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Abstract 
 

     In this paper, we present a new framework for warping 
shapes and open curves between two images. This method 
could also handle multiple pairs of shapes or curves.  
When implemented in 3-D, the same framework could be 
used to warp 3-D objects with minimal modification.  
     Our approach is to use the level set formulation to 
represent the shapes or curves to be matched. Using this 
representation, the problem becomes an energy 
minimization problem. Cost functions for warping 
overlapping, non-overlapping, and open curves are 
proposed. For overlapping shapes, a cost function based 
on minimizing the symmetric difference of the two shapes 
is used. This cost function is then generalized to deal with 
non-overlapping shapes as well. For warping open 
curves, we are inspired by the idea of geodesic active 
contours. A similar approach, which we will refer to as 
geodesic curve matching, is proposed. Euler-Lagrange 
equations are applied and gradient descent is used to 
solve the corresponding partial differential equations. 
 
 
1. Introduction 
 
     Object warping is a challenging problem which deals 
with how to find a diffeomorphic transformation that 
match one object to the other. It is an important issue in 
computer vision and pattern recognition as well as many 
other scientific fields. Recently, image warping has also 
been an active research area in biomedicine to meet the 
challenges of representing and comparing different 
biological structures or images of different modalities. 
Several strategies of non-rigid warping algorithms have 
been proposed in the past decade.  
     Lots of efforts have also been made to represent shapes 
and objects mathematically and to compare them by 
rigorously defining and computing diffeomorphism and 
distance metric. For this beautiful subject, we refer the 
readers to [1-4]. 
     One of the most popular techniques of non-rigid image 
warping is the landmark-based matching. The strategy of 
this method is to first identify user-defined landmarks that 
need to be matched. By interpolating the discrete 

matching of the landmarks, one tries to obtain a dense 
diffeomorphism for the whole image. This has been a 
very popular tool especially in creating special visual 
effects.  For more details on landmark matching, we refer 
the reader to [5-7].  
     Another rapidly developing technique in image 
warping is the non-rigid dense matching. Most of these 
methods are based on the calculus of variations and 
partial differential equations. They start from forming a 
cost function that is minimized when the objects are 
matched. In order to ensure smooth matching, a 
regularizing term on the deformation field is often added. 
Dense matching could be used when landmarks are not 
available or when the information given by landmarks is 
not enough to provide accurate matching or to describe 
the characteristics of the objects. We will incorporate the 
technique of calculus of variations and extend the 
landmark matching to shape and open curve matching.  
 
2. Background 
 
     In this section, we will provide a general overview of 
the setting for dense matching. We will use 2-D images 
for presentation but everything can be generalized to 3-D. 
We will follow the notations in [8], and thus we refer to 
this paper for more detailed description.  
     The terms template and study are often used to denote 
the images to be matched. Let us denote the template 
image as T(x) and the study image as S(x) which are 
images on the spatial domain Ω ⊂ R2. The problem of 
image warping is to find a displacement field u(x) at each 
point x such that a properly defined distance measure, 
which will be denoted by D(T,S,u), between the deformed 
template and the study is minimized. The displacement 
field is a vector field such that given any displacement 
field u the deformed template is given by T(x-u). The term 
displacement is used because it can be viewed as how a 
point in the template is moved away from its original 
location. The most common way to define the measure 
between the deformed template and the study image is 
just the L2 norm 
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Gradient descent of the corresponding Euler-Lagrange 
equation is often used to minimize this distance measure, 
and an artificial time t has to be introduced in order to 
solve for the displacement field. Thus we will denote the 
displacement u by u(x,t) to avoid confusion. In the case of 
L2 norm, the gradient decent partial differential equation 
is simply 
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The function f(x,u(x,t)) (up to a sign) is often called the 
force field or the body force, which describes the 
derivative of the distance measure with respect to the 
displacement field u. The term force field (body force) is 
used because this derivative could be viewed as the force 
that drives the deforming of the template. 
     Unfortunately this problem is known to be ill posed. 
One way to overcome this difficulty is to add another 
regularizer R(u) on u to ensure smooth deformation. Thus, 
instead of minimizing D(T,S,u), we now minimize the 
following new cost function 
                 (3) 

Here α is the weight of the regularization. If we use a 
larger value we restrict the magnitude of deformation 
while a smaller value could yield a non-diffeomorphic 
transformation. In the next section, we will review several 
ways of regularization on the displacement field. 
 
