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Abstract

In this article, we develop a fast method to solve a class of opti-
mization problem with level set representation. When applying this
algorithm to the Chan-Vese image segmentation model (2001, IEEE
Trans. on Image Processing. 10, 2), it improves the computational
speed dramatically. This approach differs from previous methods in
that we do not need to solve the Euler-Lagrange equation of the un-
derlying variational problem. Instead, we calculate the energy directly
and check if the energy is decreased when we change a point inside the
level set to outside or vice versa. We analyze the algorithm and prove
that under most initial conditions, we only need one sweep over the
pixels to converge to the correct solution for 2-phase images. Another
advantage of this method is that the gradient of the functional is not
needed. This enables it to be applied to broader range of optimization
problems. The complexity of our algorithm to do tasks such as image
segmentation is O(N), where N is the number of pixels in the image.

1 Introduction

Variational methods have been extensively used and studied in image pro-
cessing in the past decade because of their flexibility in modeling and various
advantages in the numerical implementation. Examples of this include im-
age segmentation [3, 4, 12], object tracking [13], texture synthesis and vector
field visualization [1]. The basic idea of variational methods is to minimize a
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cost or energy functional. This functional generally will depend on the fea-
tures of the image. The classical way to solve the minimization problem is to
solve the corresponding Euler-Lagrange equation. This PDE based method
sometimes is not very efficient because of numerical stability constraints.

In this paper, we present a new algorithm for solving a kind of optimiza-
tion problems that can be formulated by level sets. That is, our algorithm
is defined for:

min
φ

F (H(φ)), (1)

where H is the Heaviside function, F is any functional dependent on H(φ)
and φ is the level set function. In particular, the Chan-Vese model [3] is
in this form. This minimization problem is usually solved by solving the
Euler-Lagrange equation:

φt = −∇φF (H(φ)). (2)

The prerequisite for this method is that F must be differentiable with respect
to φ. But for many problems, this may not be true. For example, if we
want to segment cluttered images, F can be defined as the distance between
the histogram of φ > 0 and that of the training set [17]. To overcome
this difficulty, in this paper, we use, instead of solving the corresponding
Euler-Lagrange equation, a direct method to solve the variational problem.
The main advantage is that we do not need to solve a PDE, thus have
no numerical stability constraints. We simply test each point to check if
the energy decreases or not when we change a point inside the level set to
outside or vice versa. When we apply this method to the Chan-Vese image
segmentation model [4], it improves the computational speed dramatically
(at least 10 times). For 2-phase images, it will converge in one sweep under
a suitable initial condition which usually will be satisfied. For multi-phase
images, this method also converges very fast compared to PDE methods.
It is easy to extend this method to higher dimensional problems such as
3-D segmentation and clustering. Another virtue of this method is that
the gradient of functional F is no longer required. Thus we can apply this
method to a broader range of optimization problems.

The possibility of obtaining a fast algorithm for the Chan-Vese model by
solving ordinary differential equation was pointed out to the second author
by Fedkiw in [5]. This has led to the recent work of Gibou and Fedkiw in
[6], which is similar, but not identical, to our current work.1 The methods

1Apparently, we were working independently and were not aware of each other’s inves-
tigation.
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are similar in the sense that they both are designed to speed up the com-
putation of the Chan-Vese model, and they both exploit the fact that we
only need the sign of φ but not its value. They are different in their specific
approaches. The method in [6] is motivated by considering large time steps
for a simplified Euler-Lagrange equation of the Chan-Vese model by ignoring
the length regularization term. The regularization is then put back in by a
subsequent anisotropic diffusion process. Our approach is a general level set
based optimization framework, with the Chan-Vese model as a particular
application. We use the values of the objective function directly, without
the need for its gradient or the corresponding Euler-Lagrange equation, to
determine the sign of φ. Our model also allows the full Chan-Vese model
with the length term included. We will have a more detailed comparison
later in the paper.

