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ABSTRACT 
 
In this paper we discuss a classic clustering algorithm that can 
be used to segment images and a recently developed active 
contour image segmentation model. We propose integrating 
aspects of the classic algorithm to improve the active contour 
model. For the resulting CVK segmentation algorithm we 
examine two methods to decrease the size of the image 
domain. 
The CVK method has been implemented to run on parallel and 
distributed computers. By changing the order of updating the 
pixels, it was possible to replace synchronous communication 
with asynchronous communication and subsequently the 
parallel efficiency is improved. 
 
Keywords: Image Segmentation, Clustering Algorithm, 
Active Contour Model, Level Set Functions, Synchronous and 
Asynchronous Communication. 
 
 
1. INTRODUCTION 
 
Looking at an image, it is usually very easy for a human to see 
what it represents. For a computer this is not so easy. Before 
computers "know" what is represented, objects must be 
measured, but before that, the objects must first be detected. 
Understanding images is very important in problems like 
stereo and motion estimation, part recognition or image 
indexing. The first step in image understanding is image 
segmentation. Segmentation is the problem of dividing an 
image into objects or distinguishing objects from a 
background. 
 
This paper discusses the classic K-means algorithm, the 
recently developed Chan - Vese (CV) active contour model 

and a combination of both (CVK). K-means can only handle a 
small subset of images and needs image enhancement for 
noisy or blurred images. CV and CVK are designed to handle 
a much larger class of images without enhancement. 
Unfortunately these algorithms are often slower. Without any 
optimizations, a typical 600×480 image will take several hours. 
Therefore methods that reduce the size of the image domain 
and parallel and distributed computers are used to speedup 
calculation. 

 
Section 1 introduces image segmentation and the K-means, 
CV and CVK algorithms. In section 2 a narrow band version 
and a multiresolution version of the CVK algorithm are 
examined to decrease the size of the image domain. Section 3 
discusses the parallel implementation of these versions and 
shows experiments with synchronous and asynchronous 
inter-processor communication. Section 4 gives some general 
conclusions. 
 
Image Segmentation 
For every point in an image domain, , the intensity of a 
grey-valued image can be specified by a number in [0,1] (0 for 
black, 1 for white) and the intensity of a RGB image (red, 
green, blue) can be specified by three numbers in [0,1]. In 
general, the intensity of images considered in this paper can be 
specified by m numbers in [0,1]. Therefore images are 
mappings from Ω to [0,1]
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The image domain can be discrete (a grid of points or pixels) 
or continuous, has a rectangular shape and can have any 
number of dimensions larger than one. 
For example, 

],0[],0[ 10 ww ×=Ω        (2) 
for a 2D continuous image, or 
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for a d-dimensional digital image. Here w0 and w1 are the 
width and height of the image and ωi is the number of grid 
points in the (i+1)-th dimension. 
 
The goal of image segmentation is to segment the image 
domain Ω into several subdomains Ωi, based on some 
appropriate criteria that involve intensity or location of colors, 
such that the domain is formed by the union of the subdomains 
and the subdomains do not overlap, 
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After segmentation is completed, the subdomains are 
considered k separate objects, or k-1 separate objects and a 
background. The objects can then be measured and classified 
or recognized. This step towards image understanding is not 
covered by this paper. 
 
Some Commonly Used Segmentation Algorithms 

K-means clustering algorithm [6] 
The K-means clustering algorithm was designed to cluster a 
number (N) of objects into K clusters or classes, based on 
location of the objects. The objective is to assign the objects to 
classes so that they lie closer to the average location of their 
class than to the average location of other classes. 
 
The algorithm can be used to cluster pixels of a digital image 
with related color if the pixels are considered objects. 
Location is measured in terms of color rather than the actual 
position of the pixels in the image; pixels are located in color 
space, not in physical space. The average location in color 
space of pixels in a class can be calculated by averaging the 
colors of all pixels in the class. The distance between a pixel pi 
and the average of a class aj, can be expressed by 
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(m=1 for a grey valued image and m=3 for a RGB image). 
The parameters λj,k can be used to give priority to classes or 
colors. 
 

