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Abstract

It is well known that any genus zero surface can be mapped conformally onto the sphere
and any local portion thereof onto a disk. However, it is not trivial to find a general method
which finds a conformal mapping between two general genus zero surfaces. We propose a new
variational method which can find a unique mapping between any two genus zero manifolds
by minimizing the harmonic energy of the map. We demonstrate the feasibility of our
algorithm by applying it to the cortical surface matching problem. We use a mesh structure
to represent the brain surface. Further constraints are added to ensure that the conformal
map is unique. Empirical tests on MRI data show that the mappings preserve angular
relationships, are stable in MRIs acquired at different times, and are robust to differences in
data triangulation, and resolution. Compared with other brain surface conformal mapping
algorithms, our algorithm is more stable and has good extensibility.

∗This work has been supported partly by NIH contract P20 MH65166, NSF contract DMS-9973341 and NSF
contract ACI-0072112
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1 Introduction

Recent developments in brain imaging have accelerated the collection and databasing of
brain maps. Nonetheless, computational problems arise when integrating and comparing
brain data. One way to analyze and compare brain data is to map them into a canonical
space while retaining geometric information on the original structures as far as possible
[1, 2, 3, 4, 5, 6]. Fischl et al. [1] demonstrate that surface based brain mapping can offer
advantages over volume based brain mapping, especially when localizing cortical deficits and
functional activations. Thompson et al. [4, 5] introduce a mathematical framework based on
covariant partial differential equations, and pull-backs of mappings under harmonic flows, to
help analyze signals localized on brain surfaces.

1.1 Previous work

Conformal surface parameterization has been studied intensively. Most works in conformal
parameterization deal with surface patches homeomorphic to topological disks. For surfaces
with arbitrary topologies, Gu and Yau [7] introduce a general method for global conformal
parameterization, which is based on the structure of the cohomology group of holomorphic
one-forms. They generalize the method for surfaces with boundaries in [8].

For genus zero surfaces, there are five basic approaches to achieve the conformal param-
eterization.

1. Harmonic energy minimization. Eck et al. [9] introduce the discrete harmonic map,
which approximates the continuous harmonic maps [10] by minimizing a metric disper-
sion criterion. Desbrun et al. [11, 12] compute the discrete Dirichlet energy and apply
conformal parameterization to interactive geometry remeshing. Pinkall and Polthier
compute the discrete harmonic map and Hodge star operator for the purpose of creat-
ing a minimal surface in [13]. Kanai et al. use a harmonic map for geometric meta-
morphosis in [14]. Gu and Yau in [7] introduce a non-linear optimization method to
compute global conformal parameterizations for genus zero surfaces. The optimization
is carried out in the tangential spaces of the sphere.

2. Cauchy-Riemann equation approximation. Levy et al. [15] compute a quasi-conformal
parameterization of topological disks by approximating the Cauchy-Riemann equation
using the least squares method. They show rigorously that the quasi-conformal param-
eterization exists uniquely, and is invariant to similarity transformations, independent
of resolution, and orientation preserving.

3. Laplacian operator linearization. Haker et al. [3, 16] use a method to compute a
global conformal mapping from a genus zero surface to a sphere by representing the
Laplace-Beltrami operator as a linear system.

4. Angle based method. Sheffer et al. [17] introduce an angle based flattening method to
flatten a mesh to a 2D plane so that it minimizes the relative distortion of the planar
angles with respect to their counterparts in the three-dimensional space.

5. Circle packing. Circle packing is introduced in [18]. Classical analytic functions can be
approximated using circle packings. But for general surfaces in R3, the circle packing
method only considers the connectivity but not geometry, so it is not suitable for our
parameterization purpose.
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Bakircioglu et al. use spherical harmonics to compute a flow on the sphere in [19] in
order to match curves on the brain. Thompson and Toga use a similar approach in [20].
This flow field can be thought of as the variational minimizer of the integral over the sphere
of Lu, with L some power of the Laplacian, and u the deformation. This is very similar to
the spherical harmonic map used in this paper.