The paper is organized as follows. In section 2, we briefly review the level
set methods and give our new algorithm to solve the optimization problem
(1). In section 3, we review the Chan-Vese model and analyze its properties
in section 4. These properties are for the Chan-Vese model only. In section 5
we apply the algorithm to image segmentation by piecewise linear functions.
Numerical implementation and experimental results are given in section 6,
and we end the paper with a brief concluding section.

2 The Level Set Based Optimization

We begin by reviewing the standard level set method, then we give a new
method to solve the optimization problem (1) and set the conventions that
will be used throughout the paper.

The level set method, as initiated in [11], has been widely used in
many areas including computational physics, image processing and com-
puter graphics. The idea of the level set formulation is that it represents
the front as the zero level set of a function defined in a higher dimensional
space.

Consider a closed moving interface Γ(t) in Rn. Let Ω(t) be the region
(possibly multi-connected) that Γ(t) encloses. We associate with Ω(t) an
auxiliary function φ(x, t), called the level set function, which is Lipschitz
continuous and satisfies:





φ(x, t) > 0 for x ∈ Ω
φ(x, t) = 0 for x ∈ ∂Γ
φ(x, t) < 0 for x ∈ Ωc,

(3)
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where x ∈ Rn, t ∈ R+. Then we have the following simple facts:

n̂ = − ∇φ

|∇φ| , (4)

|Γ(t)| =
∫
|∇H(φ)|dx, (5)

|Ω(t)| =
∫

H(φ)dx, (6)

where n̂ is the outward normal of the interface Γ(t), H(φ) is the 1D Heaviside
function which takes 0 for φ < 0 and 1 otherwise. In 2D, |Γ(t)| is simply
the arc length of Γ(t) and |Ω(t)| the area of Ω(t), while in 3D, |Γ(t)| is the
surface area of Γ(t) and |Ω(t)| the volumn of Ω(t).

If we know φ, we can locate the interface by finding the zero level set of
φ. That is, Γ(t) = {x : φ(x, t) = 0}. So moving the interface is equivalent to
updating φ, which can be done by solving a Hamilton-Jacobi type equation
such as (2). This is usually slow because of the CFL condition. When solving
(1), if we really need the value of level set φ, we have to solve (2). But for
some special cases, for example, the Chan-Vese segmentation model, we do
not need the value of φ, but only its sign. From the optimization point of
view, this opens to us the possibility to use other direct methods to solve
the minimization problem like (1). Based on this observation, we give a new
direct algorithm to solve (1).

The outline of the algorithm is as follows:

Step 1. Initialize. Construct an initial partition, one part for φ > 0, one
part for φ < 0 and compute the value of F according to φ.

Step 2. Advance. For each point x in image, if the energy F decreases
when we change φ(x) to −φ(x) , then update this point by φ(x) =
−φ(x), otherwise, φ(x) remains unchanged. We sweep the pixels in
some prescribed order. For example, in image segmentation, we can
sweep the pixels row by row. We can use either Gauss-Seidel or Jacobi
iteration in each sweep.

Step 3. Repeat the step 2 until the energy F remains unchanged.

In step 1, there are several ways to set the initial value of φ. For example,
we can use signed distance to the zeros level set as initial value or just let
φ = 1 inside the level set and φ = −1 outside. Which one will be used
depends on the expression of F . Note that after initialization, we only
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change the sign of φ in each sweep. There is no need to compute derivatives
and F need not be differentiable. On the other hand, in the above heuristic
approach, we can not guarantee F has a unique solution. We also do not
know whether the algorithm can converge even to a local minimum.

To illustrate this algorithm, we apply it to the Chan-Vese image segmen-
tation model [4] in the next section and see how it improves the convergence
speed. We also prove some properties of this method.

