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Abstract. In this paper, we look at the fundamental problem of object matching 
in computational anatomy. We present a new framework for warping pairs of 
overlapping and non-overlapping shapes, open curves, and landmarks based on 
the level set approach. When implemented in 3-D, the same framework could 
be used to warp 3-D objects with minimal modification. Our approach is to use 
the level set functions to represent the objects to be matched. Using this repre-
sentation, the problem becomes an energy minimization problem. Cost func-
tions for warping overlapping, non-overlapping, open curves, and landmarks 
are proposed. Euler-Lagrange equations are applied and gradient descent is 
used to solve the corresponding partial differential equations. Moreover, a gen-
eral framework for linking the level set approach and the infinite dimensional 
group actions is discussed.  

1   Introduction 

Computational anatomy [1, 2] is an emerging new discipline that deals with analyzing 
and making sense of the large collection and database of brain imaging. A fundamen-
tal problem in computational anatomy is image warping, or dynamically mapping one 
brain dataset to another through diffeomorphic transformation. In this paper, we will 
focus on developing techniques for matching anatomically important objects.   

Object warping is a challenging problem not only in computational anatomy but 
also in computer vision, pattern recognition as well as many other scientific fields. In 
the past decade, several strategies of non-rigid warping algorithms have been pro-
posed that could be divided into two groups: landmark based and dense matching.  

Landmark matching involves first identifying user-defined landmarks that need 
to be matched.  By interpolating the discrete matching of the landmarks, one tries to 
obtain a dense diffeomorphism for the whole image. Dense matching starts by form-
ing a cost function that is minimized when the objects are matched. In order to ensure 
smooth matching, a regularizing term on the deformation field is added.  

In this paper, we will use the terms template and study to denote the images to be 
matched. Let us denote the template image as T(x) and the study image as S(x) which 
are images on the spatial domain Ω ⊂ Rn. The problem of image warping is to find a 



displacement field u(x) at each point x such that a properly defined cost function, 
which will be denoted by D(T,S,u), between the deformed template and the study is 
minimized. The displacement field is a vector field such that given any displacement 
field u the deformed template is given by T(x-u). The term displacement is used be-
cause it can be viewed as how a point in the template is moved away from its original 
location. The most common way to define the measure between the deformed tem-
plate and the study image is based on the L2 norm 
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Gradient descent of the corresponding Euler-Lagrange equation is often used to 
minimize this cost function 
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The function f(x,u), which is often called the force field or the body force, de-
scribes the derivative of the cost function with respect to the displacement field u.  

2   Previous Work 

Several models for regularizing the deformation field have been proposed. We will 
give an overview by looking at those with the most theoretical interests 

2.1   Small Deformation Matching Through Regularizer on the Displacement 

Hyper-elastic Matching 

In hyper-elastic matching [3], the authors tried to draw analogy between image warp-
ing and deforming elastic plates. Under the assumption of linear elasticity, which 
holds for relatively small displacement field only, we arrive at the following equation 
that should hold at equilibrium 
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Here µ and λ are the Lame constants. Due to this linear elasticity assumption, 
large-magnitude displacements are severely penalized and thus hyper-elastic model is 
not suitable for problems in which large and highly nonlinear deformation is needed. 



The Horn and Schunck Functional 

Another regularization originally used in the optical flow problem was first proposed 
by Horn and Schunck in [4] by adding the following penalty  
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This penalty term is well known to smooth isotropically across the discontinuities. 
Thus, it is not suitable to regularize optical flow since discontinuities in the velocity 
field often exist on the boundary of moving objects. The same regularizing term for 
image warping was proposed in [5] and the term fast diffusion registration was used. 

Several variants of (4) have also been proposed to account for anisotropy (please 
refer to the review paper [6]). It should be noted that none of these ensures diffeo-
morphism although they are easier to compute for generating small deformation. 

