LEVEL SET METHODS AND THEIR APPLICATIONS IN IMAGE
SCIENCE

RICHARD TSAI AND STANLEY OSHER

In this article, we discuss the question "What Level Set Methods can do for
image science". We examine the scope of these techniques in image science, in
particular in image segmentation, and introduce some relevant level set techniques
that are potentially useful for this class of applications. We will show that image
science demands multi-disciplinary knowledge and flexible but still robust meth-
ods. That is why the Level Set Method has become a thriving technique in this
field.

We begin by reviewing some typical PDE based applications in image process-
ing. In typical PDE methods, images are assumed to be continuous functions sam-
pled on a grid. We will show that these methods all share a common feature, which
is the emphasis on processing the level lines of the underlying image. The impor-
tance of level lines has been known for some time. See e.g., [2]. This feature places
our slightly general definition of the level set method for image science in context.
In section two, we describe the building blocks of a typical level set method in the
continuum setting. Each important task that one needs to do is formulated as the
solution to certain PDEs. Then, in section three, we quickly describe the finite dif-
ference methods developed to construct approximate solutions to these PDEs. In
section four, we described the Chan-Vese segmentation algorithm and two new fast
implementation methods. Finally, in section five, we describe some new techniques
developed in the level set community as our prospectus for the future.

1. LEVEL SET METHODS AND IMAGE SCIENCE

The level set method for capturing moving fronts was introduced by Osher and
Sethian [72] in 1987. (Two earlier conference papers which contained some of the
key ideas, have recently come to light [28],[29]). Over the years, the method has
proven to be a robust numerical device for this purpose in a diverse collection of
problems. One set of problems lies in the field of image science. In this article, we
will emphasize not only what has been done in image science using level set tech-
niques, but also in other area of sciences in which the level set methods are applied
successfully — the idea is to point out the related formulations and solution meth-
ods to the image science communities. These communities include image/video
processing, computer vision, and graphics, These are diverse, with specialties such
as medical imaging and Hollywood type special effects.

Let us begin with a quick examination of what constitutes a classical level set
method: an implicit data representation of a hypersurface (codimension 1 object),
a set of PDEs that govern how the surface moves, and the corresponding numerical
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methods for implementing this on computers. In fact, a typical application in image
science may very well need all these features. We will illustrate this point by some
classical applications.

The term “image science” (or “imaging science”) is used here to denote a wide
range of problems related to digital images. It is generally referred to problems
related to image processing, computer graphics, and computer vision. The type of
mathematical techniques involved range from discrete math, linear algebra, statis-
tics, approximation theory, to partial differential equations, quasi-convexity analy-
sis related to solving inverse problems, and even algebraic geometry. The role of
a level set method for image processing often relates to PDE techniques involving
one or more of the following features: 0) regarding an image as a function sampled
on a given grid with the grid values corresponding to the pixel intensity in suitable
color space, 1) regularization of the solutions, 2) representing boundaries, and 3)
the numerics developed for the level set methods. Particularly in light of 2), it is
not hard to seek an application of the level set method for segmentation. There are,
however, efforts which combine different disciplines mentioned above together to
accomplish special tasks. For example, Mark Green [47] used a new statistical
approach together with Total Variation (TV) denoising [80], and Yves Meyer [62]
analyzed function/image representation from a decomposition that is motivated by
the TV denoising of [80]. We will see soon that TV denoising is closely related to
solving an inverse problem.

In a later section, we will examine some essential fundamentals of the level set
methodology. We refer the reader to the original paper [72] and the new book [68]
for detailed exposition of the level set method. Also, there is a set of presentation
slides available from the first author’s home page’.

We write a typical PDE method as

Lu = ARu,
or
u; + Lu = ARu,

where L is some operator applied to the given image, and R denotes the regular-
ization operator. Typically, an image model is obtained by devising an energy
functional E(u) and solving for a minimizer. The Mumford-Shah multiscale seg-
mentation model is defined this way [63], as is TV denoising which can be wrriten
as:

1
minimum, E (1) = E/(u— uo)zdx+7»/|Vu|dx,

where ug is the given noisy image. In this set up, Lu will be the Euler-Lagrange
equation subject to the associated natural boundary conditions which is just u —
up) here and R=V- \g_Z\’ the curvature of the level curve at each point in this
application. When L is not invertible, or when certain regularity in the image u is
required, a regularization term will be added. For example, in the TV deblurring

1http://Www.rnath.princeton.edu/~ytsai
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of [79],
Lu = K x (Ku — u),

where K is a compact integral operator , ug is the given image, and the restored im-
age is the limit u(¢) as t — oo. In usual version of Total Variation based methods,
the regularization is defined as

Vu

this is the Euler-Lagrange derivative of the TV term as remarked above. We remark
that in many image applications, the unregularized energy functional is nonconvex,
and its global minimizer corresponds to the trivial solution. Only some local mini-
mizer is needed.

The effects of (1.1) in noise removal can be explained as follows: the level
curves in the neighborhoods of noise on the image have high curvatures. The level
curves of the viscosity solution to

Vu
—(v. ) v
“ < W)'“'

shrink with the speed of the mean curvature and eventually disappear. Conse-
quently, the level curves with very high curvatures (noise) disappear much faster
than those with relatively lower curvatures, (this was the approach taken in [61]).
If the |Vu| term is dropped (as it usually is) the velocity is also inversely in pro-
portional to the gradient. This means relatively flat edges do not disappear. The
analysis of motion by curvature and other geometric motions are all important
consequences of viscosity solution theory, originally devised for Hamilton-Jacobi
Equations, related to evolution past the singularities, including the pinching-off of
level curves. See [20][26], [38, 39, 40, 42].

In the development of this type of method, one often qualitatively studies the
solutions of the governing PDEs by investigating what action occurs on each of
the level sets of a given image. In the TV regularization of [61] for example,
Ru(x) actually denotes the mean curvature of the level set of u passing through x.
References [14][20][38], for example, provided analysis for this type of PDEs.

Another interesting category of applications is data interpolation. In the prob-
lem of inpainting, see e.g. [5] and Figure 1.1, the challenge is to repair images
with regions of missing information. The algorithms are developed with strong
motivation on connecting the level curves over the “inpainting domain” in an “ap-
propriate way”. In a rather orthogonal way, the AMLE (Absolutely Minimizing
Lipschitz Extension) algorithm, see e.g. [13], assumes a given set of level curves
of an image, and fills in the regions in between the given level curves while trying
to minimize the variation of the new data generated.

In many applications such as image segmentation or rendering, level set methods
are used to define the objects of interest. For example, a level set function is used
to single out desired objects such as the land mass of Europe [18]. The land mass
is defined to be the connected region where the level set function is of one sign
(see Figure 1.2). There are many successful algorithms. Examples are [17][75].
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FIGURE 1.1. Image obtained from
http://mountains.ece.umn.edu/~guille/inpainting.htm

In a different, but related, context, Zhao et al uses a level set function to interpret
unorganized data sets [108],[105].

Many of the above methods rely on the variational level set calculus similar to
that of [107] to formulate the energies whose minimizers are interpreted as the
solution to the problems, and the solutions are level set functions. In general, the
energies are variants of the surface integral

| Flo.usovolax.
and the volume integral
| Glowm ().

see [107] for details and definitions. We shall return to this in a later section on
image segmentation.