1.2 Basic Idea

It is well known that any genus zero surface can be mapped conformally onto the sphere and
any local portion thereof onto a disk. This mapping, a conformal equivalence, is one-to-one,
onto, and angle-preserving. Moreover, the elements of the first fundamental form remain
unchanged, except for a scaling factor (the so-called Conformal Factor). For this reason,
conformal mappings are often described as being similarities in the small. Since the cortical
surface of the brain is a genus zero surface, conformal mapping offers a convenient method
to retain local geometric information, when mapping data between surfaces. Indeed, several
groups have created flattened representations or visualizations of the cerebral cortex or cere-
bellum [2, 3, 6] using conformal mapping techniques. However, these approaches are either
not strictly angle preserving [2], or there may be areas with large geometric distortions [3, 6].
In this paper, we propose a new genus zero surface conformal mapping algorithm [7] and
demonstrate its use in computing conformal mappings between brain surfaces. Our algo-
rithm depends only on the surface geometry and is invariant to changes in image resolution
and the specifics of data triangulation. Our experimental results show that our algorithm
has advantageous properties for cortical surface matching.

Suppose K is a simplicial complex, and f : |K| → R3, which embeds |K| in R3; then
(K, f) is called a mesh. Given two genus zero meshes M1,M2, there are many conformal
mappings between them. Our algorithm for computing conformal mappings is based on the
fact that for genus zero surfaces S1, S2, f : S1 → S2 is conformal if and only if f is harmonic.
All conformal mappings between S1, S2 form a group, the so-called Möbius group. Our
method is as follows: we first find a homeomorphism h between M1 and M2, then deform
h such that h minimizes the harmonic energy. To ensure the convergence of the algorithm,
constraints are added; this also ensures that there is a unique conformal map.

This paper is organized as follows. In Section 2, we give the definitions of a piecewise
linear function space, inner product and piecewise Laplacian. In Section 3, we describe
the steepest descent algorithm which is used to minimize the string energy. In Section 4,
we detail our conformal spherical mapping algorithms. Experimental results on conformal
mapping for brain surfaces are reported in Section 6. In Section 7, we compare our algorithm
with other conformal mapping approaches used in neuroimaging. We conclude the paper in
Section 8.

2 Piecewise Linear Function Space, Inner Product

and Laplacian

Definition 1 All piecewise linear functions defined on K form a linear space, denoted by
CPL(K)
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Definition 2 Suppose a set of string constants k(u, v) are assigned, the inner product on
CPL is defined as the quadratic form

< f, g >=
1
2

∑

{u,v}∈K

k(u, v)(f(u)− f(v))(g(u)− g(v)) (1)

The energy is defined as the norm on CPL

Definition 3 Suppose f ∈ CPL, the string energy is defined as:

E(f) =< f, f >=
∑

{u,v}∈K

k(u, v)||f(u)− f(v)||2 (2)

By changing the string constants k(u, v) in the energy formula, we can define different string
energies.

Definition 4 If string constants k(u, v) ≡ 1, the string energy is known as the Tuette energy.

Definition 5 Suppose edge {u, v} has two adjacent faces Tα, Tβ, Tα = {v0, v1, v2}, define
the parameters

aα
v1,v2

=
1
2

(v1 − v3) · (v2 − v3)
(v1 − v3)× (v2 − v3)

(3)

aα
v2,v3

=
1
2

(v2 − v1) · (v3 − v1)
(v2 − v1)× (v3 − v1)

(4)

aα
v3,v1

=
1
2

(v3 − v2) · (v1 − v2)
(v3 − v2)× (v1 − v2)

(5)

(6)

Tβ is defined similarly. If k(u, v) = aα
u,v + aβ

u,v, the string energy obtained is called the
harmonic energy.

Definition 6 The piecewise Laplacian is the linear operator ∆PL : CPL → CPL on the
space of piecewise linear functions on K, defined by the formula

∆PL(f) =
∑

{u,v}∈K

k(u, v)(f(v)− f(u)) (7)

If f minimizes the string energy, then f satisfies the condition ∆PL(f) = 0. Suppose M1,M2

are two meshes and the map ~f : M1 → M2 is a map from M1 to R3.

Definition 7 For a map ~f : M1 → R3, ~f = (f0, f1, f2), we define the energy as the norm
of ~f :

E(~f) = ||~f ||2 =
3∑

i=0

||fi||2 (8)

The Laplacian is defined in a similar way.

Definition 8 For a map ~f : M1 → R3 , the piecewise Laplacian of ~f is

∆PL
~f = (∆PLf0, ∆PLf1, ∆PLf2) (9)

A map ~f : M1 → M2 is harmonic, if and only if it only has a normal component, and the
tangential component is zero.

