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Abstract

In this work, we use partial differential equation techniques to remove noise from digital images. The
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in two steps. We first use a total-variation (TV) filter to smooth the normal vectors of
the level curves of the noise image. After this, we try to find a surface to fit the smoothed normal vectors.
For each of these two stages, the problem is reduced to a nonlinear partial differential equation. Finite

difference schemes are used to solve these equations. A broad range of numerical examples are given in

the paper.
Keywords
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I. INTRODUCTION

A digital image d can contain random noise 7 superimposed on the pixel intensity value

by the formula

We would like o recover the true image d(z,y) from its noisy observation do{z,y). Noise
is recognized as fast oscillating signals and can therefore be removed by the process of
low pass filtering or smoothing, unfortunately at the expense of some high-frequency in-
formation (i.e. edges). A central thrust in image processing techniques comes via partial
differential equations (PDE). Among the different techniques proposed in the literature,
let us mention [1], [2]. The TV-norm filter proposed in [1} gives a rigorous mathematical
tool to introduce nonlinear diffusion filters and it has been used as a regularization method
for many other applications where one needs to identify discontinuous functions. The TV-
norm filter preserves edges but has the sometimes undesirable stair case effect, meaning
that smooth functions are some times transformed into piecewise constants. To overcome
this problem (but then maybe sacrifice the good property of TV-norm on the edges) many
other nonlinear Alters have been suggested in the literature and during the last few years
higher order PDEs have been of special interest 3], [4], [5], [6]. The method we shall use
in this paper is somehow related to the methods using higher order PDEs. We solve two
second order nonlinear partial differential equations sequentially. If we can combine the

two equations together we would need to solve a higher order nonlinear partial differential
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equation. To be more precise, our method is a two-step method. In the first step, we try

to smooth the normal vectors of the levelset curves of the noise image using a TV-norm

vectors and this image is taken as the recovered image for the noise image.

Our method is related to some techniques already in the literature. In Kenny and Langan
[7] a method to restore images from modified flow field was proposed. In its simplest form
this process takes a single image, modifies its gradient field and then constructs a new
image from the modified field. They introduce an objective function based on a flow field
to implicitly determine the edges of the image.

The idea we use in this paper is more inspired by the work [8]. In this work, they
are trying to process three dimensional surfaces. The essential idea is to manipulate the
normal vectors for a given three dimensional surface and then try to find a new surface
that matches the processed normal vectors in a suitable way. In this work, we are trying
to extend this idea to do image noise removal. Further we would like to mention that
recently normal processing has also been used in mesh optimization 19].

Another closely related approach is the inpainting approach of [10]. In this work, they
try to minimize an energy functional with respect to two variables: a vector field ©i which
represents the direction of the level curves of d{z,y) and the intensity value d(z,y). Note
that image denoising is quite different from inpainting. In [10] they clearly point out how
shape recovery is achieved by first computing the vector field 7 approximately. We have
also utilized this idea in our algorithm. We solve a minimization problem in the second
step and the functional for the minimization problem in this step is identical to one of the

terms in the inpainting functional [10]. Another closely related work is Vese and Osher

“(w)

for a vector valued function V = (u,v) : 8 — R* was proposed. The tools we shall use

[11], where an elegant way for solving

it F(V),  F(V)= fﬂ iz 2)

to smooth the normal vectors are closely related to problem (2). In our approach, we
are essentially taking V' = Vd and p=1 in (2) and we add a fidelity term to balance the
smoothing and the edge preserving.

In fact, the approach we propose here is also strongly motivated by the fourth order
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method proposed in [3]. The original TV-norm filter is to solve

minF(d),  Fd)=TV(d) = [ vd| dz. (3)

Q
In order to overcome the staircase effects, it was suggested in [3] to replace the TV-norm

by

F(d) = [(ldm| + |dyyl) dz or F(d) = / \/!da:mP + 2|dyy|? + dyy |* daz. 4)
0

Q

With these minimization functionals, we are trying to minimize the total variational norm
of the gradient of d instead of d. Rather good numerical performance was obtained in
[3]. We could go one step further. Instead of minimizing the TV-norm of Vd, we could

minimize the TV-norm of Vd/|Vd|, i.e.