Chan - Vese image segmentation [4,10,11] 
A very different approach is segmentation by curve evolution, 
snakes or active contour models. Here a parameterized 
hypersurface C (or contour in 2D) moves through the image 
domain with respect to constraints from the image and stops 
on the boundaries of objects. Mumford & Shaw base the 
constraints on the minimization of an energy functional 
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where u is the original image, u  is the segmented image, C 
is a hypersurface around detected objects, surface(C) is the 
length of the contour (in 2D) or the area of the surface or 
hypersurface (in 3D or higher dimensions), 0≥µ  and 

0≥λ  are parameters that can be set by the user. 
 
Chan & Vese represent the hypersurface C by a set of n simple 
closed hypersurfaces , },,{ 10 −nCC "
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Every hypersurface Ci segments Ω\C in 2 subdomains and the 
set of n hypersurfaces therefore segments Ω\C in 2n 
subdomains },,{ 120 −ΩΩ n" . 
 

 
Figure 1. Segmentation of the image domain Ω in eight 
subdomains Ω0,...,Ω7 by three hypersurfaces C0,C1,C2. 

The binary representation of the index i of subdomain Ωi can be 
found by the relative position to the hypersurfaces. Example: 

Ω001 lies outside (1) C0, inside (0) C1 and inside (0) C2. 
 

Furthermore, they restrict u  to piecewise constant functions; 
u  has a constant value ci on every subdomain Ωi 
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the characteristic function of subdomain Ωi. 
 
Now the Mumford-Shaw energy functional Eq. (6) becomes 
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For vector-valued images (m>1), the Chan-Vese energy 
functional is defined by 
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The steps of the algorithm are to minimize the energy by 
moving the hypersurfaces while keeping  fixed, 

and then recalculate {  while keeping the 
hypersurfaces fixed. The latter can be done by setting the 
derivatives with respect to c

},,{ 120 −ncc "
},, 120 −ncc "

i,j to zero: 
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In other words, ci is the average color of the image on 
subdomain Ωi. 
For the former, an appropriate representation for the 
hypersurfaces must be chosen. Chan & Vese choose to use 
level set functions. On a d-dimensional domain Ω, a 
hypersurface C is a (d-1)-dimensional object, but it can be 
represented by a function on Ω; →Ω:φ ℝ. 
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C is the zero level set of φ and 
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Figure 2. Representation of a hypersurface C and the unit 

normal by a level set function φ on Ω. 
 

Moreover, the position of a moving hypersurface can be 
calculated by solving an evolution equation for φ: 

),(given ,0|| tvt xφφφ =∇+      (14) 
Not just the zero level set, but all the level sets move in 
normal direction with speed v(x,t). 
To segment the image, a suitable speed function v(x,t) can be 
derived for every hypersurface Ci: 
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Here I(x) is the index of the subdomain where x lies, Ji(x) is 
the index of the subdomain that lies opposite subdomain I(x) 
relative to hypersurface Ci and ℝ are penalty 
functions to express why points in Ω should not be in Ω
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Notice that these penalties are also used in the K-means 
algorithm. 
In digital image processing, the PDE Eq. (15) is discretized 
using central differences for the spatial derivatives and Euler 
forward for the time derivatives, to fit the given grid. This 
means that for stability reasons, the time step must be chosen 
depending on the given spatial step. 
 

CVK algorithm [8] 
In the CV algorithm, the color of a pixel is compared to the 
mean color of its subdomain and the mean colors of the 
subdomains that lie opposite the hypersurfaces. Therefore a 
pixel can stay in its subdomain or move to one of n other 
subdomains (if there are n hypersurfaces). However, the 
K-means algorithm allows pixels to move to any of the other 
2n-1 subdomain. Apparently in the CV algorithm, pixels 
might be denied the opportunity to move to the right 
subdomain. 
The CVK algorithm segments an image by evolving 
hypersurfaces according to the PDE 
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where ]1,0[∈µ  and 
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is a pixel in the subdomain where the penalty function Eq. (16) 
is minimized, so where a pixel x should be moved to 
according to the K-means algorithm. Although there are many 
such pixels y, the level set function φi has the same sign on all 
of them. The sign function in Eq. (17) makes sure that the 
level set function φi on pixel x gets closer to zero or even 
changes sign when x is located on the wrong side of 
hypersurface Ci. In case x is located on the right side of Ci, φi 
is updated such that | 0|/ >∂∂ tiφ . This is done so the color 
criterion can oppose the curvature criterion that will be 
discussed in the sequel, to prevent the hypersurface from 
showing wiggling behavior when these criteria contradict and 
alternate dominance in subsequent iterations. 
 