We notice that in some of the above applications, level set functions are used to
separate the domain into different regions. The interfaces separating those regions
are defined as the zeros of the level set function. The PDEs that govern the motion
of the interface can be derived from a variational principle. In many other cases,
the interface motion are governed by well known physics. In fact, in the original
level set paper [72], a level set function is used to distinguish burnt and unburnt
regions in flame propagation problems. Fedkiw and collaborators used level set
methods to simulate diverse physical phenomena such as splashing water, flame
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FIGURE 1.2. Land mass of Europe found using active contours.

propagation, and detonation waves. When the results are rendered on the screen,
they become very effective and realistic rendering of natural phenomena suitable
for special effects in movie productions. The reader can find a detailed description
and references in [69]. Figure 1.3 provides two of such simulations.

Hence, we will define a “level set method” for an image as a method that ana-
lyzes and manipulates the level sets of a given continuous function that we call an
image.

Finally, there is a collection of level set numerics, consisting of mostly numer-
ics for general Hamilton-Jacobi Equations and compressible and incompressible
Fluid Dynamics. These methods are not limited only to the pure level set formu-
lations. They can also be used to solve other PDE based image models. The basic
numerics started in [72, 73], and generalizations have been carefully documented
in [68]. Some new ones can be found in [34][56][81][98][100][101]. Additionally,
we mentioned [96], which addresses the issue of regularization.

Ideas originating in this type of numerics, e.g. ENO interpolation [49], have
been used to develop wavelet based methods which minimize ringing, or Gibbs’
phenomena at edges [19].

2. LEVEL SET METHOD IN A NUTSHELL

A significant number of problems in science reduce to the study of the evolution
of curves, which are usually the boundaries between different media. These curves
(or interfaces) move according to their own geometries or the laws of physics as-
sociated with the problem. They break up, merge, or disappear during the course
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FIGURE 1.3. Image obtained from http://www.cs.stanford.edu/~fedkiw

of time evolution. These are the every day challenges of most of the conventional
methods. The level set method [72], however, handles these topological changes in
the curves “with no emotional involvement”. Since its first introduction, there has
developed a powerful level set calculus used to solve a great variety of problems in
fluid dynamics, materials sciences, computer vision, computer graphics, to name a
few topics. We refer to [68] for an extensive exposition of the level set calculus.
See also [45] for related theoretical exposition.

Typically, one can write a general level set algorithm in three steps enumerated
below:

(1) Initialize/reinitialize ¢ at t = ¢".

(2) Construct/approximate H (t,x,$,D0,D*). (Occasionally higher deriva-
tives also appear for which viscosity solution theory does not apply).

(3) Evolve

O -+ H(t,x,0,D,D*¢) = 0,
fort =t,+ At.

For image applications, ¢ above can either be the image itself (e.g. deblurring
applications) or an extra function that is used to process the given image (e.g. seg-
mentation applications).

We will discuss the key components of the three steps in the following sections.
More precisely, we will follow a conventional approach of describing the level set
method and start our exposition for Step 2. Step 1 and Step 3 is typically imple-
mented by suitable numerical methods that will be reviewed in the next section.
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2.1. Basic formulation. For simplicity, we discuss the conventional level set for-
mulation in two dimensions. The interfaces represented by a level set function is
thus also referred to as a curve. However, the methodology presented in this section
can be naturally extended to any number of space dimensions. There, the interface
that is represented is generally called a hypersurface (in three dimensions, it is sim-
ply called a surface). We will use the words interface and curves, interchageably.

In the level set method, the curves are implicitly defined as the zeros of a Lip-
schitz continuous function ¢. This is to say that {(x,y) € R?: ¢(x,y) = 0} corre-
sponds to the location of the embedded curve. See Figures 2.1, 2.2, and 2.3 for
some examples. If we associate a continuous velocity field v whose restriction
onto the curve represent the velocity of the curve, then at least locally in time, the
evolution can be describe as the Cauchy problem

¢ +v- V=0, 6(x,0) = do(x),

where 0o embeds the initial position of the curve. To derive this, let us look at a
parameterized curve Y(s,z) and assume that dy/dt is the known dynamics of this
curve. If we require that Y(s,z) be the zero of the function ¢ for all time, i.e.
O(y(s,t),t) = 0 for all # > 0, then at least formally, the following equation

Y _
¢t+§'V¢(v,t) =0

is satisfied along 7. Extending dy/dr continuously to the whole domain will create
such a velocity field.

In general, the velocity v can be a function of position x and some other ge-
ometrical quantities of the curve or other physical quantities that come with the
problem. The equation can be written using the normal velocity:

Vu

2.1 =V =

J(I)I +Vn|V(1)| =0.

We note that these equations are usually fully nonlinear first order Hamilton-Jacobi
or second order degenerate parabolic equations, and with suitable restrictions, the
theory of viscosity solutions [25] can be applied to guarantee well-posedness of
the Cauchy problem.

Corresponding to the viscosity solution theory, there are a set of simple finite
difference methods to construct approximation solutions. We refer the interested
readers to [41, 45].

Finally, in the level set formulation, the surface integral of function f along the
zero level set is defined via the surface integral

| F8@Ivoids
R

If f =1, this integral yeilds the arclength for curves in two dimensions, and surface
area inthree dimensions. Volume integrals are defined as

[ f@H@IVoldx,
R
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FIGURE 2.1. A circle embedded by different continuous functions.
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where H(x) =1 for x > 0 and H(x) = 0 for x < 0. We refer the discussion on the
related computational issues to [33].

2.2. Reshaping the level set function. In many situations, the level set function
will develop steep or flat gradients leading to problems in numerical approxima-
tions. It is then needed to reshape the level set function to a more useful form,
while keeping the zero location unchanged. One way to do this is to perform what
is called distance reinitialization [94] by evolving the following PDE to steady
state:

(2.2) 0: +5gn(90) ([V9] = 1) =0, 0(x,T=0) = do(x).

Here ¢ denotes the level set function we have before the reintialization. If we
evolve the solution to steady state over the computational domain, the solution ¢
becomes the signed distance function to the interface {¢o = 0}. One can understand
the mechanism of this approach from the following scenario: in the region in which
0o is positive, 0 < 0 whenever |V| > 1; therefore, the value of ¢ will decrease, and
consequently, |V¢| will become closer to 1. Notice that ¢; = 0 wherever ¢y = 0,
since sgn(0) = 0. See figure 2.4.
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FIGURE 2.2. More complicated curves and their embedding level
set functions.
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Another equivalent approach is to solve the eikonal equation
Vo[ =1

with the boundary condition ¢ = 0 on {¢9 = 0}. A common numerical approach,
e.g. [76] is to run distance reinitialization (2.4) with a high order accurate method
for a short amount of time, so that in a thin tube around {¢o = 0} ¢ is now the
distance function. Then fix the values of ¢ in this tube as boundary conditions, and
use fast sweeping or fast marching methods to solve the eikonal equations. We
shall discuss the sweeping method in the next section.

