
A Robust Level Set Algorithm for Image Segmentation and its Parallel
Implementation

Joris R. Rommelse*
Department of Applied Mathematics

Delft University of Technology
Delft, 2628 CD, The Netherlands

Email: J.R.Rommelse@its.tudelft.nl

Hai-Xiang Lin
Department of Applied Mathematics

Delft University of Technology
Delft, 2628 CD, The Netherlands
Email: H.X.Lin@its.tudelft.nl

Tony F. Chan

Department of Mathematics
University of California, Los Angeles

Los Angeles, CA 90095-1555, USA
Email: Chan@math.ucla.edu

* Supported in part by Universiteitsfonds Delft

ABSTRACT

In this paper we discuss a classic clustering algorithm that can
be used to segment images and a recently developed active
contour image segmentation model. We propose integrating
aspects of the classic algorithm to improve the active contour
model. For the resulting CVK segmentation algorithm we
examine two methods to decrease the size of the image
domain.
The CVK method has been implemented to run on parallel and
distributed computers. By changing the order of updating the
pixels, it was possible to replace synchronous communication
with asynchronous communication and subsequently the
parallel efficiency is improved.

Keywords: Image Segmentation, Clustering Algorithm,
Active Contour Model, Level Set Functions, Synchronous and
Asynchronous Communication.

1. INTRODUCTION

Looking at an image, it is usually very easy for a human to see
what it represents. For a computer this is not so easy. Before
computers "know" what is represented, objects must be
measured, but before that, the objects must first be detected.
Understanding images is very important in problems like
stereo and motion estimation, part recognition or image
indexing. The first step in image understanding is image
segmentation. Segmentation is the problem of dividing an
image into objects or distinguishing objects from a
background.

This paper discusses the classic K-means algorithm, the
recently developed Chan - Vese (CV) active contour model

and a combination of both (CVK). K-means can only handle a
small subset of images and needs image enhancement for
noisy or blurred images. CV and CVK are designed to handle
a much larger class of images without enhancement.
Unfortunately these algorithms are often slower. Without any
optimizations, a typical 600×480 image will take several hours.
Therefore methods that reduce the size of the image domain
and parallel and distributed computers are used to speedup
calculation.

Section 1 introduces image segmentation and the K-means,
CV and CVK algorithms. In section 2 a narrow band version
and a multiresolution version of the CVK algorithm are
examined to decrease the size of the image domain. Section 3
discusses the parallel implementation of these versions and
shows experiments with synchronous and asynchronous
inter-processor communication. Section 4 gives some general
conclusions.

Image Segmentation
For every point in an image domain, , the intensity of a
grey-valued image can be specified by a number in [0,1] (0 for
black, 1 for white) and the intensity of a RGB image (red,
green, blue) can be specified by three numbers in [0,1]. In
general, the intensity of images considered in this paper can be
specified by m numbers in [0,1]. Therefore images are
mappings from Ω to [0,1]

Ω∈x

− x))(1mu

m and can be written as
 (1) Ω∈=→Ω xxxuu ,,),(()(,]1,0[: 0

m u "
The image domain can be discrete (a grid of points or pixels)
or continuous, has a rectangular shape and can have any
number of dimensions larger than one.
For example,

],0[],0[10 ww ×=Ω (2)
for a 2D continuous image, or

}1,,0{}1,,0{ 10 −××−=Ω −dωω """ (3)
for a d-dimensional digital image. Here w0 and w1 are the
width and height of the image and ωi is the number of grid
points in the (i+1)-th dimension.

The goal of image segmentation is to segment the image
domain Ω into several subdomains Ωi, based on some
appropriate criteria that involve intensity or location of colors,
such that the domain is formed by the union of the subdomains
and the subdomains do not overlap,

)(,
1

0
jiji

k

i
i ≠∅=Ω∩ΩΩ=Ω

−

=
∪ . (4)

After segmentation is completed, the subdomains are
considered k separate objects, or k-1 separate objects and a
background. The objects can then be measured and classified
or recognized. This step towards image understanding is not
covered by this paper.

Some Commonly Used Segmentation Algorithms

K-means clustering algorithm [6]
The K-means clustering algorithm was designed to cluster a
number (N) of objects into K clusters or classes, based on
location of the objects. The objective is to assign the objects to
classes so that they lie closer to the average location of their
class than to the average location of other classes.