 
Figure 3. Near intersections of hypersurfaces, the CV algorithm 

might fail where the K-means algorithm does not. 
The figure shows a hypothetical situation where four 

classes/subdomains are separated by two hypersurfaces α and β. 
The averages in the classes are 4,1,2 and 5. A pixel/object with 
value 4 is currently assigned to the class with average 5 (A) and 

should be assigned to the class with average 4 (D), which 
means that both hypersurface α (B) and hypersurface β (C) will 
have to move. For the obvious choice of parameters λi,j, the CV 

algorithm does not move the hypersurfaces, because 
(4-5)2<(4-1)2 and (4-5)2<(4-2)2. The K-means algorithm does 

move the hypersurfaces, because (4-5)2>(4-4)2. 
 
 
Qualitative Evaluation Of The Algorithms 
For undamaged, unblurred, synthetic images, all three 
algorithms (K-means, CV and CVK) work well. For natural 



images or noisy images, the K-means algorithm cannot be 
used to completely segment the images [6,8], although it can 
still be useful to create an initial guess for other algorithms. 
CV and CVK are designed to handle these images as well 
[4,8,10]. 
Because 
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is a unit normal to hypersurface Ci, 
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can be used to calculate the curvature κ of the hypersurface. 
The hypersurfaces are moved by two effects; a fitting term 
makes sure that pixels in the same object have similar color 
and a curvature term makes the contours move in the direction 
that minimizes the curvature, 0|| ≤∂

∂ κt . Small objects have 
large curvature, while large objects have smaller curvature. 
Noise is actually made of many very small objects and have 
large curvature. The parameter µ can be set by the user to 
specify whether large or small objects should be detected and 
can be used to make the algorithms (CV and CVK) robust to 
noise. The curvature term deals with noise and keeps detected 
objects from being scattered. 
The improvement in quality of the CVK over CV can not be 
measured in terms of correct output of the algorithms, but in 
terms of user friendliness; both algorithms produce correct 
results if the right set of parameters µ and λi,j are put in. 
However, it can be tricky to tune the parameters µ and λi,j for 
the CV algorithm, whereas CVK works fine by just choosing 
µ and setting all parameters λi,j equal to one [8,10]. So the 
CVK algorithm is more robust in usage. 
 

       
 

       
Figure 4: From left to right: noisy input image, segmentations 
after some iterations and final segmentation. Top: only 
K-means criterium was used. Bottom: both K-means and 
curvature criteria were used. CVK: 110 == λλ , CV: 

10 λλ <  [6]. 

 
 
2. CVK ALGORITHM 
 
Smaller Domain Versions 

Full domain 
Choosing level set functions to represent hypersurfaces 
introduces the flexibility that is so much needed, because 
hypersurfaces may split or merge while moving. On the other 
hand, they come with extra calculation time, because d-1 

dimensional objects are represented by functions on a d 
dimensional domain. 
 

Narrow band 
The first step in reducing the time complexity is to 
acknowledge that much work is done in vain. In the digital 
model, a hypersurface moves over a pixel if the level set 
function on that pixel changes sign in the iteration. Assuming 
that far away from the hypersurface this changing sign does 
not happen, it is a waste of time to update the level set 
function there using the evolution equation. However, this 
assumption might not always be justified. Instead of updating 
the level set functions on every grid point, a speedup will be 
achieved if only values on grid points near the hypersurfaces 
are updated. By specifying a maximum distance δ to the 
contours and only updating the level set functions on grid 
points within this distance, a band-shaped domain is created. 
Applying the narrow band method to the segmentation 
algorithm may cause the algorithm to fail. The narrow band 
method will produce correct results if the speed in normal 
direction depends only on local properties like the curvature. 
The fitting term may cause new hypersurfaces to appear out of 
nothing. This means that new hypersurfaces that should appear 
more than δ away from existing hypersurfaces do not get a 
chance in the narrow band method. Or objects that are not yet 
detected might not be detected at all if they are located too far 
from objects that are already detected. 
The narrow band method can still be used with the 
segmentation algorithm if the initial hypersurfaces are chosen 
well. The algorithm can be expected to succeed if the union of 
the narrow bands corresponding to the initial contours cover 
most of the image domain Ω. In that case no speedup can be 
expected in the first few iterations after initialization. 
Here the location of the narrow band is stored, along with the 
location of the zero level set, by the level set function; the 
edges of the band are the δ and -δ level sets. Reinitialization is 
needed to keep the distance between the level sets constant. In 
[1] a data structure is built that can store the location of the 
band during more than one iterations. 
 