We remark first that for most applications, the reinitialization is only needed for
a neighborhood around the zero level set, and the diameter of this neighborhood
depends on the disctretization of the partial derivatives in the PDE. This implies
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FIGURE 2.3. Two closed curves that are implictly embedded by

that only a few time steps in T are needed. Next we note that it is important to
solve (2.2) using a high order discretization method. Otherwise, the location of
the original interface will be perturbed noticeably by the numerical diffusion. Fi-
nally, reinitialization globally in the computational domain will prevent new zero
contours from appearing. Thus, one needs to be careful if emergence of new level
contours is of interest. In many image segmentation tasks, this is important, and
we shall comment on this in a later section.

2.3. Extending quantities off the normals of the interface. In many models, one
can only derive the interface velocity v, in equation (2.1) along I'. It is necessary
to create a continuous velocity field defined on the whole domain Q or at least in a
tubular neighborhood of I" whose restriction on I" agrees with the known interface
velocity. One common way to obtain such a velocity field is to solve the following
boundary value problem:
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FIGURE 2.5. Quantities are extended off the zero level set in the
normal directions.

(2.3) Vw-Vo =0, with w|r =v,,
or equivalently, to solve for the steady state of the time dependent equation:
2.4) w; +sgn(¢)Vw-Vo =0,

with any initial data wg whose restriction on I matches v,,.

The interpretation of this approach is that v, will be propagated as a constant
along the characteristics of the PDE (2.3), emanating from I', parallel to the surface
normals. See figure 2.5. Fast sweeping [56, 98, 100, 106] or fast marching [102,
82] can be used to solve the first equation while a higher order accurate Hamilton-
Jacobi solver can be used for the second [73]. In the next section, we will briefly
describe some popular discretizations.

2.4. Tracking quantities defined on the fronts using level set method. So far
we have described the basic level set method that enables us to move curves and
surfaces normal to themselves by the prescribed velocities. We have concentrated
on describing how the physical location of the curves and surfaces changes. In
many applications, including image processing and computer vision, we need to
track quantities that are defined on the surfaces. In this section, we review some
techniques for doing this.

Let f: T+ X denotes the quantity defined on I, the zero level set of ¢, and f
satisfies

2.5) fi+0rf=0, f(x,t =0) = fo(x),

where Qr denotes the differential operator on I'. This equation determines how f
is changing on I'. Let f: U C R? - X be a function defined in a neighborhood
U of T, and f|r = f. Here RY is the ambient space of I'; i.e. ¢ : R? — R, and
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I'={x: ¢(x) = 0}. In a typical level set method, instead of solving (2.5) directly
on I, one solves the corresponding PDE in R :

fi+0f =0,

so that the restriction of f(¢) to I" matches with f(¢) for ¢ > 0. At this point, it is
natural to ask what Q is, given the Or? In many applications, the form of Q is the
center of the study, and it might be more convenient to track an alternative quantity,
g in order to obtain an equation that is easier to solve. See the recent paper [54]
for such an example. In the next paragraph, we discuss another example of this
situation.

Assume that we are interested in some quantities defined and parameterized on
the surfaces, and we need to know how these quantities redistribute during the
evolution of the surfaces. In [48], Osher and Harabetian introduced a method for
doing this. Let ¢ denote the level set function that embed the surface of interest.
The idea is to introduce an auxiliary function y such that (¢, y) forms a coordinate
system near the zero level set of ¢.

Let the family of closed curves I'(s,7) = (x(s,#),y(s,7)) be parameterized by s
and r. We want to evolve for example, I'(s,0) to time 7, by the level set functions:

O(x(s,1),y(s,1),t) =0, Y(x(s,1),y(s,1),t) =s.

However, y is not a single valued function over a closed curve if it is defined this
way. The authors then proposed to evolve the Jacobian

I
Ve

instead of W to circumvent this problem. J has to be nonzero so that we can express
(x5,¥5) by (—dy,0x)/J. Thus, in order to track the tangential motion we evolve

in addition to
0, +v-Vo=0.

Finally, we briefly describe the systematic approach that was pioneered in Cheng’s
thesis [21], and later on in [7] for solving PDE’s on surfaces for image processing
purpose. A similar approach was adopted by [109] to study surfactants on inter-
faces that move in time. For simplicity, we assume the zero level set to be fixed in
time.

Consider the surface gradient Qr = Vr that maps scalar functions defined on I
to the tangent bundle of I". The key notion is to replace V- by a suitable projection
of the gradient operator V in R?. The corresponding projection operator is a linear
operator defined by:

VRV
P=1——
\4 |V‘27

or equivalently, as a matrix, P, can be written as
ViVj

(P)ij =6 — ek
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where v is a vector in R?, and §; ; 1s the Kronecker delta function. For x € I', and v
the normal of I" at x, P, projects vectors onto the tangent plane of I at x.

Recall that I' = {¢ = 0}, and V¢ is parallel to the normal of I". It can be proved
that Vr and Py, V are equivalent on I'. Thus, for scalar functions f,

Vrf = PyyVf,

and for vector fields F,

VF~F:PV(I)V‘F.
Let us illustrate this approach with a few examples. Consider a continuous function
f defined on I, a surface in R>, and a given vector field v defined in the tangent
bundle of T. If the zeros of f embeds the curve of interest (call it C) on I, then by
solving

ﬁ +v- VF f = 07
one obtains the evolution of the curve constrained on the surface. Correspond-
ingly, the extension f of f in R3 is another level set function, whose zero level set
intersects with that of ¢ on C, and the corresponding PDE in R? is

fi+v-Pyyf =0,
or, by property of 7,
ft + fPV¢v . f = 0.
To perform distance reinitialization on f, one can evolve

fe+sgn(fo)(|PveV S| —1)=0.

As an example, total variation diminishing flow of an image u, defined on a
surface I', takes the form

£(u) = [ | 120sVul8(6)|Voldx.

and the corresponding gradient descent equation becomes

— PV £PV¢Vu
ut - V(I) |TV¢VI/[’ )

where the right hand side corresponds to the geodesic curvature, and can also be

written as -
PyyVu 1
V- (vl e
|PyyVul Vol

2.5. Limitations of the Level Set Methods. The original idea in the level set
method is to use the sign of a given function to separate the given domain into
two disjoint regions, and use the continuity of the level set function near its zero
to define the boundary of these disjoint regions. One realizes that it can be more
complicated to extend this idea to handle non-simple curves, and multiple phases.
An equally important issue is to solve the problem at hand in obtaining a reasonable
quality without excessive complexity. We refer the readers to [87][103][107] for
level set methods for multiple phases, [11], [66] for higher codimensions and [86]
for open curves, and [76][93, 92] for localization. We also refer to [34] for a hybrid
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particle level set method that is designed to lessen the numerical diffusion effect
for some class of problems.

3. NUMERICS FOR CONSERVATION LAWS AND HAMILTON-JACOBI
EQUATIONS

The numerical solution of conservation laws has been an active field of research
for quite some time. In particular, UCLA researchers have been major contributors
to the field. The finite difference methods commonly used in the level set methods
(in particular, those related to Hamilton-Jacobi equations) are developed under the
general philosophy of the Godunov procedure and the nonlinear ENO reconstruc-
tion techniques for avoiding oscillations in calculations. As a result, upwinding and
ENO interpolations become the indispensable parts of the algorithms documented
here.