F(d) = ﬂ/ ‘vl—%\ ds. (5)

We know that Vd/|Vd| is the unit normal vectors for the level curves of d. However, the
equations obtained from the minimizer of the above functional is hard to solve numerically
because of the restrictive time step needed. That is the reason that we propose in this
work to split this into two steps, i.e. we first smooth the unit normal vectors and then
find a surface to fit the obtained normal vectors.

This paper is organized in the following way. In Section II we introduce the two-step
method we use to do noise removal. Details are given to show how we obtain and solve
the associated nonlinear partial differential equations coming from the two-step method.
Finite difference approximations and some implementation details are explained in Section
III. Numerical results are given in Section IV. In the numerical experiments, we compare
our method with some related algorithms in the literature. Finally, the Appendix is

devoted to describing a transformation used in Section II.

1I. FrLOW FIELD SMOOTHING AND SURFACE FITTING

For a given image d, i = Vd/|Vd] is the unit normal vector of the level curves of d. For
the noisy image dp, we shall try to smooth the normal vectors 7y = Vdy/{Vdyg|. Because

the normal vectors can be discontinuous vector functions we use the TV-norm to do the
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smoothing. Similar to [1], [3], we also add a fidelity term to balance the smoothing and

edge capturing. To be more precise, we solve the following minimization problem to get a

||=1

min {]|Vﬁ; dw+%f|ﬁ—ﬁ0§2 da}. (6)
Q 9

If we have more information about the flow field, the value of A could be updated dynam-
ically. In our simulations, we just fixed the value of A to be a positive constant. At the
end of this section we give some advices on how to choose this constant.

Once the flow field is calculated, we try find an image d that will match the field. There
are different ways to do this. In this work, we are trying to find a d that solves the following
minimization problem:

min f (|Vd| - Vd-ﬁ) d. (7)

Jop ld—do|*dz=a?

In the above, o is the noise level in L?(£2) norm and we assume that we know it approxi-
mately. In case the noise level is not known, we just add a fidelity term to the minimization
functional and drop the noise level constraint. Assume that o is the angle between Vd

and 71, it is clear that

/ (IVd| - Vd - 7) do = / IVd|(1— cos(a)) da. ()
Q )

This functional is always nonnegative. To minimize this functional, we need to minimize
the angle between Vd and 7.

We shall use a Lagrange multiplier to deal with the noise constraint f,, |d— do[?dz = o?.

The Lagrange functional is defined as

L(d, 1) =/(|Vd|—Vd-ﬁ') dx+g(/|d—d012dx—o»2). (9)
Q

Q
To find a minimizer for (7), we need to find the saddle points for L. The optimality

conditions for the saddle points are:

vd o vd N\
_v.(m—n>+ﬂ(d do) = 0 in £, (|Vd] n) v =0 on 082 (10)
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and
(11)

[ ld — do|*dzx = o°.
Q

In (10), v is the outwards unit normal vector on the boundary 9¢2.
Tt is not easy to find the minimizer for (6). We shall use ideas from [11]. As 7 is a unit

vector, we use polar coordinate to represent it, i.e. i=(u,v) = (cosf,sinf). It is known

that
|V = | V8|, (12)
see Appendix for the details of calculations. Thereupon, (6} becomes
A
mgin {f (V8| dz + §f |7 — 7io|? dz} (13)
0 Q
The optimality condition for @ for the above problem is:
9 —
v 7 — i) - 2 = 0, (14)

A\ /\(ﬂ—no)'%m

.lv_m_.h

Thereafter, we introduce an artificial time variable ¢t and note that 0 is the steady state of

the following equation:
v on
i (15)

Ht:VWWA(n—nO)~55

One could solve @ directly from the above equation. One of the troubles is that # can be

multivalued. As an alternative, we note that (c.f. [11])
M, nd on _ (—sind, cos@) = (—v,u)

— tan~1(> _ Y o
§ = tan (u)’ Vo u? + v? o0

and with the notation fig=(n;,n2) it follows from (15) that

vy — vy .. ( uVo—wvVu Nt B
u? +o2 N(|uVU—vVu|) A= —m)v+ (v —n2)u] 16)

. { uVv—vVu
= le(m) — A[—’U.'U -+ v + VU — ’LL?’LQ].
We know that u? + v? = 1 which gives us 2uu; + 2vv; = 0, so (16) can be separated into
. uVv—vVu
U = udw(m) - )\U['U‘n,]_ - ung] (17)
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and

uVv —vVu
|luVv — vVul
To find the values of d and p satisfying (10) and (11), we also introduce an artificial