Multiresolution 
Decreasing the resolution of an image decreases the size of the 
image domain and thereby reduces the time complexity of the 
segmentation algorithm. Changing the resolution of a digital 
image means that the same image is spread over a different 
number of pixels. A multiresolution method can take 
advantage of this. The multiresolution method should not be 
confused with the standard multigrid method, in which an 
iterative solution and the corresponding problem are coarsened 
to another grid, where the problem is solved and interpolated 
back to the fine grid. The grids are used recursively and 
iteratively. The multiresolution method for the image 
segmentation problem uses lower resolution versions of the 
original image to find initial solutions for higher resolution 
problems instead. So where the multigrid method starts at the 
highest level, returns to the highest level and uses all coarse 
grids regularly, the multiresolution method starts at the lowest 
level, ends at the highest level and uses all coarse grids only 
once. 
The only required addition is a mechanism that can resize a d 
dimensional grid. If d=1, a value on a new grid point can be 
calculated by linear interpolating the values on the neighbor 



grid points in the old grid (for the level set functions) or by 
copying the value on the nearest neighbor grid point of the old 
grid to the new grid point. If d>1, this mechanism is used for 
every dimension. 
 
Quantitative Evaluation Of The CVK Versions 
In the narrow band method, time is saved because calculations 
are only performed on a small domain. On the other hand, 
extra administration is needed to calculate and store the 
location of the narrow band.  In the current implementation, 
the narrow band does not result in speedup but some 
speeddown, whereas previous versions of the narrow band did 
result in speedup. This is not a flaw in the current 
implementation of the narrow band method. In previous 
implementation of the full domain method, the level set 
methods had to be reinitialized after every iteration. This 
could be eliminated in the current implementation of the full 
domain method, but not in the implementation of the narrow 
band method. 
The multiresolution method does not only reduce the number 
of grid points, but also reduces the number of operations that 
have to be performed on every grid point. For stability reasons, 

, with τ the time step and h the spatial step. On a 
coarser grid, larger time steps can be made, so lesser iterations 
are needed. 

)( 2hO=τ

 
 
3. PARALLELIZATION 
 
Parallel CVK Algorithm 
In the sense of tasks that have to be performed, the 
segmentation algorithm is clearly sequential by nature. 
Therefore a data parallel model of computation is chosen. The 
first dimension of the domain is partitioned while the other 
dimensions are not partitioned. So if 
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If  this is called striped partitioning; the domain is a 
matrix and the columns are assigned to sub-matrices. In 3D it 
could be called sliced partitioning. To let terminology stay 
valid for  let 

2=d

2>d
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be the (i+1)-th column of Ω. The first Smod0ω  
subdomains get   1/0 +Sω  columns and the other 
subdomains get  S/0ω  columns. 
The grid points of the subdomains are assigned to S processes, 
a processor can run more than one process. Assigning a grid 
point to a process means that all data associated with that grid 
point is stored in the memory of the processor on which the 
process will run and that operations on the data will be 
performed by that processor. For every column that does not 
belong to the same process as its neighbor column an extra 
column is assigned; operations on this data are done by the 

neighbor process and data is updated during a synchronizing 
step between processes. In the synchronization step data is 
sent between processes, although sending is not the correct 
word if both processes are located on the same processor. This 
mechanism makes sure that subdomains overlap by one 
column, which is exactly enough for the scheme used in the 
discrete evolution equation. 
 

 
Figure 5. 2D domain distributed to three processes. Data 

associated with a subdomain is assigned to the concerning 
process and calculations needed to update the data are done by 

the process. Columns of data from neighbor processes are 
needed, so synchronization must take place. 

 
Except after initialization, the hypersurfaces will be close to 
the objects to be detected. Since they are not distributed 
uniformly over the image, neither will be the narrow bands. 
Some parts of the domain may require more calculation than 
other parts. To distribute the work equally among the p 
processors, the S subdomains are mapped cyclically to the 
processors. Given p, S must be chosen so that 0mod =pS . 
Let b=S/p, then the domain is divided into b blocks and every 
block is distributed over p processors. So if p is given, b can 
be chosen small to reduce communication between processors 
or b can be chosen large to ensure a good load balance. In case 
no narrow band is used, the load is well balanced 
automatically, so b can be chosen equal to one. 
 