3 Application to the Chan-Vese Model

The Chan-Vese image segmentation model is a variational model for 2-phase
image segmentation. The basic idea is to look for a particular partition of
a given image into two regions, one representing the objects to be detected
and one representing the background. Assuming that the image u0 is a 2-
phase image with piecewise constant values ui

0 and uo
0 and that the object

to be detected is represented by the value ui
0. Let C0 denote the boundary

of the object. The “fitting energy” is defined as :

F1(C) + F2(C) =
∫

inside(C)
|u0 − c1|2 +

∫

outside(C)
|u0 − c2|2,

where C is any other variable curve, and the constants c1, c2 are the aver-
ages of u0 inside and outside of C respectively. The fitting energy will be
minimized if C = C0. In the Chan-Vese model, they also have a regular-
izing term, such as the length of C and the area inside C to control the
smoothness of the boundary. Therefore, the energy F (C, c1, c2) is define by:

F (C, c1, c2) = µ·(length(C))+λ1

∫

inside(C)
|u0 − c1|2+λ2

∫

outside(C)
|u0 − c2|2

(7)
If we use the level set to represent C, that is, C is the zero level set of

a Lipschitz function φ : R2 → R, then we can replace the unknown variable
C by the unknown variable φ, and the energy functional F (C, c1, c2) can be
written as:

F (H(φ), c1, c2) = µ
(∫

Ω
|∇H(φ)|) + λ1

∫

Ω
|u0 − c1|2H(φ)dx

+ λ2

∫

Ω
|u0 − c2|2(1−H(φ))dx.

(8)

where c1, c2 are also functions of H(φ). Note that F is in the form of (1).
In equation (8), the two fitting terms are easy to compute directly. We can
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approximate
∫ |∇H(φ)|dx by:

∑

i,j

√
(H(φi+1,j)−H(φi,j))2 + (H(φi,j+1)−H(φi,j))2,

where φi,j is the value of φ at the i, jth pixel. The summand can only take
the values 0, 1 or

√
2, depending on whether the 3 distinct pair of points from

the set { φi,j , φi+1,j , φi,j+1} belong to the same or different regions. Thus
the length term can be easily computed knowing only H(φ), and there is no
need to know φ. This computed value can be interpreted as the discretized
length of zero level set. Note that to apply our algorithm, we do not need
F differentiable in (8), which would have necessitied δ(φ) in Euler-Lagrange
equation of (8).

To solve the minimization problem (8), the usual approach is to derive
its Euler-Lagrange equation, then use explicit time marching or implicit
iteration. Because of the CFL condition, the time step should be very small,
thus it needs a lot of iterations to converge. We can also use implicit iterative
methods, such as those used in the original paper [3]. In this case, the time
step is not as restricted as in explicit time marching.

Our algorithm for the Chan-Vese model is:

1. Give any initial partition of the image, set φ = 1 for one part and φ = −1
for another part.

2. Assume that the value of current pixel is x, c1 and c2 are averages for
φ = 1 and φ = −1 respectively, m and n are number of pixels for
φ = 1 and φ = −1. If φ(x) = 1, then compute the difference between
the new and the old energy:

∆F12 = (x− c2)2
n

n + 1
− (x− c1)2

m

m− 1
.

If ∆F12 < 0, then change φ(x) from 1 to -1.
And similarly for the phi(x)=-1 case. If we consider the length term,
then the change of the length is easy to compute since only four neigh-
bor points will be affected when we change the value of a point.

3. Repeat the step 2 until the total energy F remains unchanged.

4 Analysis of the Algorithm for Chan-Vese Model

When we apply our new algorithm to the Chan-Vese model, it always con-
verges in a finite number of sweeps (usually less than 10). If we do not
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consider the length term (µ = 0), it even converges in less than 5 sweeps.
This leads us to analyze a simplified form of the algorithm that leaves out
the regularization in the Chan-Vese model.