In what follows, we will first describe the Godunov procedure in the context of
solving conservation laws and Hamilton-Jacobi equations. We will also describe
the ENO interpolation and compare the differences between its usage in conserva-
tion laws schemes and in Hamilton-Jacobi solvers. We refer the details to the book
of Osher and Fedkiw [68] and the extensive references therein.

Let us introduce some notations that we shall use in this section. Let ¢7 ; denote
the value of x; ; = (xo + iAx,yo + jAy) € Q at time #, = to + Ar. We shall assume
that Ax = Ay.

Definition 3.1. (Finite difference operators) Given the values of u on the grid we
first define the forward and backward difference operators:

+ o o Mgl T U
Dx I/li_yj = ZIZT,
and
R
D;Eui_j:::t = =ty

also the central difference operators:

Do — Uit1,j —Ui—1,j
1,] ~—
X 2Ax '
and
Uj i1 — Ui i—
0 i,j+1 i,j—1
Dyl/l[j = — .

2Ay

3.1. The Godunov procedure. The Godunov procedure [46] developed for con-
servation laws started by looking at grid values as cell averages of the solution at
time t,. We then “build” a piecewise constant function whose value in each cell is
the cell average. We solve the Riemann problem at cell boundaries “exactly” for
an appropriate time step Az. This involves following the characteristics and making
sure that the Rankine-Hugoniot and entropy conditions are satisfied. Finally, we
average the function at r = 1, + At in each cell, and repeat the above steps.
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In the context of certain conventional Hamilton-Jacobi equations, piecewise
constant cell averages are replaced by a piecewise linear function that is contin-
uous at the cell boundaries, and point values are updated. This is described in
[4].

In high order schemes, cell averages are replaced by more accurate nonoscilla-
tory reconstruction on the functions or the fluxes. We perform this reconstruction
by ENO/WENO methods.

3.2. ENO/WENO interpolation. We want to approximate the value of the func-
tion f in the interval [; := [xi_ 1 X1 ], using the given values (or averaged values)
of f on the grid nodes x; and its neighbors. Two commonly used methods to get a k-
th order approximation of f in I; are spectral interpolation that is based on Fourier
expansions and fixed order polynomial interpolation. Both approaches produce
oscillations near the jumps in the function values. We will not comment on the
Fourier based methods since the they are not particularly useful in this connection.
Conventional polynomial interpolations usually use the function values on all the
grid points within a certain fixed distance from x;, regardless of the smoothness
of the interpolated function. ENO interpolation, on the other hand, is a nonlin-
ear procedure that is built on a “progression” of Newton’s divided differences. By
“progression”, we mean that the procedure starts by building a linear reconstruc-
tion of f in I; using either f(x;) and f(x;—;) or f(x;) and f(x;+1), depending on
which pair of values will give a smoother reconstruction. Suppose the reconstruc-
tion from f(x;) and f(x;_1) is selected, we then carry out the reconstruction using
the values of f on either x;_», x;_1, x; or xj_1,X;,X;4+1. This procedure is iterated un-
til the desired order of approximation is achieved. Newton’s interpolation is natural
in this framework, since one can incrementally compute the divided differences for
interpolation. In addition, we can use the values of the divided differences as an
indicator of the smoothness of the functions in the intervals formed by the grid
points that are considered as stencil.

For conservative schemes approximating conservation laws, this ENO recon-
struction is performed on the flux function f or the cell averages i by first recon-
structing the integral of the solution u. For Hamilton-Jacobi equations, we perform
the ENO reconstruction on the solution u.

In the ENO reconstruction procedure, only one of the k candidate stencils (grid
points used for the construction of the scheme) covering 2k — 1 cells is actually
used. If the function is smooth in the neighborhood of this 2k — 1 cells, we can
actually get a (2k — 1)-th order approximation, if we use all these grid values.
This is the idea behind the WENO reconstruction. In short, WENO reconstruction
uses a convex linear combination of all the potential stencils. The weights in the
combination are determined so that the WENO reconstruction procedure behaves
like ENO near discontinuities. As a result, WENO method use smaller stencils
to achieve the same order of accuracy as ENO in smooth regions. Currently, our
choice of scheme is the 5th order WENO. For details, we refer to the original papers
[32, 49, 52, 59, 84, 85], and the review articles [83]. Recently, Shu and Balsara [3]
developed even higher order WENO reconstructions.



LEVEL SET METHODS AND THEIR APPLICATIONS IN IMAGE SCIENCE 16

There are successful adaptations of this ENO idea/philosophy to other frame-
works. See [16, 19] for ENO wavelet decompositions for image processing, and
[24] for an application of the ENO philosophy in Discontinuous Galerkin methods.

3.3. Numerics for equations with Hamiltonians H (x,u, p) nondecreasing in u.
We repeat here that any discussion of the numerical schemes cannot be detached
from the solution theory of the equations in questions. This is especially important
for nonlinear equations, since in general, discontinuities in the function values or
in the derivatives develop in finite time. We are usually seeking a particular type of
weak solution.

In 1983, Crandall and Lions introduced viscosity solution theory for a class
of Hamilton-Jacobi Equations requiring Lipschitz continuous initial data and for
which the Hamiltonians H (x,u, p) is Lipschitz continuous and non-decreasing in
u. Later in [25] in 1984, they proved the convergence to the viscosity solution of
monotone, consistent schemes for Hamilton-Jacobi Equations with H independent
of x and u. Souganidis [89] extended the results to include variable coefficients. Os-
her and Sethian contributed to the numerics of Hamilton-Jacobi Equation in their
level set paper in 1988[72]. This line of work was later generalized and completed
in the paper by Osher and Shu [73] in 1993, in which the authors provided a fam-
ily of numerical Hamiltonians in analogous to the ENO schemes for conservation
laws. WENO schemes using the numerical Hamiltonians described in [73] were in-
troduced in [52]. The method of lines using TVD Runge-Kutta time discretization
is used [84]. We first discretize the spatial derivatives and compute the appropriate
approximation to the Hamiltonians,

H(p-,p3iq-,q+),

with p, g+ representing the left/right approximations of the derivatives, obtained
from ENO/WENO reconstruction of the solution. They are higher order versions
of the forward and backward divided differences of the grid functions:

Wind i — Wi ¢
+ . i+1,j iJ
p+~Duj:= iij,
and
+ . Ujj+1 — Ui
q+ ~ Dy Ujj = .
Ay

3.4. The Lax-Friedrichs schemes for the level set equation. Following the meth-
ods originally conceived for HJ equations ¢, + H(D¢) = 0 in [73], see also [72],
and suppressing the dependence of H on x and y, we use the Local Lax-Friedrichs
(LLF) flux

pT+p gt +q
2 2

A" (ptp~.qt,q7) = H(

)

—%ocx(pﬂp’)(p+ —p ) - %Oty(f,q*)(f —q),
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for the approximation of H. In the above scheme,

o'(pt,p7) = max Hy (p,q)],
(P=p7) PGI((pﬂp’)-,CSqSD' %(p 9)

o (gt,qg7) = max Hy (p,q)|,
@0 = e Y azp T 2D
I(a.b) = [min(a,b), max(a,b)],
and p*, g% are the forward and backward approximations of ¢, and 0, respectively.