Synchronous And Asynchronous Communication 
Before every iteration the overlapping data must be 
synchronized. This requires S-1 exchanges of columns 
between neighbor processes. Also two all-to-all broadcasts 
must take place to evaluate the stop criterion and to recalculate 
the average intensities ci,j. 
Subdomains iΩ  are assigned to processor . If 
neighbor processes are not located on the same processor, 
which is the case for every process if , synchronization 
must take place. This takes either two or three steps, 
depending on whether p is odd or even. In every step a process 
communicates with either its left or its right neighbor process. 
Here the communication time is minimized by bundling b 
overlapping areas into one message. Messages do not actually 
have to be copied to a combined message; instead computer 
memory can be organized so blocks of data that have to be 
sent in the same communication step are always located at 
consecutive addresses. 

pi mod

1>p



 

 
Figure 6. Diagram of data synchronization. 

Top: 12 processes are mapped to 4 processors. 
First step: communication between 0 and 1 and between 2 and 3. 

Second step: communication between 0 and 3 and between 1 and 2. 
Bottom: 12 processes are mapped to 3 processors. 

First step: communication between 0 and 1. 
Second step: communication between 0 and 2. 
Third step: communication between 1 and 2. 

 
Asynchronous communication 

On parallel computer systems where communication is slow, 
run time could be optimized if calculations and 
communication could be done in parallel. The advantage of 
communicating asynchronously is that processors do not have 
to wait until the other processor involved in the 
communication is ready. The disadvantage is that after the 
communication is initiated, the data involved is accessible but 
not yet usable. This can be dealt with by choosing the order in 
which grid points are updated carefully: first non-overlapping 
grid points must be updated, then the overlapping grid points. 
 
Iteration with synchronous communication: 
• initiate synchronous communication of overlapping data 
• wait until communication is finished 
• update overlapping grid points 
• update non-overlapping grid points 
 
Iteration with asynchronous communication: 
• initiate asynchronous communication of overlapping data 
• while communication is in progress, update 

non-overlapping grid points in parallel 
• wait until communication is finished 
• update overlapping grid points 
 
In MPI implementations, synchronous and asynchronous 
receive operations are implemented by the functions 
MPI_Recv and MPI_Irecv respectively. Synchronous and 
asynchronous send operations are implemented by the 
functions MPI_Send and MPI_Isend. MPI_Isend is in fact 
asynchronous, but MPI_Send can be synchronous or 
asynchronous, depending on the size of the systems message 
buffer; if the buffer is large enough, asynchronous sending is 
used. 
Because some versions of MPI always use asynchronous 

sending, sometimes few improvement can be observed by 
using MPI_Isend and MPI_Irecv instead of MPI_Send and 
MPI_recv. 
 
Results 
The CVK algorithm was implemented (full domain, narrow 
band and multiresolution) in C++ using MPI functions for 
communication. 
For undamaged, unblurred, synthetic images, K-means can be 
expected to be very fast. The algorithm can finish in just a few 
iterations, because in these kind of images there is only a 
small amount of different colors and pixels are assigned to 
classes based on color and not on location: if it is decided that 
a pixel with some color should be in some class, than all pixels 
with the same color are assigned to that class in the same 
iteration. CV and CVK on the other hand are slower, because 
only pixels near hypersurfaces are reassigned. For natural 
images or noisy images, the speed of the K-means algorithm is 
irrelevant, because the algorithm is not applicable. 
Calculation time for CV is discussed in [10]. For the CVK 
algorithm, calculation time was measured on a Cray T3E 
parallel computer [13] in Delft and the DAS-2 clusters [14]. 
The efficiency of the algorithm run on DAS-2 on several 
grey-valued and color images, ranging in size from 100×100 
to 600×480, using one or two level set functions, using 
different initializations and using different numbers of coarse 
grids, is shown is figure 7. Improvement in efficiency can be 
observed for most test cases on DAS-2, if asynchronous 
communication is used. Figure 8 shows an example of typical 
improvement by the asynchronous version. For large images, 
much less improvement can be seen, but for these images 
communication overhead plays a less important role relative to 
the increased number of calculations. Because both MPI_Send 
and MPI_Isend are implemented asynchronously with default 
setting of MPI_BUFFER_MAX on the Cray T3E, the use of 
MPI_Send and MPI_Isend do not influence the efficiency 
much. 
 