Uy = —'vdiv( ) + Avfong — ung]. (18)

time variable ¢ and solve the following equation to steady state:

dy = d“’(|§j| ) — u(d — do) . (19)
The value of p also needs to be determined in such a way that the above equation has a
steady state and the condition (11) is fullfilled at the steady state. We use the noise level
constraint (11) and (10) to obtain such a formula for 1. Using the same idea as in [1], we
multiply (10) by d — do and integrate over 1 to get

/V (|Vd| )(d—dg)dm:pf(d—do)zd:vzpo‘2. (20)

)

Using Green’s Theorem, we get the following formula for p

u:-%/ (%—h’) V(d— dy) d. (21)

In the numerical simulations, an explicit finite difference scheme is used to calculate d.
The value of g at each time level is updated according (21), see (30). In order to update
p using the above formula, we need to know the noise level approximately. In case that
the noise level is not known, we can just fix a constant value for p by trial and error.

In our simulations, we do not have a dynamic updating formula for A and this parameter
was chosen by trial and error. By inspecting (17) and (18) we see that 0 < A is not a

good choice since the dominating term then are

v & —dufong —ung], w#0,
: 1 ] (22)

up &+ wfony —ung), v # O
Solve to steady state will force vny — ung = 0 = v = ny and w = ny. In this way u and
v will be as noisy as their observations and no progress is made. On the other hand if

D<Akl
wVu —ovVu )
|u Vv — oVu|/’

¢ uVv —ovVu
w R —vdiv ( luVo — fUVu\)

Uy R ~|—udz"u(
(23)
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would be the dominating part. Both equations (23} reach steady state when Vu = 0 and
Vv = 0, meaning that » and v are very smooth. Depending on the noise level we found
2

that X € (1e72, le7!) was a good choice.

II1. IMPLEMENTATION

We discretize the system (17) and (18) by finite difference and for short we introduce

uVv —uvVu

[div]® = [div(m)]n, and [vu]” = [vny — ung]™.

Details of how to discretize [div]™ in space will follow the same scheme as for div(Jg)

described in (29). The following semi-implicit scheme of [11] is used to solve u and v:

u T ="+ %(v”+1 + 'v”)( — [div]™ + )\[vu]") : (24)
™t =™+ S‘;(u"+1 + u"‘)( + [div]" — )\[vu]”). (25)

To solve the previous algebraic system ™ is used in (24) to get

wtt = " At ('u" + éiJL~(’u,""H + u™) ([div]” — )\[’Uu]”) + 'un) ( — [div]™ + /\[fuu]“)
2 2 s ) (26)
= u" + v”’At(  [div]® + )\[fuu]”) - (7) ([div]” - )\[vu]”) (w1 + ™).

The unknown " is collected on the right hand side and the following explicit formula

is obtained for (18)

up; — o7 A ([divE, — Mpulfy) - (%) (10wt - )

™t = (27)
i, p) 2
1+ (%) ([div]gﬁj - ,\[vu]gj)
and (17) is approximated by the same technique
2 2
n n vlr, — no) __gn (A&t vie, — n
Lt v+ ui,jAt([dw]i,J )\[vu]w) fuw( > ) ([dw]m A[vu]m) 28)
i

P P
1+ (%) ([div];'{j - )\['vu]gij)
;From (27) and (28), it is easy to calculate that

iun+l|2 4 |,Un+1|2 — i'“'nlz i ],Unl27 1.
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As soon as steady state is reached for (27) and (28) we fix (u™*,v™*!) to (u,v). Let us

use the notation AZd;; = F(dig1; — diy) and A%d;; = F(dijz1 — diy) for backward and

forward difference at a given pixel (i, 7). The numerical approximation to (19) and (21) is
i:j - "")j - 1 i
h [(AZd;)? + (m(A%dp, AVdE))e  [ud; + 72
¥
s ( Atdy m— .
" 1 i
[(A%d;)? + (m(A%dE;, ATdE))]s [ud; + i)

—Atp"(d; ~ dg,j) .