3.5. Curvatures. In many applications, the curvature term
Vo Vu

Vel Y
for the level set function ¢ or the image function u appears as a regularization.
This term is approximated by finite differencing centered at each grid point. For
convenience, let (nj;,n ) denote the values of Vu/|Vule at the grid point x; j,
and Vu/|Vulg is a smooth approximation of Vu/|Vu| (This avoids the issue of
singularity at |Vu| and is better for numerical computations). The curvature K; ; is
approximated by

X X y Y
vy, = Miciny | M2~ Mij-12

K=
L] Ax + Ay ’
and
x . Diuij
Mit12,5 - n > pyp Tk
\/(Dx ui’j) —I—D),(Sx I/t,‘,j) +€
Diui’j
Nijx1y2 = )
\/D0 (S5 ui ;)2 + (Dyu; ;) + €2
where . .
Uit],j T U j Uj j+1 T Ui j
Suij=——5—", and Syu; ;= =

are the averaging operators in the x and y direction and € > 0 is quite small.

3.6. Time discretization. From the previous subsections, we know how to dis-
cretize the terms involving spatial derivatives. What remains is to discretize in time
in order to evolve the system; i.e. we need to solve the following ODE system:

d N
gq)i,j:_H( ?71,j7¢?+1,j7 7]7¢nj 17¢nj+1)

where H is the numerical approximation of H(x,,Dd,D>¢). For example, if we
use local Lax-Friedrichs for H(¢y,¢,), and forward Euler for time, we end up hav-
ing:

(3.1 OF " =0 — AtHMT (xi,y;, DL ¢fL ;. DV 0 ).

Typically, we use 3rd order TVD Runge-Kutta scheme of [84], or the fourth
order schemes of [90] to evolve the system, since higher order accuracy can be
achieved while using larger time steps. To keep this description self-contained, we
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describe the 3rd order TVD RK scheme below: we wish to advance u; = rhs(u)
from t,to ¢, .

(1) uy = u" + Az -ths(u");
2) up = %u" + %ul + %Aﬁrhs(ul);
B) upq = %u" + %uz + %At -ths(uy).
3.7. Algorithms for constructing the distance function. In the following sub-
sections, we review some of the solution methods for the eikonal equation:
[Vu| =r(x,y), ulr=0.

We present a fast Gauss-Seidel type iteration method which utilizes a monotone up-
wind Godunov flux for the Hamiltonian. We show numerically that this algorithm
can be applied directly to equations of the above type with variable coefficients.

3.8. Solving eikonal equations. In geometrical optics [57], the eikonal equation

(3.2) \ 07+ 07 =r(x,y)

is derived from the leading term in an asymptotic expansion
£O0xy)—1) ZAj(X,y,t)(i(!))_j
J=0

of the wave equation:
wy — ¢ (x,3) (Wax +wyy) =0,

where r(x,y) = 1/|c(x,)|, is the function of slowness. The level sets of the solution
0 can be thus be interpreted as the first arrival time of the wave front that is initially
I'. It can also be interpreted as the “distance” function to I'.

We first restrict our attention to the case in which r = 1. Let I" be a closed subset
of R2. It can be shown easily that the distance function defined by

d(x) =dist (x,I") := milr_1|x—p|, x = (x,y) € R?,
pe

is the viscosity solution to equation (3.2) with the boundary condition
0(x,y) =0 for (x,y) €T

Rouy and Tourin [78] proved the convergence to the viscosity solution of an
iterative method solving equation (3.2) with the Godunov numerical Hamiltonian
approximating ||V¢||. The Godunov numerical Hamiltonian function can be writ-
ten in the following simple form for this eikonal equation:

(33)  Holp-.perg-.q:) = /max{p’,p )2 + max{q" q; )2,

where pr = D% 0; j, g+ = D’ ¢; j, and x* = max(x,0), x~ = —min(x,0). The task
is then to solve

He=1
on the grid.
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Osher [65] provided a link to time dependent eikonal equation by proving that
the ¢-level set of ¢(x,y) is the zero level set of the viscosity solution of the evolution
equation at time ¢

Vi +[Vy| =0
with appropriate initial conditions. In fact, the same is true for a very general
class of Hamilton-Jacobi equations (see [65]). As a consequence, one can try to
solve the time-dependent equation by the level set formulation [72] with high order
approximations on the partial derivatives[73][52]. Crandall and Lions proved that
the discrete solution obtained with a consistent, monotone Hamiltonian converges
to the desired viscosity solution [25].

Tsitsiklis [102] combined heap sort with a variant of the classical Dijkstra algo-
rithm to solve the steady state equation of the more general problem

Vol = r(x).
This was later rederived in [82] and [50]. It has become known as the fast marching
method whose complexity is O(Nlog(N)), where N is the number of grid points.
Osher and Helmsen[70] have extended the fast marching type method to somewhat
more general Hamilton-Jacobi equations. Since the fast marching method is by
now well known, we will not give details here on its implementation in this paper.

3.9. The sweeping idea. Danielsson [27] proposed an algorithm to compute Eu-
clidean distance to a subset of grid points on a two dimensional grid by visiting
each grid node in some predefined orders. In [9], Boué¢ and Dupuis suggest a sim-
ilar “sweeping” approach to solve the steady state equation which, by experience,
results in a O(N) algorithm for the problem at hand. This “sweeping” approach
has recently been used in [98] and [108] to compute the distance function to an
arbitrary data set in computer vision. In [106], it was proven that the fast sweeping
algorithm achieves a reasonable accuracy in a (small) finite number of iterations
independent of grid size. Using this “sweeping” approach, the complexity of the
algorithms drops from O(NlogN) in the fast marching to O(N), and the imple-
mentation of the algorithms becomes a bit easier than the fast marching method in
that no heap sort is needed.
This sweeping idea is best illustrated by solving the eikonal equation in [0, 1] :

luy| =1, u(0) =u(1) =0.

Let u; = u(x;) be the grid values and xo = 0, x, = 1. We then solve the discretized
nonlinear system

(3.4 \/max(max(D_ui,O)Z,min(D+ui,O)2) =1, up=u, =0

by our sweeping approach. Let us begin by sweeping from —1 to 1, i.e. we update
u; from i = 0 increasing to i = n. This is “equivalent” to following the character-
istics emanating from xo. Let ul(l)
have
FON { i/n, ifi<n
‘ I/ni=n -

denote the grid values after this sweep. We then
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In the second sweep, we update u; from i = n decreasing to 0, using ufl). During
this sweep, we follow the characteristics emanating from x,. The use of (3.4) is
essential, since it determines what happens when two characteristics cross each
other. It is then not hard to see that after the second sweep,
. { i/n, ifi<n/2
"1 (n—1i)/n otherwise.

Thus, to update u,, one only uses the immediate neighboring grid values and does
not need the heap sort data structure. More importantly, the algorithm follows the
characteristics with certain directions simultaneously, in a parallel way, instead of
a sequential way as in the fast marching method. The Godunov flux is essential
in the algorithm, since it determines what neighboring grid values should be used
to update u on a given grid node o. At least in the examples presented, we only
need to solve a simple quadratic equation and run some simple tests to determine
the value to be updated. This simple procedure is performed in each sweep, and
solution is obtained after a few sweeps.