The algorithm can be used to cluster pixels of a digital image
with related color if the pixels are considered objects.
Location is measured in terms of color rather than the actual
position of the pixels in the image; pixels are located in color
space, not in physical space. The average location in color
space of pixels in a class can be calculated by averaging the
colors of all pixels in the class. The distance between a pixel pi
and the average of a class aj, can be expressed by

∑
−

=
−=

1

0

2
,,,

1)(),(
m

k
kjkikjmji apapd λ , (5)

(m=1 for a grey valued image and m=3 for a RGB image).
The parameters λj,k can be used to give priority to classes or
colors.

Chan - Vese image segmentation [4,10,11]
A very different approach is segmentation by curve evolution,
snakes or active contour models. Here a parameterized
hypersurface C (or contour in 2D) moves through the image
domain with respect to constraints from the image and stops
on the boundaries of objects. Mumford & Shaw base the
constraints on the minimization of an energy functional

∫∫
ΩΩ

∇+−+⋅=
C

MS ddCsurfaceCF
\

22 ||||)(),(xuxuuu λµ (6)

where u is the original image, u is the segmented image, C
is a hypersurface around detected objects, surface(C) is the
length of the contour (in 2D) or the area of the surface or
hypersurface (in 3D or higher dimensions), 0≥µ and

0≥λ are parameters that can be set by the user.

Chan & Vese represent the hypersurface C by a set of n simple
closed hypersurfaces , },,{ 10 −nCC "

∪
1

0

−

=

=
n

i
iCC . (7)

Every hypersurface Ci segments Ω\C in 2 subdomains and the
set of n hypersurfaces therefore segments Ω\C in 2n
subdomains },,{ 120 −ΩΩ n" .

Figure 1. Segmentation of the image domain Ω in eight
subdomains Ω0,...,Ω7 by three hypersurfaces C0,C1,C2.

The binary representation of the index i of subdomain Ωi can be
found by the relative position to the hypersurfaces. Example:

Ω001 lies outside (1) C0, inside (0) C1 and inside (0) C2.

Furthermore, they restrict u to piecewise constant functions;
u has a constant value ci on every subdomain Ωi

∑
−

=
=

Ω∈=
12

0
)()(

 if)(
n

i
ii

ii

xcxu

xcxu

χ
 (8)

with

Ω∉
Ω∈

=
i

i
i x

x
x

 if0
 if1

)(χ (9)

the characteristic function of subdomain Ωi.

Now the Mumford-Shaw energy functional Eq. (6) becomes

∑ ∫
−

= Ω

−

=

−−

−+

⋅=

=
12

0

2
1

0

12010

||

),,,,,(
n

i

n

i
ii

n

i
i

n
MS

n

dCsurface

CCF

xcu

cc

λµ ∪

""

 (10)

For vector-valued images (m>1), the Chan-Vese energy
functional is defined by

∑∑ ∫∑
−

=

−

= Ω

−

=

−−

−+⋅=

=
12

0

1

0

2
,

1
1

0

12010,

)()(

),,,,,(
n

i

n

i

m

j
ijijim

n

i
i

n
CV

mn

dcuCsurface

CCF

x

cc

χλµ

""

 (11)

The steps of the algorithm are to minimize the energy by
moving the hypersurfaces while keeping fixed,

and then recalculate { while keeping the
hypersurfaces fixed. The latter can be done by setting the
derivatives with respect to c

},,{ 120 −ncc "
},, 120 −ncc "

i,j to zero:

||
0 ,

,

,

i

jj

i

ij

ji
ji

CV
mn i

i

i

du

d

du

d

du
c

c
F

Ω
===⇒=

∂

∂
∫

∫

∫

∫

∫
Ω

Ω

Ω

Ω

Ω

x

x

x

x

x

χ

χ
 (12)

In other words, ci is the average color of the image on
subdomain Ωi.
For the former, an appropriate representation for the
hypersurfaces must be chosen. Chan & Vese choose to use
level set functions. On a d-dimensional domain Ω, a
hypersurface C is a (d-1)-dimensional object, but it can be
represented by a function on Ω; →Ω:φ ℝ.