 
4. CONCLUDING REMARKS 
 

In this paper we discussed the parallel implementation of 
a new image segmentation method (CVK), a method that was 
created by integrating a classic clustering algorithm (K-means) 
into a recently developed active contour model (Chan - Vese). 
The narrow band method and the multiresolution methods 
were attempts to decrease the size of the image domain and 
thereby the calculation time. The multiresolution method 
proved very useful for regular images and indispensable for 
large images. Because of reinitialization after every time step, 
the narrow band method could not compete with the full 
domain version. 

Parallelization is useful for both small and large images. 
Efficiency decreases when extra processors are added, but this 
decrease is smaller for large images than for small images. 
The MPI 1.1 does not support dynamic allocation of resources 
during the algorithm. The MPI 2.0 standard will support 
dynamic allocation of resources, which will make the 
multiresolution method more efficient; every time the 
algorithm moves from a coarse grid to a finer grid, more 
processors could be added. 

Replacing synchronous communication functions with 



asynchronous ones made the DAS-2 [14] more efficient for 
most test cases. Efficiency did not change much for very large 
images. On the Cray T3E [13] that was used, no improvement 
in efficiency could be detected. Communication on the Cray is 
much faster than the DAS-2, but for the calculation time vice 
versa. 

 
A possible future improvement could be adding more 

K-means optimizations to the algorithm. The average colors 
could be updated after every pixel is reassigned (on-the-fly 
K-means algorithm) or pixels can be randomly picked for 
reclassification instead of updating the full domain (R-means 
algorithm), however this makes parallelizing less efficient. 
Many initialization methods, like histogram based 
initialization, have been explored to improve the quality of the 
solution of the K-means algorithm or to decrease its 
calculation time and should be tested with the new 
segmentation algorithm. 
 
 
5. ACKNOWLEDGEMENT 
 
This report was presented and published in the Proceedings of 
the 2002 International Symposium on Distributed Computing 
and Applications to Business, Engineering and Science in 
Wuxi, China. Wuhan University of Technology Press, Wuhan, 
China, 7-5629-1881-3. 
 
 
6. REFERENCES 

 
[1] D. Adalsteinsson & J.A. Sethian, A fast level set method 

for propagating interfaces, Journal of Computational 
Physics 118, 269 (1995) 

[2] K.R. Castleman, Digital image processing (Prentice Hall, 

New Jersey, 1996) 
[3] T.F. Chan, B.Y. Sandberg & L.A. Vese, Active contours 

without edges for vector-valued images, UCLA CAM 
report 99-35 (1999) 

[4] T.F. Chan & L.A. Vese, Active contours without edges, 
UCLA CAM report 98-53 (1998) 

[5] T.F. Chan & L.A. Vese, Variational image restoration & 
segmentation models and approximations, UCLA CAM 
report 97-47 (1997) 

[6] M. Leeser, K-means algorithms for unsupervised 
classification, 
http://www.ece.neu.edu/groups/rpl/projects/kmeans/ 
(1999) 

[7] S. Osher & R.P. Fedkiw, Level set methods, UCLA 
CAM report 00-08 (2000) 

[8] J.R. Rommelse, High performance algorithms in image 
segmentation, MSc thesis, Delft University of 
Technology (2002) 

[9] J.A. Sethian, Level set methods and fast marching 
methods: evolving interfaces in computational geometry, 
fluid mechanics, computer vision and materials science 
(Cambridge University Press, Cambridge, 1999) 

[10] L.A. Vese & T.F. Chan, Image segmentation using level 
sets and the piecewise constant Mumford and Shah 
model, UCLA CAM report 00-14 (2000) 

[11] L.A. Vese & T.F. Chan, Reduced non-convex functional 
approximations for image restoration & segmentation, 
UCLA CAM report 97-56 (1997) 

[12] W.L. Wan, Scalable and multilevel iterative methods, 
UCLA CAM report 98-29 (1998) 

[13] High performance applied computing, 
http://www.hpcn.tudelft.nl/ (2000) 

[14] The distributed ASCI supercomputer 2 (DAS-2), 
http://www.cs.vu.nl/das2/ (2002) 

 
 
 

  

Figure 7. Efficiency with synchronous c
Efficiency
 
 
# processors 
ommunication, measured on DAS-2, for several test cases. 
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chronous communication is used on DAS-2, for some test cases. 
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