2.2 Large Deformation through Diffeomorphisms by Infinite Dimensional Group 
Actions 

In the past decade, many researchers have tried to establish rigorous theories based on 
continuum mechanics that ensure diffeomorphic transformation by working on the 
forward and inverse mapping directly (see [7] and the references therein). 

In summary, Let g-1(x)=x-u be the deformation field, and G be the group which is 
formed by all the diffeomorphisms that map XΩ∈ to itself.  A path in G 
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 is linked to the velocity field vt by the following equation 
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Once the forward path gt is defined, the inverse path is uniquely determined by 
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 and is linked to the velocity by 
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Given a path g(x, t) and its associated velocity, we define the energy of the path by 
1 1

2

0 0

( ) ( ) ( ), ( ) .
L

t t

tt tE g v x dt Lv x Lv x dt
= =

= =∫ ∫  
(9) 

Here L is a differential operator. Furthermore, let us define the momentum p by 
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Here is the adjoint operator of L. It can be shown that diffeomorphisms could be 
ensured under mild restrictions on the operator L (see [8]). We then have the follow-
ing theorem which could be found in [7, 9]. 
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is a metric on G. Moreover, the geodesic satisfies the Euler-Lagrange equation 
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Different choices of L have been proposed. For example, the viscous fluid match-
ing proposed by Christensen [10-12] used the Navier-Stokes formulation, which can 
be viewed as the linear elastic operator applied to the velocity field. The advantage of 
this method is that it allows large-magnitude deformations since stress constraining 
the deformation relaxes over time. The partial differential equation that describes the 
deformation under this model could be written in the following form 
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Here v is the velocity field and is related to the displacement field u in a Eulerian 
framework. Another closely related choice is 

( ) ,mL a bI m= − ∆ + ∈` .  (14) 

3   Theory 

In this paper, we try to generalize the landmark matching problem by replacing the 
landmarks with objects of different types. We turn to the idea of level set method for 
ways of representing objects. The level set method was first proposed in [13] and has 
been proven to be a powerful tool in front tracking as well as many other applications. 
For an overview on level set method, we refer the readers to [14] and the references 
therein. 



3.1 Shape Matching 

Let us start with shape matching. A shape could be represented by a level set function 
with the boundary of the shape being the zero level curve of the level set function 
(positive value inside the shape and negative outside). Throughout this paper we will 
use the following notation. The shapes in the template image will be denoted by the 
level set functions ϕ1,ϕ2,…,ϕn and the corresponding shapes in the study image by 
φ1,φ2,…, φn.  

One Pair of Overlapping Shapes 
In order to derive a suitable cost function that is always non-negative and only takes 
the value zero when the two level set functions match, we minimize the symmetric 
difference of the two level set functions (see [15, 16] for similar approaches). 
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    The force field of this cost function is 
1 1( , ) [1 2 ( ( ))] ( ( )) ( ) .over t tf x t H x g gφ δ ϕ ϕ− −= − ∇  (16) 

Here H and δ are the Heaviside and the delta function. 

One Pair of Non-overlapping Shapes   
The above cost function does not work for non-overlapping shapes. The reason is that 
by minimizing the cost function, ϕ will simply shrink to a point and the cost function 
will reach a local minimum. To overcome this, we integrate -φ in the area ϕ>0, φ<0, 
and integrate -ϕ in the ϕ<0, φ>0 and we now have to initialize the level set functions 
to be the signed distance function to their zero level sets.  
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In this case the force field is given by 
1
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3.2 Geodesic Open Curve Matching 

Our task is to find a cost function between an open curve C in the template and an-
other open curve C’ in the study. We follow the idea in [17] by extending C to a 
closed curve (represented by the zero level set of ϕ1), and we further draw a second 
closed curve (represented by the zero level set of ϕ2), which crosses the zero level set 
of ϕ1 only at the two end points of C. Then the open curve C is represented by 

{ }1 2| ( ) 0 ( ) 0C x x and xϕ ϕ= = > .  (19) 