}0)(:{ =Ω∈= xx φC (13)

C is the zero level set of φ and
||

)(0 φ
φ

∇
∇

=xn is a vector

normal to {)}()(: 0xxx φφ =Ω∈

(
 at position x0 pointing in

the direction of level sets with)() 0xx φφ > .

Figure 2. Representation of a hypersurface C and the unit

normal by a level set function φ on Ω.

Moreover, the position of a moving hypersurface can be
calculated by solving an evolution equation for φ:

),(given ,0|| tvt xφφφ =∇+ (14)
Not just the zero level set, but all the level sets move in
normal direction with speed v(x,t).
To segment the image, a suitable speed function v(x,t) can be
derived for every hypersurface Ci:

−−

∇
∇

⋅∇∇=
∂

∂))((
||

||
iJIi

i

i
i

i ppsign
t

φ
φ
φµφφ (15)

Here I(x) is the index of the subdomain where x lies, Ji(x) is
the index of the subdomain that lies opposite subdomain I(x)
relative to hypersurface Ci and ℝ are penalty
functions to express why points in Ω should not be in Ω

→Ω:ip

i,

∑
−

=

−=
1

0

2
,,

1)()(
m

j
jijjimi cup λx . (16)

Notice that these penalties are also used in the K-means
algorithm.
In digital image processing, the PDE Eq. (15) is discretized
using central differences for the spatial derivatives and Euler
forward for the time derivatives, to fit the given grid. This
means that for stability reasons, the time step must be chosen
depending on the given spatial step.

CVK algorithm [8]
In the CV algorithm, the color of a pixel is compared to the
mean color of its subdomain and the mean colors of the
subdomains that lie opposite the hypersurfaces. Therefore a
pixel can stay in its subdomain or move to one of n other
subdomains (if there are n hypersurfaces). However, the
K-means algorithm allows pixels to move to any of the other
2n-1 subdomain. Apparently in the CV algorithm, pixels
might be denied the opportunity to move to the right
subdomain.
The CVK algorithm segments an image by evolving
hypersurfaces according to the PDE

−−

∇
∇

⋅∇∇=
∂

∂))(()1(
|)(|

)(|)(|)(y
x
xxx

i
i

i
i

i sign
t

φµ
φ
φµφφ (17)

where]1,0[∈µ and

−= ∑
−

=Ω∈

1

0

2
,,

1))()((minarg
m

j
jijjim cu zzy

z
λ (18)

is a pixel in the subdomain where the penalty function Eq. (16)
is minimized, so where a pixel x should be moved to
according to the K-means algorithm. Although there are many
such pixels y, the level set function φi has the same sign on all
of them. The sign function in Eq. (17) makes sure that the
level set function φi on pixel x gets closer to zero or even
changes sign when x is located on the wrong side of
hypersurface Ci. In case x is located on the right side of Ci, φi
is updated such that | 0|/ >∂∂ tiφ . This is done so the color
criterion can oppose the curvature criterion that will be
discussed in the sequel, to prevent the hypersurface from
showing wiggling behavior when these criteria contradict and
alternate dominance in subsequent iterations.

Figure 3. Near intersections of hypersurfaces, the CV algorithm

might fail where the K-means algorithm does not.
The figure shows a hypothetical situation where four

classes/subdomains are separated by two hypersurfaces α and β.
The averages in the classes are 4,1,2 and 5. A pixel/object with
value 4 is currently assigned to the class with average 5 (A) and

should be assigned to the class with average 4 (D), which
means that both hypersurface α (B) and hypersurface β (C) will
have to move. For the obvious choice of parameters λi,j, the CV

algorithm does not move the hypersurfaces, because
(4-5)2<(4-1)2 and (4-5)2<(4-2)2. The K-means algorithm does

move the hypersurfaces, because (4-5)2>(4-4)2.