Here we have used the notation

m(a,b) = minmod(a, b) = (mgn ¢ ;‘ Teh b) min(|al, |b])
and p is defined discretely via
h AT Y U; 5 m
p'n:_;,—‘?.‘ ( T g \2 +y’3n Y m 21_ 2 ’Jg i)A+(d2.?_d'?:J)
i [(AZd};)? + (m(A%d};, ALdE)) 17 [uf; +vi]2
AY dr. ..
T e T ) A — ).
[(A+di,j) + (m(A+di,ja Awd’i,j)) ]z [u’i,j + Ui,j] z

(30)
The evaluation of [div]® is done similarly as shown in (29). The minmod(:, -} action is
applied to the terms uv, — vu, and uvy, — v,

If we hold » = v = 0 during the iterations between (29) and (30), then the updating of
(29) and (30) is exactly the original TV-smoothing algorithm of [1].

To evaluate Vdy/|Vdp| we need that |Vdp| # 0. In order to overcome this problem
in the simulations, we use the standard trick to replace Vdy/|Vdo| by Vdo/+/|Vdy|* +¢€
where ¢ is a small number. Normally, we choose ¢ to be very small (for example ¢ = 1077)
and the value of € does not seem to influence the results much. The same trick is used for
the calculation of [div]™

To summarize, our noise removal approach is done in the following two steps:

« Choose a positive A and take Vdy/|Vdy| to be the initial values for (u, v), solve (27) and
(28) to steady state.
« Take dy as the initial value for d and let (u,v) be the value of the smoothed normals.

Solve (29) and (30) to steady state.
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IV. NUMERICAL RESULTS

In this part we present some of the results obtained with our system of coupled equations.
First of all we wish to compare our result with two related methods [1], [3]. Both [1], [3]
have their strengths and weakness and it will be shown that our new method does an
overall better job than both of them. The classical TV model from [1] is known to give
good results for almost all kinds of images. The chief criticism is that smooth regions are
transformed into piecewise constant regions. On the other hand, the TV method works
almost perfectly for block images. To avoid the staircase effect Lysaker-Lundervold-Tai [3]
suggested a fourth order PDE. By construction, this approach allows linear changes in the
intensity value and is therefore well suited for processing images with smooth transitions
like a human face. From a theoretical point of view [3] will not fulfill the good property of
the TV method on the edges. For the evaluations, we have used images like Fig.1, Fig.4,
Fig.6 and some others to show the robustness, strength and weakness for the different,
algorithms concerned here.

Example 1: In this first test the well known Lena image is exposed with noise. jFrom
the original and noisy image we calculate the original and noisy normal vectors. We use
the noisy observations as input to our algorithm, and the smoothed normals are given in
Fig.2(c). For better visualization, we have only plotted a small portion of the flow field
for the images in Fig.2. In this specific test we fix A = 0.1.

The processed unit vectors point in the wrong directions some places in Fig.2(c) but
it is for sure a big improvement compared with Fig.2(b) where the normals more or less
have a random orientation. Together with (19) and (21) we use the smoothed normals
to restore a new image for the noisy one. The result is compared with the TV method
(i.e. v =0 and v = 0) and the fourth order smoother [3]. We also visualize the difference
between the input and output image. In an ideal case the difference image should only
contain noise as given in Fig.1(c).

JFrom the restored images in Fig,. 3 it is clear that much of the noise is suppressed. As
expected, the TV algorithm transforms smooth regions into piecewise constant regions (see
Lena’s cheek). By evaluating the image of the difference between the smoothed image and

the noisy image, it is obvious that neither the fourth order smoother or the TV method
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AQ so & T 80

(a) Original image

{c) Difference image

Fig. 1. Image used for evaluation.

are as good as our new method.

Example 2: A blocky image which should favor the TV method is used in this second
test. Note that some of the object is as small as 2x2 pixels and other as narrow as 1x10
pixels. It is a nontrivial case to smooth out noise and simultaneously maintain all edges
for an image like this.

Qince the noise level is increased we fix A = 0.03 during the normal processing. With
this kind of synthesized images Vd = 0 almost everywhere in 2. Due to this we do not
show unit normal vectors but just evaluate the final result. The restored image obtained
with our method is also compared with the two methods mentioned above.

We see that all methods are able to suppress much noise but some ghosts are visible in

the image restored by the fourth order scheme (around the narrow object of 1x10 pixels).
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Fig. 2. Plot for the normal vectors. For better visualization, we have only plotted the normals for & small

portion of the images.