The open curve C’ in the study image could also be represented by two level set 
functions φ1 and φ2. Let us further denote the distance functions of C and C’ by DS(x) 
and DT(x). We then reach at the following cost function 
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This cost function could be viewed as the sum of two line segment integrals with 
respect to the other curve’s distance function. It can be shown that (for derivations, 
please refer to [18]) in this case, the force field is 
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Here the following short notations are used 
 , , and . 1 1

1( ( ))tgδ δ ϕ −= 2 2

1( ( ))tH H gϕ −= 2 2

1( ( ))tgδ δ ϕ −=

3.3 Landmark Matching 

Landmark matching problem could also be formulated in the level set framework. Let 
the landmark in the template be the intersection of two level set functions ϕ1 and ϕ2, 
and DT be the distance function to the landmark. We define similarly the correspond-
ing terms for the landmark in the study. Now consider the following cost function that 
recovers the sum of the distance between these two landmarks under the action of the 
forward and inverse mapping (see [19] for detailed discussions) 
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 With this cost function, the force field is then 
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4 Incorporating the Level Set Method and Diffeomorphisms 
Generated by Infinite Dimensional Group Actions 

4.1 Level Set Based Matching through Infinite Dimensional Group Actions 

The level set based object matching could be integrated into the infinite dimensional 
group actions approach. Thus, we can examine the inexact and space time growth 
image matching problem as in theorem 4.1 and 4.2 of [7]. In the case of inexact 
matching problem, we have the following theorem  

Theorem 2 (Inexact Level Set Based Object Matching) 
The path that minimizes the following inexact matching problem 
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satisfies (12) and the following boundary condition at t=1 

1
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Here D(T,S,t) and f are the cost function and force field defined in section 3. For 
proof, simply combine the arguments in [7] and [18]. 



4.2 The Modified Beg’s Algorithm 

In this section, we will describe how to solve the inexact matching problem in 4.1 (the 
space-time growth problem could be handled similarly). Our algorithm is a modified 
version of the algorithm proposed by Faisal Beg (see [7]) for solving inexact image 
matching via variations with respect to the velocity field. The advantage of this ap-
proach is that we obtain the forward and inverse transformation and thus it allows us 
to do distance function re-initialization as described in [18]. 

(Modified Beg’s) Algorithm for Inexact Level Set Based Object Matching 
Initialize vold=0, choose a small number ε, for all t in [0 1], 
Step1 (fixed point iteration)  
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Here the algorithm is presented in the most general case in which multiple objects 

are to be matched. Thus, the force field has several components (fi ) and each compo-
nent is defined as in section 3 depending on the nature of the object.  Notice that in 
step 2 the gradient descent direction is in the sense of the operator L+L instead of the 
usual L2 and thus could be interpreted as a smoothing step. 

We could reinitialize the distance function once in several iterations by reinitializ-
ing the level set function under the action of g-1

t=1 to its zero level set and compose 
again with gt=1. To be more precise, we need to add the following step in 4.2 
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5 Results 

Open curve and landmark matching based on our method are presented (for shape 
matching, please refer to [18, 19]). All images are in the unit square discretized to a 



64 by 64 grid, and the modified Beg’s algorithm is used. Figure 1 (left panel) shows 
the relative position of the two open curves. We use the landmark matching to match 
the endpoints of the two curves and the result is shown in the middle panel of Figure 
1. The corresponding deformation is shown in the left panel of Figure 2. Notice that 
matching the endpoints alone does not ensure the matching of the whole curve. The 
right panel of Figure 1 shows the matching of the whole curve, with the correspond-
ing deformation shown in the right panel of Figure 2.  

 

     

Fig. 1. Left panel: The two curves to be matched. Middle panel: The position of the curves 
after matching the end points. Right panel: The final result of matching the two curves. 

 

Fig. 2. Left panel: The corresponding deformation field of the middle panel in Figure 1. Right 
panel: The corresponding deformation field of the right panel in Figure 1.    
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