3. Previous Work 
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     How to properly constrain the deformation depends on 
the nature of the matching. Several models for the 
regularization have been proposed and this is still an 
active field for research. All these models are based on 
different assumptions or analogies in physics. Yet in some 
sense, they all try to penalize large or oscillatory 
deformations that are not diffeomorphic. In this paper, we 
will describe some of the most well known models as well 
as the one we are going to adopt. 
 
3.1. Hyper-elastic Registration 
 
      In hyper-elastic matching [9, 10], the authors tried to 
draw analogy between image warping and deforming 
elastic plates. Under the assumption of linear elasticity, 
which holds for relatively small displacement field only, 
we arrive at the following equation that should hold at 
equilibrium 
 
          (4) 
 

Here µ and λ are the Lame constants. Due to this linear 
elasticity assumption, large-magnitude displacements are 
severely penalized and thus hyper-elastic model is not 
suitable for problems in which large deformation and 
highly nonlinear deformation is needed. 
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3.2. Viscous Fluid Registration 
 
     The viscous fluid matching was first proposed by 
Christensen in [8]; thus for a detailed description of this 
model, we refer the reader to this paper and the references 
therein. To summarize, images are thought of being 
embedded in fluid flowing in accordance with the fluid-
dynamic Navier-Stokes equations. The advantage of this 
method is that it allows large-magnitude deformations 
since stress constraining the deformation relaxes over 
time. Automatic re-gridding was also used in this method 
to prevent the local Jacobian from being too close to zero. 
The distance measure used in this model is the L2 distance 
between T(x-u) and S(x) (though the name Gaussian 
sensor model was used). The disadvantage of this method 
is the relatively large computation load.  
     The partial differential equation that describes the 
deformation of the template could be written in the 
following form 
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Here v is the velocity field and is related to the 
displacement field u in the following way 
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For more details on how to implement this method, please 
refer to [8, 11, 12]. 
 
3.3. Regularization proposed by Horn and 
Schunck  
 
     A third regularization, which we adopt in this paper, 
was originally used to regularize the velocity field in the 
optical flow problem (see, for example, chapter 5 in [13]). 
This regularizer was first proposed by Horn and Schunck 
in [14] by adding the following penalty on the velocity 
field v  

                        .                        (7) 

This penalty term is well known to smooth isotropically 
across the discontinuities. Thus, it is not suitable to 
regularize optical flow since discontinuities in the 
velocity field often exist on the boundary of moving 
objects. However, it is suitable for regularization in image 
warping where smooth deformation fields are expected. 
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The same regularizing term for image warping was 
proposed in [15] and the term fast diffusion registration 
was used. 
     In this paper, we will follow [15] and use this 
regularization for our shape and open curve matching 
problem. One advantage of this regularizer is that by 
employing the gradient descent to solve the corresponding 
Euler-Lagrange equation, we obtain an inhomogeneous 
heat equation 
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Thus, the equations are decoupled for different 
components of u 
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Moreover, this inhomogeneous heat equation allows fast 
computation via the operator splitting method (see 
implementation and results section). 
 
4. Theory 
 

   In this paper, we try to generalize the landmark 
matching problem by replacing the finite pairs of 
landmarks to be matched by finite pairs of shapes or 
curves. We turn to the idea of level set method for ways 
of representing shapes and curves. The level set method 
was first proposed in [16] and has been proven to be a 
powerful tool in front tracking as well as many other 
applications. For an overview on level set method, we 
refer the readers to [17] and the references therein. 
 