Considering a two phase image, the object is represented by A (maybe
multi-connected), the background is B, the corresponding value for A and
B is a and b, Given an initial partition φ > 0 and φ < 0, denoted by φ1 and
φ2. Assume there are m points in φ1 and n points in φ2. Let ci, Fi be the
average and energy for φi, i = 1, 2. Assume a point P ∈ φ1 with value x.
If we change P to from φ1 to φ2, let c̃1, c̃2 be the new average for φ1 and
φ2, respectively, and F̃1, F̃2 be the new energy for φ1 and φ2. Then we can
easily calculate:

c̃1 = c1 +
c1 − x

m− 1

c̃2 = c2 − c2 − x

n + 1

F̃1 = F1 − (x− c1)2
m

m− 1

F̃2 = F2 + (x− c2)2
n

n + 1
.

The difference between the new energy and old energy is:

∆F12 = (x− c2)2
n

n + 1
− (x− c1)2

m

m− 1
.

Similarly, if P change from φ2 to φ1, the change of energy is:

∆F21 = (x− c1)2
m

m + 1
− (x− c2)2

n

n− 1
.

Now, we have:

Lemma 1. If A ⊆ φ1 and n
n+1 > (m−A)2

m2
m

m−1 , where A represent the totality
of points in object A, then, after one sweep, the algorithm will converge. The
object is either φ > 0 or φ < 0.

Proof. Assume a < b, then c2 = b, a < c1 < b. We only need to consider
every possible case. See Fig. 1(a). Assume P ∈ A. If we change P to φ2,
the change of energy will be:

∆F12 =
n

n + 1
(a− b)2 − (a− c1)2

m

m− 1

= (
n

n + 1
− (

m−A

m
)2

m

m− 1
)(a− b)2.
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Figure 1: different initial condition, (a), the object is completely contained
in φ > 0, (b), the object A has nonempty intersection with φ > 0 and φ < 0

By assumption, this is positive, so P will not change.
If P ∈ B ∩ φ1, then

∆F12 = −(b− c1)2
m

m− 1
< 0,

so P will change to φ2.
If P ∈ B ∩ φ2, then if change P from φ2 to φ1,

∆F21 = (b− c1)2
m

m + 1
> 0,

therefore, P will not change.
So, after one sweep, all points are computed correctly. The object is repre-
sented by φ > 0. This complete our proof.

Remark 1. For A ⊆ φ2, the proof is the same. In practice, n
n+1 ≈

1, m
m−1 ≈ 1, so if φ1 is close enough to A, then m − A << m, and the con-

dition in lemma 1 will be satisfied.

Remark 2. In the above proof, we use Jacobi iteration. The sweeping
order is not important since we do not use the improved values of F until
after a complete sweep. We can use any sweeping order in step 2. If we use
the Gauss-Seidel iteration, that is, for each point, we use the most recent
value, we still have the same result. To prove this, we only need to show
that the condition in lemma 1 will be satisfied for each point. Given a point
P , if P ∈ A or P ∈ B ∩ φ2, then from the proof of lemma 1, φ(P ) will not
change. If P ∈ B ∩ φ1, then P will change from φ1 to φ2. Note that after
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this calculation, m = m− 1, n = n + 1, so the condition in lemma 1 is still
satisfied. This completes our proof.

Remark 3. Strictly speaking, our method does not use level set evolu-
tion, We just use level set to formulate our problem.

We now consider the other case, i.e. A and B can not be completely
contained in φ > 0 or φ < 0, we have:

Lemma 2. Let φ1A = A ∩ φ1, φ2A = A ∩ φ2, φ1B = B ∩ φ1, φ2B = B ∩ φ2,
we assume none of them are empty, i.e., A and B can not be completely
contained in φ1 or φ2. See Fig.1(b). If φ1A does not change from φ1 to φ2,
then φ2A must change sign. Similar for φ1B and φ2B.

Proof. Since φ1A does not change sign, then

∆F12 =
n

n + 1
(a− c2)2 − (a− c1)2

m

m− 1
≥ 0,

so we have
(a− c2)2

(a− c1)2
≥ m

m− 1
n + 1

n
> 1.