Qualitative Evaluation Of The Algorithms
For undamaged, unblurred, synthetic images, all three
algorithms (K-means, CV and CVK) work well. For natural

images or noisy images, the K-means algorithm cannot be
used to completely segment the images [6,8], although it can
still be useful to create an initial guess for other algorithms.
CV and CVK are designed to handle these images as well
[4,8,10].
Because

|| i

i

φ
φ

∇
∇

=n (19)

is a unit normal to hypersurface Ci,

∇
∇

⋅∇=
|| i

i

φ
φκ (20)

can be used to calculate the curvature κ of the hypersurface.
The hypersurfaces are moved by two effects; a fitting term
makes sure that pixels in the same object have similar color
and a curvature term makes the contours move in the direction
that minimizes the curvature, 0|| ≤∂

∂ κt . Small objects have
large curvature, while large objects have smaller curvature.
Noise is actually made of many very small objects and have
large curvature. The parameter µ can be set by the user to
specify whether large or small objects should be detected and
can be used to make the algorithms (CV and CVK) robust to
noise. The curvature term deals with noise and keeps detected
objects from being scattered.
The improvement in quality of the CVK over CV can not be
measured in terms of correct output of the algorithms, but in
terms of user friendliness; both algorithms produce correct
results if the right set of parameters µ and λi,j are put in.
However, it can be tricky to tune the parameters µ and λi,j for
the CV algorithm, whereas CVK works fine by just choosing
µ and setting all parameters λi,j equal to one [8,10]. So the
CVK algorithm is more robust in usage.

Figure 4: From left to right: noisy input image, segmentations
after some iterations and final segmentation. Top: only
K-means criterium was used. Bottom: both K-means and
curvature criteria were used. CVK: 110 == λλ , CV:

10 λλ < [6].

2. CVK ALGORITHM

Smaller Domain Versions

Full domain
Choosing level set functions to represent hypersurfaces
introduces the flexibility that is so much needed, because
hypersurfaces may split or merge while moving. On the other
hand, they come with extra calculation time, because d-1

dimensional objects are represented by functions on a d
dimensional domain.

Narrow band
The first step in reducing the time complexity is to
acknowledge that much work is done in vain. In the digital
model, a hypersurface moves over a pixel if the level set
function on that pixel changes sign in the iteration. Assuming
that far away from the hypersurface this changing sign does
not happen, it is a waste of time to update the level set
function there using the evolution equation. However, this
assumption might not always be justified. Instead of updating
the level set functions on every grid point, a speedup will be
achieved if only values on grid points near the hypersurfaces
are updated. By specifying a maximum distance δ to the
contours and only updating the level set functions on grid
points within this distance, a band-shaped domain is created.
Applying the narrow band method to the segmentation
algorithm may cause the algorithm to fail. The narrow band
method will produce correct results if the speed in normal
direction depends only on local properties like the curvature.
The fitting term may cause new hypersurfaces to appear out of
nothing. This means that new hypersurfaces that should appear
more than δ away from existing hypersurfaces do not get a
chance in the narrow band method. Or objects that are not yet
detected might not be detected at all if they are located too far
from objects that are already detected.
The narrow band method can still be used with the
segmentation algorithm if the initial hypersurfaces are chosen
well. The algorithm can be expected to succeed if the union of
the narrow bands corresponding to the initial contours cover
most of the image domain Ω. In that case no speedup can be
expected in the first few iterations after initialization.
Here the location of the narrow band is stored, along with the
location of the zero level set, by the level set function; the
edges of the band are the δ and -δ level sets. Reinitialization is
needed to keep the distance between the level sets constant. In
[1] a data structure is built that can store the location of the
band during more than one iterations.

Multiresolution
Decreasing the resolution of an image decreases the size of the
image domain and thereby reduces the time complexity of the
segmentation algorithm. Changing the resolution of a digital
image means that the same image is spread over a different
number of pixels. A multiresolution method can take
advantage of this. The multiresolution method should not be
confused with the standard multigrid method, in which an
iterative solution and the corresponding problem are coarsened
to another grid, where the problem is solved and interpolated
back to the fine grid. The grids are used recursively and
iteratively. The multiresolution method for the image
segmentation problem uses lower resolution versions of the
original image to find initial solutions for higher resolution
problems instead. So where the multigrid method starts at the
highest level, returns to the highest level and uses all coarse
grids regularly, the multiresolution method starts at the lowest
level, ends at the highest level and uses all coarse grids only
once.
The only required addition is a mechanism that can resize a d
dimensional grid. If d=1, a value on a new grid point can be
calculated by linear interpolating the values on the neighbor

grid points in the old grid (for the level set functions) or by
copying the value on the nearest neighbor grid point of the old
grid to the new grid point. If d>1, this mechanism is used for
every dimension.