4.1. Shape matching 
 
     Let us start with shape matching. A shape could be 
represented by a level set function with the boundary of 
the shape being the zero level curve of the level set 
function (positive value inside the shape and negative 
outside). Throughout this paper we will use the following 
notation (see figure 1 (a)). The shapes in the template 
image will be denoted by the level set functions 
ϕ1,ϕ ,…,ϕ and the corresponding shapes in the study 
image by φ ,φ ,…, φ . Here n is the total number of pairs 
of shapes to be matched. 
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4.1.1. One Pair of Overlapping Shapes.  Let us start 
from the simplest case of shape matching with only one 
pair of shapes (and thus we drop the subscript on the level 
set functions). In the template image, we have a shape 
represented by ϕ and a second shape in the study image 

by φ and our task is to find a displacement field that maps 
ϕ to φ. 
     In order to derive a suitable distance measure that is 
always non-negative and only takes the value zero when 
the two level set functions match, we borrowed the idea in 
[18]. In short, we try to minimize the symmetric 
difference of the two level set functions (the sum of the 
two areas denoted by ϕ>0, φ<0 and ϕ<0, φ>0 in figure 1 
(b). We thus derive the following distance measure, which 
we will refer to as the overlapping distance measure 
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    The force field of this distance measure is 
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Here H and δ are the Heaviside and the delta function. 
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4.1.2. One Pair of Non-overlapping Shapes.  The above 
distance measure (Equation 9) does not work for non-
overlapping shapes. The reason is that by minimizing the 
distance measure, ϕ will simply shrink to a point and the 
cost function will reach a local minimum. To overcome 
this we have to modify the distance measure so that it still 
works for non-overlapping shapes. The solution we 
propose is that, instead of integrating 1 in the area of the 
symmetric difference of the two level sets, we now 
integrate with respect to the level set function. To be more 
precise, in figure 1 (b) we integrate -φ in the area denoted 
by ϕ>0, φ<0, and integrate -ϕ in the area denoted by ϕ<0, 
φ>0. To make this work, we now have to initialize the 
level set functions to be the signed distance function to 
their zero level sets. It is easy to see that the distance 
measure defined in this way, which we will refer to as the 
non-overlapping distance measure, is also non-negative 
and takes the value zero only when the two shapes match
  

 
In this case the force field is given by 
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Figure 1. (a): Illustration of a general shape 
matching problem where multiple shapes 
represented by level set functions ϕi in the template 
need to be matched to φi in the study. (b): Illustration 
of four sub-regions divided by the level set functions, 
when the shapes in the template and study have 
overlap in space. 
 
4.1.3. Matching Multiple Pairs of Shapes.  The above 
formulation could be easily generalized to multiple pairs 
of shapes by combining distance measures.  For example, 
the distance measure for matching multiple pairs of non-
overlapping shapes is 
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4.2. Geodesic Open Curve Matching 
 
     Now we will turn to the more interesting problem of 
matching open curves by level set functions. As before we 
will focus on only one pair of open curves, as matching 
multiple pairs is just a direct extension. Our task is then to 
find a deformation field that maps an open curve C in the 
template to another open curve C’ in the study.  
     It has been well known that one of the disadvantages 
of level set approach is one level set function can not 

represent an open curve. Several remedies have been 
introduced. In this paper, we will follow the smart idea in 
[19] by appending a second level set function. Please refer 
to figure 2.  In order to find a representation of open curve 
C, we extend C to a closed curve (represented by the zero 
level set of ϕ1), and we further draw a second closed 
curve (represented by the zero level set of ϕ2), which 
crosses the zero level set of ϕ  only at the two end points 
of C.  

1

 
Figure 2.  Illustration of how to represent an open 
curve using level set functions. 
 
Then the open curve C could be written in the following 
way 
                C             (14) { }1 2| ( ) 0 ( ) 0x x and xϕ ϕ= = > .
The open curve C’ in the study image could also be 
represented by two level set functions φ1 and φ2. Let us 
further denote the distance functions of C and C’ by DS(x) 
and DT(x). We then combine the idea of geodesic active 
contours [20] and the symmetric difference of two sets by 
minimizing the following distance measure 

    This distance measure could be viewed as the sum of 
two line segment integrals with respect to the other 
curve’s distance function, and thus is nonnegative and 
zero only when the two open curves are equal. 
     We will describe in detail how to obtain the Euler-
Lagrange equation in this case. Note that all the 
derivations are in the sense of distributions. Let us first 
define G(u) as the first part of the distance function 
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We want to compute the derivative of G along a test 
function v 
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    By expanding the numerator in (17) up to first order, 
we get the following three terms 
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        (20) 

Now we apply integration by parts on (19) and assume 
Neuman boundary conditions, we get 
 

 

(21) 
Thus, term (18) is canceled in the numerator of (17) by 
negative (18) from the expansion of (19). Let us further 
work on the integrand of the remaining term in (21) 
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Now we could put everything together and obtain the 
following force field given by this distance measure 

(23) 
We shall make a remark here that by combining distance 
measures, we can warp images in which multiple pairs of 
both shapes and open curves are to be matched. 
 