Now, if φ2A does not change from φ2 to φ1, then

∆F21 =
m

m + 1
(a− c1)2 − (a− c2)2

m

m− 1
≥ 0,

so we have
(a− c2)2

(a− c1)2
≤ m

m + 1
n− 1

n
< 1.

This is a contradiction.

This means if one part of A does not change, the other part of A must
change to the same sign.

Remark 4. It is possible that φ1A and φ1B change sign at the same time.
In this case, it must satisfy the following condition:

n− 1
n

m

m + 1
≤ (a− c2)2

(a− c1)2
≤ m

m− 1
n + 1

n
. (9)

For example, if c1 = c2, then this condition will be satisfied. In the next sec-
tion, we give an example satisfying this condition, and the algorithm ceases
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to work. This condition means that c1 and c2 are very close. In general, if
the object is not similar to the background and the initial partition is close
to object, then condition (9) will not be satisfied and the algorithm will
converge very quickly.

Now we have our main theorem:

Theorem 1. If the condition in inequality (9) is not satisfied, and |c1−c2| >
c, where c is some constant, then the algorithm ( with µ = 0 ) with either
Jacobi or Gauss-Seidel converges in one sweep for a 2-phase image.

Proof. First we consider Jacobi type iteration. Since inequality (9) is not
satisfied, without loss of generality, we assume (a−c2)2

(a−c1)2
≥ m

m−1
n+1

n . We
further assume c2 > c1, a < b. Then a < c1 < c2 < b. If A or B is
completely contained in φ1 or φ2, then by lemma 1, it will converge in
one sweep. Otherwise, both A,B have intersection with φ1 and φ2. Since
(a−c2)2

(a−c1)2
≥ m

m−1
n+1

n , so

∆E12 =
n

n + 1
(a− c2)2 − (a− c1)2

m

m− 1
≥ 0,

which means φ1A does not change sign. By lemma 2, φ2A will change sign
from φ2 to φ1. So A ∈ φ1. Now consider a point P in φ2B. If it changes to
φ1, then

∆E21 =
n

n + 1
(b− c1)2 − (b− c2)2

m

m− 1
≥ 0.

This means φ2B will not change sign. By lemma 2, φ1B will change sign from
φ1 to φ2 and we have B ∈ φ2. If we use Jacobi iteration, then, after one
sweep, A ∈ φ1 and B ∈ φ2. If we use Gauss-Seidel iteration, as the argument
in remark 2 shows, each time when we change a point, the condition in the
theorem is still satisfied. This completes our proof.

Remark 5. In practice, we do not expect one sweep convergence by just
considering local change since the Chan-Vese model is a global model. In
this model, the only global sharing information is the average. In our algo-
rithm, when we change a point, we know how it affects the average. That’s
why it is possible to converge in one sweep.

Generally, it is easy to have initial conditions that satisfies the hypothesis
for theorem 1. Our experiments also show that it is correct for 2-phase
images. For multi-phase images, we no longer have finite convergence result
of theorem 1, but we still can expect fast convergence.
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In practice, when we apply our algorithm to the Chan-Vese model, we
have several choices. The first one is to directly apply the algorithm to the
model with the length term included. Or we can first consider µ = 0, then
followed by µ > 0 to have the full effect of regularization. Another choice
is to consider µ = 0, followed by a PDE-based algorithm. We will give an
example in the section 6.