∆PL(~f) = (∆PL
~f)⊥ (10)
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3 Steepest Descent Algorithm

Suppose we would like to compute a mapping ~f : M1 → M2 such that ~f minimizes a string
energy E(~f). This can be solved easily by the steepest descent algorithm:

d~f(t)
dt

= −∆~f(t) (11)

~f(M1) is constrained to be on M2, so −∆~f is a section of M2’s tangent bundle.

Specifically, suppose ~f : M1 → M2, and denote the image of each vertex v ∈ K1 as ~f(v).
The normal on M2 at ~f(v) is ~n(~f(v)). Define the normal component as

Definition 9 The normal component

(∆~f(v))⊥ =< ∆~f(v), ~n(~f(v)) > ~n(~f(v)), (12)

where <,> is the inner product in R3.

Definition 10 The absolute derivative is defined as

D~f(v) = ∆~f(v)− (∆~f(v))⊥ (13)

Then equation (14) is δ ~f = −D~f × δt.

4 Conformal Spherical Mapping

Suppose M2 is S2, then a conformal mapping ~f : M1 → S2 can be constructed by using the
steepest descent method. The major difficulty is that the solution is not unique but forms a
Möbius group.

Definition 11 Mapping f : C → C is a Möbius transformation if and only if

f(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc 6= 0 (14)

All Möbius transformations form the Möbius transformation group. In order to determine
a unique solution we can add different constraints. In practice we use the following two
constraints: zero mass-center constraint and a landmark constraint.

Definition 12 Mapping ~f : M1 → M2 satisfies the zero mass-center condition if and only
if ∫

M2

~fdσM1 = 0, (15)

where σM1 is the area element on M1.

All conformal maps from M1 to S2 satisfying the zero mass-center constraint are unique up
to a Euclidean rotation group (which is 3 dimensional). We use the Gauss map as the initial
condition.
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Definition 13 A Gauss map N : M1 → S2 is defined as

N(v) = ~n(v), v ∈ M1, (16)

~n(v) is the normal at v.

Algorithm 1 Spherical Tuette Mapping

Input (mesh M ,step length δt, energy difference threshold δE), output(~t : M → S2) where ~t
minimizes the Tuette energy.

1. Compute Gauss map N : M → S2. Let ~t = N , compute Tuette energy E0.

2. For each vertex v ∈ M , compute Absolute derivative D~t.

3. Update ~t(v) by δ~t(v) = −D~t(v)δt.

4. Compute Tuette energy E.

5. If E −E0 < δE, return ~t. Otherwise, assign E to E0 and repeat steps 2 through to 5.

Because the Tuette energy has a unique minimum, the algorithm converges rapidly and is
stable. We use it as the initial condition for the conformal mapping.

Algorithm 2 Spherical Conformal Mapping

Input (mesh M ,step length δt, energy difference threshold δE), output(~h : M → S2). Here ~h
minimizes the harmonic energy and satisfies the zero mass-center constraint.

1. Compute Tuette embedding ~t. Let ~h = ~t, compute Tuette energy E0.

2. For each vertex v ∈ M , compute the absolute derivative D~h.

3. Update ~h(v) by δ~h(v) = −D~h(v)δt.

4. Compute Möbius transformation ~ϕ0 : S2 → S2, such that

Γ(~ϕ) =
∫

S2

~ϕ ◦ ~hdσM1 , ~ϕ ∈ Mobius(CP 1) (17)

~ϕ0 = min
~ϕ
||Γ(~ϕ)||2 (18)

where σM1 is the area element on M1. Γ(~ϕ) is the mass center, ~ϕ minimizes the norm
of mass center.

5. compute the conformal energy E.

6. If E −E0 < δE, return ~t. Otherwise, assign E to E0 and repeat step 2 through to step
6.

Step 4 is non-linear and expensive to compute. In practice we use the following procedure
to replace it:

1. Compute the mass center ~c =
∫
S2

~hdσM1 ;

2. For all v ∈ M , ~h(v) = ~h(v)− ~c;

3. For all v ∈ M , ~h(v) =
~h(v)

||~h(v)|| .