Quantitative Evaluation Of The CVK Versions
In the narrow band method, time is saved because calculations
are only performed on a small domain. On the other hand,
extra administration is needed to calculate and store the
location of the narrow band. In the current implementation,
the narrow band does not result in speedup but some
speeddown, whereas previous versions of the narrow band did
result in speedup. This is not a flaw in the current
implementation of the narrow band method. In previous
implementation of the full domain method, the level set
methods had to be reinitialized after every iteration. This
could be eliminated in the current implementation of the full
domain method, but not in the implementation of the narrow
band method.
The multiresolution method does not only reduce the number
of grid points, but also reduces the number of operations that
have to be performed on every grid point. For stability reasons,

, with τ the time step and h the spatial step. On a
coarser grid, larger time steps can be made, so lesser iterations
are needed.

)(2hO=τ

3. PARALLELIZATION

Parallel CVK Algorithm
In the sense of tasks that have to be performed, the
segmentation algorithm is clearly sequential by nature.
Therefore a data parallel model of computation is chosen. The
first dimension of the domain is partitioned while the other
dimensions are not partitioned. So if

}1,,0{}1,,0{ 10 −××−=Ω −dωω """ , then }1,,0{ 0 −ω"

}1, −S

 is
partitioned into S subsets

,1−S{}1,,{}1,,0{ 100 ∪∪−=− ϖϖϖϖω """" , where

}mod,min{ 0
0 Si

S
ii ω

ω
ϖ +

= (21)

and
}1,,0{}1,,0{}1,,{ 111 −××−×−=Ω −+ diii ωωϖϖ """" (22)

If this is called striped partitioning; the domain is a
matrix and the columns are assigned to sub-matrices. In 3D it
could be called sliced partitioning. To let terminology stay
valid for let

2=d

2>d
}1,,0{}1,,0{}{ 11 −××−× −di ωω """ (23)

be the (i+1)-th column of Ω. The first Smod0ω
subdomains get 1/0 +Sω columns and the other
subdomains get S/0ω columns.
The grid points of the subdomains are assigned to S processes,
a processor can run more than one process. Assigning a grid
point to a process means that all data associated with that grid
point is stored in the memory of the processor on which the
process will run and that operations on the data will be
performed by that processor. For every column that does not
belong to the same process as its neighbor column an extra
column is assigned; operations on this data are done by the

neighbor process and data is updated during a synchronizing
step between processes. In the synchronization step data is
sent between processes, although sending is not the correct
word if both processes are located on the same processor. This
mechanism makes sure that subdomains overlap by one
column, which is exactly enough for the scheme used in the
discrete evolution equation.

Figure 5. 2D domain distributed to three processes. Data

associated with a subdomain is assigned to the concerning
process and calculations needed to update the data are done by

the process. Columns of data from neighbor processes are
needed, so synchronization must take place.

Except after initialization, the hypersurfaces will be close to
the objects to be detected. Since they are not distributed
uniformly over the image, neither will be the narrow bands.
Some parts of the domain may require more calculation than
other parts. To distribute the work equally among the p
processors, the S subdomains are mapped cyclically to the
processors. Given p, S must be chosen so that 0mod =pS .
Let b=S/p, then the domain is divided into b blocks and every
block is distributed over p processors. So if p is given, b can
be chosen small to reduce communication between processors
or b can be chosen large to ensure a good load balance. In case
no narrow band is used, the load is well balanced
automatically, so b can be chosen equal to one.

Synchronous And Asynchronous Communication
Before every iteration the overlapping data must be
synchronized. This requires S-1 exchanges of columns
between neighbor processes. Also two all-to-all broadcasts
must take place to evaluate the stop criterion and to recalculate
the average intensities ci,j.
Subdomains iΩ are assigned to processor . If
neighbor processes are not located on the same processor,
which is the case for every process if , synchronization
must take place. This takes either two or three steps,
depending on whether p is odd or even. In every step a process
communicates with either its left or its right neighbor process.
Here the communication time is minimized by bundling b
overlapping areas into one message. Messages do not actually
have to be copied to a combined message; instead computer
memory can be organized so blocks of data that have to be
sent in the same communication step are always located at
consecutive addresses.

pi mod

1>p

Figure 6. Diagram of data synchronization.