5 Application to Other Optimization Problems

A simple extension to the Chan-Vese model is to use linear approximation
instead of constant [17, 18]. This model is more appropriate when the image
has region of linear shading instead of piecewise constant intensities. We
consider a 2-phase image segmentation, each phase can be approximated by
a linear function. Thus, using the level set representation, the functional
can be represented as:

F (H(φ)) = µ
(∫

Ω
|∇H(φ)|) + λ1

∫

Ω
|u0 − a0 − a1x− a2y|2H(φ)dxdy

+ λ2

∫

Ω
|u0 − b0 − b1x− b2y|2(1−H(φ))dxdy,

(10)

where ai, bi , i = 0, 1, 2, are coefficients of a linear function which depend
on H(φ). The ai can be computed by linear system:

∂

∂ai

∫

Ω
|u0 − a0 − a1x− a2y|2H(φ)dxdy = 0, i = 0, 1, 2.

Similarly for bi. It is as easy to evaluate F and apply our algorithm as in
the Chan-Vese model. But in this model, updating ai and bi is not so easy
when we change φ of a point. So it is better to use Jacobi iteration than
Gauss-Seidel iteration. The experiment result will be given in next section.

Another extension to the Chan-Vese model is to consider multiphase
constant approximation to the image [3]. The idea is using log n level set
functions to represent n phases or segments. Therefore, the energy to be
minimized is given by:

Fn(C, Φ) =
∑

1≤I≤=2m

∫

Ω
|u0 − cI |χIdxdy +

∑

1≤i≤m

ν

∫

Ω
|∇H(φi)|. (11)

Here, the set of curves C is represented by the union of the zero level sets
of the functions φi. For example, we can use two level set functions φ1 and
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φ2 to represent a 4 phase image which consists of four regions: {φ1 > 0,
φ2 > 0}, {φ1 > 0, φ2 < 0}, {φ1 < 0, φ2 > 0}, {φ1 < 0, φ2 < 0}. If we
use PDE evolution to solve (11), we need to solve two PDE’s for φ1 and φ2.
Applying our algorithm to this minimization, we only need to test how the
energy will change when we change a point from one region to other three
regions, then choose the region that has minimum energy.

6 Experimental Results

In this section, we present numerical results using our new algorithm on the
Chan-Vese segmentation model on various synthetic and real images. All of
the calculation use Jacobi iterations. The numerical implementation used is
quite simple and only requires a few lines of C++ code. In our experiment,
we set φ = 1 inside the level set and -1 outside, µ = 0.045, λ1 = 1 and
λ2 = 1.

First, we show the segmentation results on 2-phase image in Fig. 2. The
length term is omitted since there is no noise. The image size is 100×100. We
use four different initial conditions, all of them converge to correct solution
in one sweep. In fact, it is hard to find an initial condition that it does not
work. This also shows that the algorithm is quite robust.

In Fig. 3, we show an example that this algorithm does not always work.
The initial condition is φ = 1 on the left side and φ = −1 on the right side.
Then the averages c1 and c2 will be equal and not satisfy the condition in
theorem 1. After one sweep, the part in which φ = 1 will become φ = −1 and
vice versa. In the second sweep, it will change back to the initial condition.
It will just change back and forth so it does not converge. If we use a
Gauss-Seidel iteration instead of Jacobi iteration, then it will converge in
one sweep.

In Fig. 4, we apply our algorithm to an image with noise. In this exam-
ple, the length term in the energy expression is considered. Convergence is
achieved in less than 5 sweeps, as compared to more than 400 steps in the
original method. We show the result at sweep 1, 2, 3 and 4. We note that
there is no special handling needed to detect the interior contours.

In Fig. 5, we show different initial conditions (a), (b), (c) and plot the
energy versus iterations. The length term is considered. Note how fast our
algorithm is. All of them converge in less then 8 sweeps. They also converge
to the same result (d).

Fig. 6 shows the results of the Chan-Vese model without the length
term. It converges in 4 sweeps. Note that it does not converge in exactly
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one sweep because it is not a 2-phase piecewise constant image. This result
is very close to the result we want and we can either do a few more steps of
denoising or use a PDE-based algorithm to reach the final result.

In Fig. 7, we show the result of our new algorithm followed by level set
evolution. We first use 4 sweeps of new algorithm and then use 5 iteration
of original Chan-Vese method. We can also use other methods such as
denoising or diffusion to remove the noise.