3.10. Generalized closest point algorithms. In this subsection, we describe an
algorithm that can be applied for constructing a level set implicit representation for
a surface which is defined explicitly. It can also be used to extend the interface
velocity to the whole computational domain.

In the spirit of the Steinhoff et.al. Dynamic Surface Extension [91], we can
define functions that map each point in R> to the space of (local) representations
of surfaces (heretherto referred as surface elements). We can further define the
distance of a point P and a surface element §

dist(P,.5) := min(P,y).
yeS

The ’surface element’ can be for example the tangent plane, the curvature, or a
NURB description of the surface.

Instead of propagating distance values away from the interface, we propagate the
surface element information along the characteristics and impose conditions that
enforce the first arrival property of the viscosity solution of the eikonal equation.
The challenge is to compute the exact distance from a given surface element and to
derive the “upwinding” criteria for propagating the surface information throughout
the grids.

Given a smooth parameterized surface X : I X I, — R3, our algorithm provides
good initial guess for Newton’s iterations on the orthogonality identity:

o — [ (X=E(se,1)) Eg(siti) | _
F(84,1X) = < (X—Z(s0.0.)) - o (50.t) > =0,

where X(s,,1.) is the closest point on the surface to x. The initial guess in this case
is simply the closest point of the neighbors of x.

Let W denote the function that maps each point in space to its closest surface
element on S. We can then write the algorithm as follows:

Algorithm: Let u be the distance function on the grids, and W be the corre-
sponding generalized closest point function.
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(1) Initialize: give the exact distance to u, and the exact surface elements to W
at grids near I'. Mark them so they will not be updated. Mark all other grid
values as oo.
(2) Iterate through each grid point E with index (i,j,k) in each sweeping direc-
tion or according to the fast marching heap sort.
(3) For each neighbor P; of E, compute u;"” = dist(E,W (P;))
(4) If dist(E,W (P;)) < mingu(Py), set u™" = co. This is to enforce the mono-
tonicity of the solution.
(5) Set u(E) = min;u;"" = u;"" and W(E) = W (P,,).
This procedure can be used e.g., to convert triangulated surfaces to implicit sur-
faces.

3.11. Further generalizations. For further generalizations of the sweeping method
to solve more complicated Hamilton-Jacobi equations, such as those which arise
in computing distance on a manifold:

H (uy,uy) = \/au)% + bug +2cuuy = r(x,y), fora,b >0, ab > 2,

and the equations using Bellman’s formulae, we refer the readers to the recent
papers [100, 56]. Recently, a very simple sweeping algorithm, based on the Lax-
Friedrichs scheme, has been shown to work in great generality [55].

4. SEGMENTATION ALGORITHMS

The task of image segmentation is to find a collection of non-overlapping sub-
regions of a given image. In medical imaging, for example, one might want to
segment the tumor or the white matter of a brain from a given MRI image. In
airport screening, one might wish to segment certain “sensitive” shapes, such as
guns. There are many other obvious applications. Mathematically, given an image
u:Q C R%*(or R*)—R™, we want to find closed sets Q; satisfying

N N
Q=J, and N =0,
i=1 i=1

such that F (u,€Q;) = 0, where ¥ is some functional that defines the segmentation
goals. Here, QSO) denotes the interior of ;. As in the example of finding tumors,
typically, N is taken to be 2 (sometimes N = 3), and Q is taken to be the region
corresponding to the tumor, while Q, contains everything else. It is then natural
to devise a level set method to perform this task, by representing, for example, 4
as the region in which ¢ is non-negative. A slightly more general statement would
be to perform segmentation from a given set of images u; that come from different
sources. For example, one might be interested to segment stealth fighter jets from
both the conventional radar signals and also the infrared images.

Very often, the definition of what belongs to the “desired” regions depends on
the gray scale intensity of the given image, and the problem of finding such regions
is formulated as a variational problem; i.e. the solution minimizes some “energy”.
In a standard level set method, ¢ is used to represent Q; and ;. This is the setting
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of our discussion. In this section, we describe some level set segmentation methods
based on this type of definition.

4.1. Variational level set method. Assume that the energy functional E is an
integral operator on u over Qq:

(1, Q0) = / F(u(x))dx,
Qo
and the non-positive region of ¢ defines Qo; i.e. {¢ <0} = Q. The key idea of
the variational level set method formulated in [107] is that the above integral can
be written as

| Pu)ax= [ xa®F@)dx= | H(-4)Fudsx

where H is the HEaviside function: H(x) = lifx <0 and H (x) = 0 elsewhere. One
can then try to find the minimizer ¢ for this energy.

4.2. The Chan-Vese algorithm. This is closely related to the classical Mumford-
Shah algorithm [63], but uses a simple level set framework for its implementation.
We present the original Chan-Vese segmentation algorithm [18], and discuss vari-
ous aspects of this algorithm.

4.2.1. Basic formulation. The minimization problem is:

min E(d,c1,c05up
0EBV(Q).c1,c2€RT (9, c1,e23u0),

where the energy is defined as

E(Q.crexm) = u [ 8(0)Volds+

@.1) A /Q o — 1 [PH (0)dx+ s /Q 1o — e2[2(1 — H(9))dx.

Intuitively, one can interpret from this energy that each segment is defined as the
subregions of the images over which the average of the given image is “closest”
to the image value itself in Ly-norm. The first term in the energy measures the ar-
clength of the segment boundaries. Thus, minizing this quantity provides stability
of the algorithm as well as preventing fractal like boundaries from appearing.

If one regularizes the & function and the Heaviside functon by two suitable
smooth functions d¢ and Hg, then formally, the Euler-Lagrange equations can be
written as

\Y%
—q) —V—?x.l(u() —C1)2 —1—7\,2(140 _C2)2 =0,

42)  E = —8(0) |uV-
(4.2) 0 () |u Vol

with natural boundary condition

Oe(0) 00

Vo) ﬁ—OOn Q.
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_ Jouo(x)He(¢(x))dx
(43) Cl (¢) - fQHg(q)(X))dX )
and
(4.4) 2(0) = Jouo(x)(1 —Hs(q’(X)))dx'

Jo(1 = He(0(x)))dx

4.2.2. Discretization. A common approach to solve the minimization problem is
to perform gradient descent on the regularized Euler-Lagrange equation (4.2); i.e.
solving the following time dependent equation to steady state:

99

or
Vo
(4.5) =3 [ V.
Here, we remind the readers that ¢ (¢) and ¢, (¢) are defined in (4.3) and (4.4).

In Chan-Vese algorithm, the authors regularized the Heaviside function used in
(4.3) and (4.4):

—3E

—V— 7\.1(140 — C1)2 —1-7\,2(140 — 62)2:| .