This is not surprising since the fourth order scheme does not allow discontinuous jumps in
the same way as the other two methods do. From Fig.5(f) it is clear that the fourth order
scheme filters out some edges, and in some sense the same is also observed in Fig.5(d).

Example 3: Here we try our new method on an image composed of 4 different Brodatz
textures as given in Fig.6(a).

Processing texture images is generally a hard task since fine texture details often are
filtered out. The texture in the lower left and upper right part of Fig.6(a) mostly contains
high frequency information (i.e. very oscillating intensity values } and can easily be mixed
up with noise. From Fig.7(b) we see that this is the part of the image with the poorest re-
sult, but the main quality is maintained. Both Fig.7(d) and Fig.7(f) reveal oversmoothing
for some of the fine structures. Methods like {4] may be better suited to deal with texture

images, but this example shows the robustness of our new algorithm.
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0 40 50 L) Ta 10 23 20 44 a0 50 70 B0 o ne

{(a) Our new method

30 0 50 [

(c) TV method

10 28 a0 40 [ B8 o a0 100

{e) Fourth order method (f) Difference image

Fig. 3. Results for the Lena image.
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L : L L L
° 20 0 40 5o 50 70 B0 20 00

{a) Original image

{c) Difference image

Fig. 4. Images used for evaluation.

We will end this section by showing some more results from texture images, MR images,
landscape images and a satellite image. The rest of this paper will only deal with results
obtained with our new method.

Our next example uses an image containing both a human face and some textures. The
challenge with this image is to maintain both texture details and smooth transitions in
the human face during processing.

The background and human feature like a hand, shoulder and face is restored in a proper
way, but the difference image tells us that textures on the scarf is smoothed to much, see
Fig. 8.

An image of leafs on a tree is evaluated next, see Fig. 9. Restoration algorithms may

have troubles with this kind of images due to the lack of connection in the image. Observe
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{a) Our new method (b) Difference image

10 20 a0 40 50 B8 7 80 BO 100 e 20 30 A0 50 L] Ta

{c¢) TV method (d) Difference image

100! R Wkl T : : £
10 o EY 40 50 80 T BO &0 100

{e) Fourth order method {f) Difference image

Fig. 5. Comparisons for a blocky image.

15
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(a) Original image (b) Noisy image SNR= 4.8
Fig. 6. The Brodatz image for evaluation.

that the leaves are not smeared together and this is an important quality. The only
negative remark is that the wire (going left from the top of the pole) disappeared in some
places. The same effect was observed for the TV method and the fourth order smoother.
The result is not reported here but both of them reconstruct an image which is almost as
good as the one given in Fig.9(c).

In our next example a MR image is exposed with noise, see Fig. 10. ‘We use an image of
a human brain, zoomed so it is possible to see all the fine features in the tissues. We see
that the restoration algorithm is able to maintain all important information in the image,
and in the same time filters out noise. This means that the intensity value is more equal
inside each tissue region after processing.

The final example concerns a satellite image. The recovered image coincides with the

true one almost everywhere (c.f. Fig. 11).

APPENDIX

We give the details for the calculations for (12). Given 0 = (1, z2).

Vo = (%,%), and  |VO| = \/(%)2 + (%)2. (31)

The gradient matrix and its norm of the vector-valued function T are respectively
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20 40 B3 -] 100 120 148

{a) Our resulé (b) Difference image

Zﬂ 40 L]

(e) Fourth order result {f) Difference image

Fig. 7. Results for the Brodatz image.
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defined by:
) (B8 o [p @
pro (VL[ B E) wno YT e
\v ) \% &) \ == s

Let 7 = (cos#,sin#), it is easy to see that

[1]

[4]

(5]

[6]

(7]

[l
[10}

[11]

‘Vﬁl:\/(_SIHB%)Q‘F(—SnH%Y ( 9“"8?"_1)24-(0593%%)2

= \/(g) 2(sin2 6 + cos? 8) + (-g«g;) 2(sin2 6 + cos? ) (33)
1
() + () =
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Fig. 8. An image with a human face and some textures.
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Fig. 9. An image with a tree and leaves.
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Fig. 10. A MR brain image.
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Fig. 11. Results for a satellite image.