Fig. 8 shows the segmentation result of a noise image. In this example,
we do not consider the length term. Although noise is presented, we still
get correct result after 6 sweeps. The image size is 240× 240.

Fig. 9 shows the segmentation result for a 3-phases image. We use two
level sets to represent the image. (a) is the initial contours overlay on original
image, (b) is the segmentation results. The image is 64x64 and converges in
1 sweep. Since the energy which is minimized is not convex, and also there
is no uniqueness for the minimizers, the algorithm may not converge. We
also have no theoretical result like theorem (1) for multiphase images.

Fig. 10 shows an example of segmenting a shading image. (a) is the
original image which consists of two linear parts. (b) is the segmentation
result of piecewise constant approximation. (c) is the segmentation result
of piecewise linear approximation, it needs only 6 sweeps to converge. We
can see that it converges to correct segmentation.

7 Concluding Remarks

In this paper, we proposed a new algorithm to solve a special kind of opti-
mization problems which can be formulated by level set. Instead of solving
the corresponding Euler-Lagrange equation, we compute the energy directly
and see how the energy will change when we change the sign of a point. An-
other main advantage is that the gradient of the functional is not needed.
Thus, it can be applied to more broad range of optimization problems. This
algorithm is very successful when we apply it to the Chan-Vese model. We
proved that for a 2-phase image, it converges in one sweep with most initial
condition. The method can be easily extended to higher dimensional prob-
lems such as 3-D segmentation and clustering. In the future, we will also
consider extending this method to multi-phase piecewise constant case.
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(a) (b) (c)

(d) (e)

Figure 2: Segmentation of 2-phase image. (a),(b), (c), (d) are four different
initial conditions, all of them have the same result after 1 sweep. The result
is in (e). The image size is 100×100. Note that interior contour of the circle
is automatically detected.

φ > 0
 

φ < 0 

Figure 3: An example to show that the algorithm does not always work.
Left: image we want to segment. Right: the initial φ. φ = 1 on left side
and -1 right side. The average on left side and right side are equal, so the
necessary condition of theorem 1 does not apply.
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(a) (b) (c)

(d) (e)

Figure 4: Detection of different objects from a very noise image. Top: u0

and the contour. (a) initial φ, (b) after 1 sweep. (c) after 2 sweeps, (d) after
3 sweeps, (e) after 4 sweeps. Bottom: the piecewise constant approximation
of u0. Even though theorem 1 does not strictly apply, the algorithm still
converges very fast.
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Figure 5: Three different initial conditions and the corresponding energy
versus iterations. In this example, the length term is included in the ob-
jective functional. Note that all 3 initial conditions converge to the same
result.
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Original Image Initial After 1 sweep

After 2 sweep After 3 sweep After 4 sweep

Figure 6: Chan-Vese model without length term. Note that even though
theorem 1 does not strictly apply, the algorithm still converges in only 4
iterations.

(a) (b) (c)

Figure 7: Combining optimization and PDE evolution. (a) Initialization,
(b) Result of fast algorithm using 4 sweeps, note that there are still some
pixels which have not converge and show as “noise”. (c) Using 5 sweeps
PDE evolution starting from (b). Note that all the “noise” have converged.
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Figure 8: Segmentation of a noisy image. (a) Original image, (b) Result
of piecewise constant approximation. The size of image is 240 x 240 and it
converges in 6 sweeps. In this example, we did not consider the length term.

Figure 9: Segmentation of 3-phase image. (a) is the initial contours overlay
on original image, (b) is the segmentation results. The image is 64x64 and
converges in 1 sweep.

(a) (b) (c)

Figure 10: Piecewise linear approximation to image. (a) Original image,
(b) Result of piecewise constant approximation, converges in 4 sweeps. (c)
Result of piecewise linear approximation, converges in 6 sweeps.
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