1 2
HZ’S(Z) = 5 <1 + Earctan(é)) R

and define the delta function as the derivative of it:

82(2) = Hye(2)-

Equation (4.5) is then discretized by a semi-implicit scheme; i.e. to advance from
o7 to ¢Zj+.1, the curvature term right hand side of (4.5) is discretized as described
in the previous section using the value of ¢; ;. , except for the diagonal term ¢; ;,
which uses the implicitly defined ¢;{71. The integrals defining ¢ (¢) and c;(¢)
are approximated by simple Riemann sum with the regularized Heaviside function
defined above. ¢, is discretized by the forward Euler method: (071! —¢7.)/At.

i,j L,J
Therefore, the final update formula can be conceptually written as

1
OFF " = Torq (00 GOy 01 071,01 1))

where o, > 0 comes from the discretization of the curvature term. If the scheme
is fully explicit, o, = 0 and G would depend on ¢; ;. In the paper, the authors used
Ax=Ay=1,e=1, and Ar = 0.1. This implies that the delta function is really a
regular bump function that puts more weight on the evolution of the zero level set
of ¢. See Figures 4.1 and 4.2 for some results of this algorithm applied to brain
segmentation.

Finally, it is also possible but not advisable in this (unusual) case because new
zero level sets are likely to develop spontaneously, see section 1.4.5, to replace the
d function in front of the curvature term |Vo| [61]. The equation then becomes
independent of the choice of the level set function used, i.e. the problem becomes
morphological [2].
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FIGURE 4.1. Brain segmentation in 2D.

4.3. Fast one-pass segmentation algorithms. Recently, Gibou and Fedkiw [44],
and Song and Chan [88], proposed some fast methods that are based on the Chan-
Vese level set segmentation formulation. These algorithms are built upon flipping
the values of ¢ at each grid point/pixel from positive to negative or vice versa
according to a rule R, and contain 4 main steps:

(1) Initialize ¢° : Q +— {—1,1}.

(2) Advance: for each grid point, set ¢" ! (x) = —¢"(x) if R (¢"*!,¢",x) = 1.
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(3) (Perform regularization if needed.)
(4) Repeat until ¢! = ¢".
For example, in Gibou and Fedkiw’s algorithm, ® (¢"*! ¢") = 1 if
V(¢")-sign(¢") <0;
here V corresponds to the fitting term in the Euler-Lagrange equation:

V(0",x) 1= —Ai (1o — c1(0"))* + Ao (g — c2(9"))*.

(Note that the case V = 0 is implicitly defined). In this algorithm, Step 3 is es-
sential provides regularization to the segment boundaries. Without it, fractal like
boundaries may develop.

In Song and Chan’s algorithm, the key observation is that only the signs of the
the level set function matter in the energy functional. This can easily been seen
from the model defined in equation (4.1), in which one sees that the energy is a
function of H(—¢). In this algorithm, R (¢"*!,¢") can be interpreted as the logical
evaluation of the following inequality:

EO" e1,e05u0) < E(0",¢1,¢250).

Hence, the sign of ¢"(x) is flipped only if the energy (4.1) is non-increasing. This
provides stability of the algorithm when compared to Gibou and Fedkiw’s in which
there is no checking on the energy descent, at the cost of some speed of impleme-
nation.

We remark that there is a close connection between these two “level set” based
methods to the “I"-convergence” base methods. The Chan-Vese segmentation method
can be approximated by the following variational problem:

1
Eg(u,cl,cz;uo)::,u/8|Vu|2—|-EW(u)dx—|-7\,1/uz(uo—c1)2+7\.2/(1—u)z(uo—cz)zdx,

where w(u) = u?(1 —u)?, and € is a small positive number. Due to the strong
potential €~'W (), u will quickly be attracted to either 1 or 0, and consequently,
the term u? and (1 —u)? correspond respectively to H(¢) and 1 — H(¢) in (4.1),
and €|Vu|? corresponds to the regularization of of the length of 0Q;. Essentially,
one can interpret the Gibou-Fedkiw or Song-Chan algorithm as performing a one
step projection to the steady state that results from the stiff potential W. This is
delineated in the current work of Esedoglu and Tsai [37].

4.4. Segmentation of multiple “phases”. There are efforts to generalize the level
set methods for multiphase computation. For example, in [107], each partition
Q; is represented by a level set function ¢;. It is then important to enforce the
constraints that 1) the regions represented do not overlap (Y., {¢; < 0} = 0), and
2) there are no unclaimed regions; i.e. every point in Q belongs to certain Q;
(Q = UY,{0; <0}). Interesting formulae are derived in the variational setting to
enforce these two conditions. However, this approach may be expensive when the
number of phases is large.

In [103], the authors use the sign of the level set functions ¢ ; as a binary coding
for the phases, each assigned a non-negative integer value. Suppose there are four
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phases, Q;, i =,---,3, and two level set functions ¢¢ and ¢, are used for their
representation. One can then write, for instance,

Qo = {09 > 0}( {01 >0},
Q= {09 <0}( {01 >0},
Q; = {¢o > 0}( {91 <0},
Q3 = {00 <0} {¢r <0}

To full generality, write the phase number i in binary format i = Zz;é cx - 2F, where
¢k takes on either O or 1. Then one way of using {q)k}g;g level set functions to
represent ; is to identify

n—1

Q= ﬂ{er (1 —cx) - Ox(x) > 0}.
k=0
A drawback of this approach is the potential mis-identification of what is sup-

posed to be categorized as one single phase to two or more “different” phases,
since the formulation really comes with 2" phases with n level set functions. In the
Chan-Vese algorithm for example, it is possible that the image u has the same aver-
age in two different segments. Another drawback is the possible miscalculation of
the arc length/surface area of each phase, when two phase boundaries are forced to
collapse into one and may be given more weight than others. Related to the above
drawbacks, an important but so far untouched (to the best of our knowledge) prob-
lem in the level set world is to determine the optimal number of phases in certain
segmentation problems.

4.5. Discussion. One of the successful features reported in [18] is the emergence
of new interior contour. As we mentioned earlier, if one enforces the level set
function to be the distance function to the existing interfaces or replace the delta
function by |V¢| and computes locally, then the existing interfaces are only allowed
to merge or disappear. The authors attributed the possibility of new interior contour
emergence to their particular choice of delta function that has non-compact support.
One common approach in getting around this problem is to initially seed many
small circles that are densely distributed throughout the given image and let them
gradually merge and evolve to a number of larger contours. See figures 1.4.3 This
approach seems to capture the interior contour pretty well. While the statements
about the nonlocal effect of the particular delta function used in Chan-Vese are
valid, more careful study is called for to compare the degree of regularization, and
diameter of the interior of any segmentation, to the possibility of the emergence of
new interior contour.

We would also like to comment that the iterative approach adopted by Chan
and Vese can be regarded as a version of Gauss-Jacobi iterations for the nonlinear
Euler-Lagrange equation (4.2). This statement can be supplemented by looking at
the same approach applied to the linear equation:

U = Au.
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FIGURE 4.3. Initialization.
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The complexity of both approaches is proportional to N2, the total number of pix-
els. This is verified by the computations of Song in [36]. We remark that it is
possible to speed up the gradient flow in the Chan-Vese algorithm by a splitting
method described in [43].

There are many new (and old) “level set based” segmentation algorithms that
discard the continuity of the level set function and propose, instead, to model the
segmentation problem as a completely discrete, pixel-by-pixel, algorithm. As in
[44] and [88], these type of methods typically appear to be faster, and in some
cases, more flexible in handling multiple phases. This trends seem to be going
against the original spirit and raison d’tre of PDE based level set methods for im-
age processing — the geometry of the interface is approximated at higher order
accuracy through the assumed continuity of the level set function over the grid.
This fact resonates with the criticism over phase field models for segmentation that
there is no accurate representation of the interface, unless one refines the grid and
resolves the stiff parameter €~! (something that is typically impossible to do for
many image applications).