Top: 12 processes are mapped to 4 processors.
First step: communication between 0 and 1 and between 2 and 3.

Second step: communication between 0 and 3 and between 1 and 2.
Bottom: 12 processes are mapped to 3 processors.

First step: communication between 0 and 1.
Second step: communication between 0 and 2.
Third step: communication between 1 and 2.

Asynchronous communication

On parallel computer systems where communication is slow,
run time could be optimized if calculations and
communication could be done in parallel. The advantage of
communicating asynchronously is that processors do not have
to wait until the other processor involved in the
communication is ready. The disadvantage is that after the
communication is initiated, the data involved is accessible but
not yet usable. This can be dealt with by choosing the order in
which grid points are updated carefully: first non-overlapping
grid points must be updated, then the overlapping grid points.

Iteration with synchronous communication:
• initiate synchronous communication of overlapping data
• wait until communication is finished
• update overlapping grid points
• update non-overlapping grid points

Iteration with asynchronous communication:
• initiate asynchronous communication of overlapping data
• while communication is in progress, update

non-overlapping grid points in parallel
• wait until communication is finished
• update overlapping grid points

In MPI implementations, synchronous and asynchronous
receive operations are implemented by the functions
MPI_Recv and MPI_Irecv respectively. Synchronous and
asynchronous send operations are implemented by the
functions MPI_Send and MPI_Isend. MPI_Isend is in fact
asynchronous, but MPI_Send can be synchronous or
asynchronous, depending on the size of the systems message
buffer; if the buffer is large enough, asynchronous sending is
used.
Because some versions of MPI always use asynchronous

sending, sometimes few improvement can be observed by
using MPI_Isend and MPI_Irecv instead of MPI_Send and
MPI_recv.

Results
The CVK algorithm was implemented (full domain, narrow
band and multiresolution) in C++ using MPI functions for
communication.
For undamaged, unblurred, synthetic images, K-means can be
expected to be very fast. The algorithm can finish in just a few
iterations, because in these kind of images there is only a
small amount of different colors and pixels are assigned to
classes based on color and not on location: if it is decided that
a pixel with some color should be in some class, than all pixels
with the same color are assigned to that class in the same
iteration. CV and CVK on the other hand are slower, because
only pixels near hypersurfaces are reassigned. For natural
images or noisy images, the speed of the K-means algorithm is
irrelevant, because the algorithm is not applicable.
Calculation time for CV is discussed in [10]. For the CVK
algorithm, calculation time was measured on a Cray T3E
parallel computer [13] in Delft and the DAS-2 clusters [14].
The efficiency of the algorithm run on DAS-2 on several
grey-valued and color images, ranging in size from 100×100
to 600×480, using one or two level set functions, using
different initializations and using different numbers of coarse
grids, is shown is figure 7. Improvement in efficiency can be
observed for most test cases on DAS-2, if asynchronous
communication is used. Figure 8 shows an example of typical
improvement by the asynchronous version. For large images,
much less improvement can be seen, but for these images
communication overhead plays a less important role relative to
the increased number of calculations. Because both MPI_Send
and MPI_Isend are implemented asynchronously with default
setting of MPI_BUFFER_MAX on the Cray T3E, the use of
MPI_Send and MPI_Isend do not influence the efficiency
much.

4. CONCLUDING REMARKS

In this paper we discussed the parallel implementation of
a new image segmentation method (CVK), a method that was
created by integrating a classic clustering algorithm (K-means)
into a recently developed active contour model (Chan - Vese).
The narrow band method and the multiresolution methods
were attempts to decrease the size of the image domain and
thereby the calculation time. The multiresolution method
proved very useful for regular images and indispensable for
large images. Because of reinitialization after every time step,
the narrow band method could not compete with the full
domain version.

Parallelization is useful for both small and large images.
Efficiency decreases when extra processors are added, but this
decrease is smaller for large images than for small images.
The MPI 1.1 does not support dynamic allocation of resources
during the algorithm. The MPI 2.0 standard will support
dynamic allocation of resources, which will make the
multiresolution method more efficient; every time the
algorithm moves from a coarse grid to a finer grid, more
processors could be added.

