assume that we are initially given. Say we want good approximations to the
large singular values, and that we do not care about the noise.

After taking the first two rows of the QR factorization of A, we see a minor
gap-in the first two R-values. We therefore halt this step and perform the next



step, computing the first two columns of L. The computed portions of E and
I are given below. {The ellipsis [three dots} in each row of R stands for the
ninety-eight other entries in that row.)

L=

10.0002

P (944323 69336 -
- ~8.8050

(99.9971 0.7519)

From the first two L-values, we can see that the gap ratio is on the order
of 1/10 and that 99.9971 and 10.0002 are good approximations to the first two
singular values. Perhaps we were expecting a smaller gap ratio to indicate the
beginning of the noise. Let us compute an additional row of R and column of
L. (Now each ellipsis in R stands for ninety-seven entries.)

—-94.4323  6.9336 3.3312 ... 99.9971  0.7519 —(0.0006
R= ~8.8059 0.5307 --- L= 10.6602 ~0.0009
0.0984 --- —0.0997

A gap ratio of about 1073 between the second and third L-values is more
like what we we expecting to separate the signal from the noise. We therefore
take 99.9971 and 10.0002 as the two significant singular values of A.

Using the results from section 2.3, we see that the truncated pivoted QLP
decomposition that we have computed (with m = 10%, n = 10, and r = 3)
requires about 6 x 10* Aam. By contrast, the full pivoted QLP decomposition
would have required about 4/3 x 10% flam. The truncated version is about
twenty-two times faster.
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