5. Implementation 
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     Finite difference method will be used to solve the 
gradient descent time-evolution partial differential 

equations. The equations that we are going to solve all 
have the form of inhomogeneous heat equations. Let us 
group everything other than the Laplacian operator 
together and write our PDE in the following way  

               .             (24) 

One can solve this using fully explicit scheme but the 
disadvantage of the fully explicit scheme is that the step 
size  has to be very small. One remedy is to use a 
semi-implicit scheme and invoke the Additive Operator 
Splitting (AOS). The AOS scheme was first proposed in 
image processing by Weickert [21, 22] for efficiently 
solving non-linear diffusion filtering problem. The trick 
here is to replace the Laplacian operator on the right hand 
side at the current time step with the next time step. To be 
more precise, let the vector  be 
a lexicographical ordering of the values of the 
displacement field at the grid points at time step n and  
be the usual 3-point finite difference approximation 
operator of the second order derivative along the l-th 
space coordinate. We denote the finite difference 
approximation of  described above at the 

grid points at time step n by . 
Then the semi-implicit scheme is 
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This scheme could not be solved explicitly and involves 
inversion of a sparse matrix with five bands (in two-
dimensional case). The trick of AOS is to replace the 
above problem by solving the following instead 
 

        u I .    (27) 

 
     This smart splitting has the same local truncation error 
as the original semi-implicit scheme and is of order one in 
time and order two in space. Moreover, it is 
unconditionally stable. By splitting the operator into a 
coordinate-by-coordinate fashion, we now only need to 
invert a tri-diagonal matrix along each coordinate and this 
allows an O(m2) implementation by the Thomas 
algorithm. From our experience, a speed-up of at least a 
magnitude of 10 compared to the fully explicit scheme 
could be achieved by using the AOS scheme. 
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6. Results 

  



 
     In this paper, all the images are of size 128 by 128 
pixels. The grid size is 0.1. The numerical approximations 
for calculating the Heaviside function and the delta 
function could be found in [23]. 
  
6.1. One pair of non-overlapping shapes 
 
     In the first experiment, we look at one pair of non-
overlapping shapes.  Figure 3 shows the template (a) and 
the study image (b). The shapes are constructed such that 
the inner rim in the study does not touch the outer rim in 
the template. The weight α used in this experiment is 0.04 
and the time discretization dt is 0.1. 
 

 
Figure 3.  Illustration of a matching problem with two 
non-overlapping rings in the template (a) and the 
study (b). 
 
    1500 iterations are used to calculate the final 
displacement field.  Figure 4 shows the final warped 
shape and the underlying grid deformation of the 
template. 
 

 
 Figure 4.  The deformation field obtained by the 
proposed method for matching figure 3 (a) to 3 (b). 

 
6.2. One pair of open curves 
 

   In this experiment, we look at one pair of open curves. 
We extracted two arcs from two circles (different center 
and radius) as our open curves.  Figure 5 shows the 
template (a) and the study image (b). The weight α used 
in this experiment is 0.015 and the time discretization dt 
is 0.04.  

  

 

 
Figure 5.  Illustration of a matching problem with two 
arcs in the template (a) and the study (b). 
 
    3000 iterations are used to calculate the final 
displacement field. Figure 6 shows the final warped open 
curve and the underlying grid deformation of the 
template. 
 

 
Figure 6.  The deformation field obtained by the 
proposed method for matching figure 5 (a) to 5 (b). 
 
6.3. Two pairs of non-overlapping shapes 
 
     This experiment is the most challenging case.  Figure 7 
(a) shows the template image. The study image, though 
not shown here, is visually identical to the final warped 

  



template shown in figure 7 (f). The goal here is to match 
two pairs of non-overlapping circular shapes.   
 