Replacing synchronous communication functions with

asynchronous ones made the DAS-2 [14] more efficient for
most test cases. Efficiency did not change much for very large
images. On the Cray T3E [13] that was used, no improvement
in efficiency could be detected. Communication on the Cray is
much faster than the DAS-2, but for the calculation time vice
versa.

A possible future improvement could be adding more

K-means optimizations to the algorithm. The average colors
could be updated after every pixel is reassigned (on-the-fly
K-means algorithm) or pixels can be randomly picked for
reclassification instead of updating the full domain (R-means
algorithm), however this makes parallelizing less efficient.
Many initialization methods, like histogram based
initialization, have been explored to improve the quality of the
solution of the K-means algorithm or to decrease its
calculation time and should be tested with the new
segmentation algorithm.

5. ACKNOWLEDGEMENT

This report was presented and published in the Proceedings of
the 2002 International Symposium on Distributed Computing
and Applications to Business, Engineering and Science in
Wuxi, China. Wuhan University of Technology Press, Wuhan,
China, 7-5629-1881-3.

6. REFERENCES

[1] D. Adalsteinsson & J.A. Sethian, A fast level set method

for propagating interfaces, Journal of Computational
Physics 118, 269 (1995)

[2] K.R. Castleman, Digital image processing (Prentice Hall,

New Jersey, 1996)
[3] T.F. Chan, B.Y. Sandberg & L.A. Vese, Active contours

without edges for vector-valued images, UCLA CAM
report 99-35 (1999)

[4] T.F. Chan & L.A. Vese, Active contours without edges,
UCLA CAM report 98-53 (1998)

[5] T.F. Chan & L.A. Vese, Variational image restoration &
segmentation models and approximations, UCLA CAM
report 97-47 (1997)

[6] M. Leeser, K-means algorithms for unsupervised
classification,
http://www.ece.neu.edu/groups/rpl/projects/kmeans/
(1999)

[7] S. Osher & R.P. Fedkiw, Level set methods, UCLA
CAM report 00-08 (2000)

[8] J.R. Rommelse, High performance algorithms in image
segmentation, MSc thesis, Delft University of
Technology (2002)

[9] J.A. Sethian, Level set methods and fast marching
methods: evolving interfaces in computational geometry,
fluid mechanics, computer vision and materials science
(Cambridge University Press, Cambridge, 1999)

[10] L.A. Vese & T.F. Chan, Image segmentation using level
sets and the piecewise constant Mumford and Shah
model, UCLA CAM report 00-14 (2000)

[11] L.A. Vese & T.F. Chan, Reduced non-convex functional
approximations for image restoration & segmentation,
UCLA CAM report 97-56 (1997)

[12] W.L. Wan, Scalable and multilevel iterative methods,
UCLA CAM report 98-29 (1998)

[13] High performance applied computing,
http://www.hpcn.tudelft.nl/ (2000)

[14] The distributed ASCI supercomputer 2 (DAS-2),
http://www.cs.vu.nl/das2/ (2002)

Figure 7. Efficiency with synchronous c
Efficiency

processors
ommunication, measured on DAS-2, for several test cases.

Figure 8. Efficiency improves if asyn
Efficiency

processors

chronous communication is used on DAS-2, for some test cases.

	Department of Applied Mathematics
	Delft University of Technology
	Delft, 2628 CD, The Netherlands
	Hai-Xiang Lin
	Department of Applied Mathematics
	Delft University of Technology
	Delft, 2628 CD, The Netherlands
	Department of Mathematics
	University of California, Los Angeles
	ABSTRACT
	In this paper we discuss a classic clustering algorithm that can be used to segment images and a recently developed active contour image segmentation model. We propose integrating aspects of the classic algorithm to improve the active contour model. For
	K-means clustering algorithm [6]
	Chan - Vese image segmentation [4,10,11]
	CVK algorithm [8]
	Qualitative Evaluation Of The Algorithms

	Full domain
	Narrow band
	
	Multiresolution

	PARALLELIZATION
	Parallel CVK Algorithm

	Asynchronous communication
	Results