One should ask the question whether accurate representation of the phase bound-
aries is really needed for the problem at hand. Of course, there are applications in
which geometrical quantities of the phase boundaries play important roles in the
model; e.g. in the disocclusion application of Nitzberg-Mumford-Shiota [64] and
also in the applications related to Euler’s Elastica. In these type of applications, the
“conventional” level set approach certainly has the advantage. In the cases where
the geometrical quantities are not of importance, the piecewise constant model may
be quite useful.
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Our last comment is on the regularization term of the level set based segmen-
tation methods. So far, popular choices have been the variants coming from mini-
mizing the length of the interface. In denoising, as we have seen, this corresponds
to L, regularization of the image gradient. It is possible that the features to be
segmented, due to their origin, retain special orientations and are anisotropic. This
type of applications exist, for example, in material sciences. In this case, one
should look into the possible alternatives. We point out that Wulff energy is one
such possible candidates. There, the regularization operator & _is a function of the
normal of the interface, i.e. R (i) = div(y(7)). (In the common TV regularization,
y(7i) = #i. We refer to details to [71, 77] and [67].

5. PUSHING THE LIMIT

In this section, we will describe recent work corresponding to the classical ap-
plications that we listed above. We will see that this new work combines different
ideas together to manipulate more complicated geometrical objects. However, the
basic principle and spirit remains unchanged.

We start with total variation denoising. In [62], Meyer examined the total varia-
tion model of [80] more closely and proposed to decompose an image, ug, into two
portions, ug = u + v, where v contains the texture and noise parts of u( and can be
written as the divergence of a vector field; i.e. v = div g with the norm of v, ||v|].
defined as the infimum of L™ norms of such vectors g. Soon afterwards, in [104]
and also [74], the authors proposed a numerical algorithm of approximating such
a decomposition and combined it with other texture synthesis technique to inpaint
textured images [6].

In [11, 22], the authors provided a level set framework to represent and move
curves on implicit surfaces or in free three dimensional space. This framework was
then generalized to process images and even more general quantities such as vector
fields that are defined on nonflat surfaces [7]. Figure 5.1 shows inpainting over a
sphere. This is one of the pioneering works on more complicated geometries in
the level set framework. Generally speaking, the key is to raise the space dimen-
sion and/or the number of level set functions. For example, in [107], the authors
used multiple level sets to solve a multiphase minimal surface problem. Chan-Vese
further generalized the idea and applied to image segmentations [103]. This was
discussed in the previous section. Smereka [86] used multiple level sets to define
spirals and study the formation of screw dislocations in crystal growth. Liao et al
[58] used this approach in brain morphing. Additionally, [87] also had an interest-
ing level set approach to the multiphase computation that could be used in image
segmentation.

As a last example, in the framework of [11, 22], a curve is represented as the
intersection of two implicit surfaces, and the differential operators on surfaces are
approximated by the projections of the related operators in the ambient space. This
was then generalized to work on even more complicated geometrical objects com-
monly seen in dynamic geometrical optics [66]. This approach makes the manipu-
lation of even more complicated curves and surfaces possible, see Figure 5.2.
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FIGURE 5.1. The image on the right is the denoised and inpainted
result from the left.

| . ;
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FIGURE 5.2. This figures shows some complicated curves with
self intersections using the approach in [66].

5.1. Computer Graphics and Beyond. The problem of finding the visible/invisible
region of a given surface configuration is a fundamental one. One of the most
straightforward applications is in surface rendering. Typically, explicit ray tracing
techniques have been used to render a “realistic” projection of the visible part of
the given surfaces on the image plane. Not surprisingly, some applications related
to the accumulation on surfaces of quantities that propagate as does light also need
visibility information. Examples include etching [1], the formation of huge ice
spikes on the Peruvian Andes Mountains [8], and shape from shading models [53]
(see Figure 5.3).

We point out here that in many of the applications listed above, the data (i.e.
surfaces) are given implicitly. It is therefore, natural to work directly with the
implicit data without converting to a different explicit representation. An interest-
ing level set method for the visibility problem has recently been developed by the
authors and collaborators [99]. The underlying basic algorithm can be regarded
as a multi-level implicit ray tracer that works with volumetric data. It has been
applied successfully in reconstructing surfaces from multiple images of different
views [53]. It can also be applied directly to some surface renderers. e.g. the



LEVEL SET METHODS AND THEIR APPLICATIONS IN IMAGE SCIENCE 30

FIGURE 5.3. The picture on the right shows the reconstructed
surface from multiple images on the right.

FIGURE 5.4. The black regions are invisible to the path indicated
by the diamonds.

“non-photo-realistic” renderer of [51]. In the algorithm defined in [99], the bound-
aries of visible and invisible regions, both silhouette and swath [30], are implicitly
represented in the framework of [11, 22], mentioned above. Figure 5.4 shows an
accumulative visibility result of a path above Grand Canyon. Figure 5.5 shows a
result and the silhouette.

This implicit framework for visibility offers many other advantages. For exam-
ple, the visibility information can be interpreted as the solution of simple first order
PDEs and [99] offers a near optimal solution method on the grid. The dynamics
of the visibility with respect to moving vantage point or dynamic surfaces can be
derived and tracked implicitly within the same framework. Furthermore, using the
same framework and the well developed level set calculus and numerics, one can
start solving variational problems on the visibility numerically and efficiently [97].
This will then relate to classical “guarding cameras” or “pursuer-evader” problems
in computational geometry and robotics.
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FIGURE 5.5. The blue surface borders the visible and invisible
regions. The light blue and yellow curves indicate the silhouettes
andand swaths.

6. CURRENT TRENDS

Currently, higher order nonlinear PDEs are increasingly appearing in image sci-
ence. For example, in image inpainting of [15][35][60], a fourth order PDE is
derived from regularizing the level set curvature a given image. Figure 7.1 shows
an inpainting result from [35].

In computer graphics, Tasdizen et al [95] proposed to perform anisotropic dif-
fusion on the normals of a given level set surface model. In general, fourth order
equations are much harder to analyze, since they generally do not have a maxi-
mum principle as second order parabolic equations do. Another interesting paper
of Burchard [10] discusses the diffusion operators constrained in color space.

There is also a trend of devising extremely fast (almost one-pass and discrete)
algorithms for image science applications from level set PDE models. This began
in [44][88].

Multiscale methods have been successfully applied to several different applica-
tions in image science. For example, wavelet analysis has been quite successful
in image compression. Multigrid methods provide fast algorithms to solve certain
linear equations. Fast Multipole Methods also have been used in image science, see
e.g. [12]. Recently, a general framework (HMM) for a class of multiscale problems
has been advocated by W. E and B. Engquist [31]. An HMM-level set method for
front propagation in random media is introduced by [23]. The authors believe that a
combined multiscale-level set method will be useful in modeling image sequences
that are obtained from highly noisy media.
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A noisy image to be inpainted. Inpainting via Mumford-Shah-Euler image model

FIGURE 7.1. This is an inpainting result of [35].
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