 
Figure 7.  The intermediate shapes in the matching 
process in 6.3 at iteration 0 or template (a), 100 (b), 
400 (c), 1000 (d), 1500 (e), and 6000 (f). 
 
     To avoid the shapes from shrinkage during the 
deforming process, we add a second constraint on the 
change of the area inside the shapes. We also constantly 
monitor the position of the deforming shapes in the 
template and we switch the distance measure to the 
overlapping distance measure once a substantial amount 
of overlapping is detected between the deforming shapes 
and the shapes in the study. In this experiment the non-
overlapping distance measure is switched to the 
overlapping distance measure at iteration 500. The 
constraint on the change of area is also turned off at 
iteration 500. The weight α used is 0.01. 
 

 
Figure 8.  The deformation field obtained by the 
proposed method for matching figure 7 (a) to 7 (f). 
 

    Figure 7 shows the intermediate images in the 
deforming process at iteration 100 (b), 400 (c), 1000 (d), 
1500 (e), and 6000 (f). The final deformation field 
corresponding to figure 7 (f) is shown in figure 8.   
 
7. Discussions 
 
     In this section we will first explain why we have to 
switch the distance measures in experiment 6.3. We also 
will carefully re-examine the role of the level set 
functions. A new concept of re-initialization, which is 
different from the usual meaning of re-initialization, of 
the level set function will be proposed and discussed. 
 
7.1. Distance measure switching in 6.3 
 
     For the experiment in 6.3, one may wonder why the 
original strategy with no switching of the distance 
measure does not work. This is a very subtle issue. It 
turns out that using non-overlapping distance measure 
alone in this experiment will generate slant shapes with 
tails and thus fail to match the two pairs of shapes. It can 
also be noted in the intermediate steps in figure 7 (d) and 
(e) in which long tails behind the shapes could be seen.  A 
reasonable explanation is that the signed distance function 
property of the level set functions is gradually violated in 
the deforming process such that after some time the 
directional information in ϕ(x-u) is almost lost and it is 
not suitable for further guiding the shapes toward the 
correct direction. That is why we have to use this two-step 
strategy of starting with one measure and switching to the 
other one once certain amount of overlapping is detected.  
     One could also argue that as we switch, we no longer 
care about the distance function property of the level set 
functions and thus all level set functions will do the job. 
In other words, the distance function property is only 
needed when the images do not overlap, and thus during 
this time directional information is provided by the level 
set functions. Once overlapping is detected, we can safely 
switch to the overlapping distance measure although now 
the level set function is no longer and far away from a 
distance function!! 
 
7.2. Re-initialization of the distance function 
 
     In this section, we will discuss possible solutions to 
avoid switching the distance measure. A reasonable 
approach is to constantly adjust the level set function so 
that it is always close to the signed distance function with 
respect to the current displacement field.  
     Here we propose to re-initialize distance functions (ϕ 
in shape matching and DT in open curve matching) once 
in several iterations in the following way. Let us use ϕ as 
an example. In the first term of the distance measure 

  



proposed for the non-overlapping shapes in (11), we 
integrate -ϕ(x-u) inside one piece of the symmetric 
difference. But we initialize ϕ(x) to be the distance 
function when there is no displacement field at all 
(u(x)=0). Once we start updating u, we lose this nice 
property. In other words, ideally we would like the 
function ϕ(x-u(x)) to be always a distance function to its 
zero level curve for all displacement u  
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This is a Hamilton-Jacobi equation in the form 
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Here a, b, and c are functions of u. 
     In short, the procedure of re-initializing includes fixing 
the zero level set and updating all the other values with 
respect to the current displacement field by solving (29), 
which for example, could be solved by the method in 
[24]. Numerical results will be reported in the future. 
  
8. Conclusion 
 
     In this paper, we propose the problem of shape and 
open curve matching that can be viewed as a natural 
extension of the landmark-based matching problem. We 
solve this problem by incorporating level set method 
along with the calculus of variations and partial 
differential equations. Our numerical experiments show 
very promising results.  
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