This approximation method is good enough for our purpose. By choosing the step length
carefully, the energy can be decreased monotonically at each iteration.
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5 Optimize the Conformal Parameterization by

Landmarks

In order to compare two brain surfaces, it is desirable to adjust the conformal parameteriza-
tion and match the geometric features on the brains as well as possible. We define an energy
to measure the quality of the parameterization. Suppose two brain surfaces S1, S2 are given,
conformal parameterizations are denoted as f1 : S2 → S1 and f2 : S2 → S2, the matching
energy is defined as

E(f1, f2) =
∫

S2

||f1(u, v)− f2(u, v)||2dudv (19)

We can composite a Möbius transformation τ with f2, such that

E(f1, f2 ◦ τ) = min
ζ∈Ω

E(f1, f2 ◦ ζ), (20)

where Ω is the group of Möbius transformations. We use landmarks to obtain the optimal
Möbius transformation. Landmarks are commonly used in brain mapping. We manually
label the landmarks on the brain as a set of sulcal curves [4], as shown in Figure 6. First
we conformally map two brains to the sphere, then we pursue a best Möbius transformation
to minimize the Euclidean distance between the corresponding landmarks on the spheres.
Suppose the landmarks are represented as discrete point sets, and denoted as {pi ∈ S0} and
{qi ∈ S1}, pi matches qi, i = 1, 2, . . . , n. The landmark mismatch functional for u ∈ Ω is
defined as

E(u) =
n∑

i=1

||pi − u(qi)||2, u ∈ Ω, pi, qi ∈ S2 (21)

In general, the above variational problem is a nonlinear one. In order to simplify it, we
convert it to a least squares problem. First we project the sphere to the complex plane, then
the Möbius transformation is represented as a complex linear rational formula Equation 14.
We add another constraint for u, so that u maps infinity to infinity. That means the north
poles of the spheres are mapped to each other. Then u can be represented as a linear form
az + b. Then the functional of u can be simplified as

E(u) =
n∑

i=1

g(zi)|azi + b− τi|2 (22)

where zi is the stereo-projection of pi, τi is the projection of qi, g is the conformal factor
from the plane to the sphere, it can be simplified as

g(z) =
4

1 + zz̄
. (23)

So the problem is a least squares problem.

6 Experimental Results

The 3D brain meshes are reconstructed from 3D 256x256x124 T1 weighted SPGR (spoiled
gradient) MRI images, by using an active surface algorithm that deforms a triangulated mesh
onto the brain surface [5]. Figure 6(a) and (b) show the same brain scanned at different
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times [4]. Because of the inaccuracy introduced by scanner noise in the input data, as well
as slight biological changes over time, the geometric information is not exactly the same.
Figure 6(a) and (b) reveal minor differences.

The conformal mapping results are shown in Figure 6(c) and (d). From this example, we
can see that although the brain meshes are slightly different, the mapping results look quite
similar. The major features are mapped to the same position on the sphere. This suggests
that the computed conformal mappings continuously depend on the geometry, and can match
the major features consistently and reproducibly. In other words, conformal mapping may
be a good candidate for a canonical parameterization in brain mapping.

(a) (b)

(c) (d)

Figure 1: Reconstructed brain meshes and their spherical harmonic mappings. (a) and (b) are
the reconstructed surfaces for the same brain scanned at different times. Due to scanner noise
and inaccuracy in the reconstruction algorithm, there are visible geometric differences. (c) and
(d) are the spherical conformal mappings of (a) and (b) respectively; the normal information is
preserved. By the shading information, the correspondence is illustrated.

Figure 6 shows the mapping is conformal by texture mapping a checker board to both
the brain surface mesh and a spherical mesh. Each black or white square in the texture is
mapped to sphere by stereographic projection, and pulled back to the brain. Note that the
right angles are preserved both on the sphere and the brain.

Conformal mappings are stable and depend continuously on the input geometry but not
on the triangulations, and are insensitive to the resolutions. Figure 6 shows the same surface
with different resolutions, and their conformal mappings. The mesh simplification is using
standard method. The refined model has 50k faces, coarse one has 20k faces. The conformal
mappings map the major features to the same positions on the spheres.
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(a) Texture mapping of the sphere (b) Texture mapping of the brain

Figure 2: Conformal texture mapping. The conformality is visualized by texture mapping of a
checkerboard image. The sphere is mapped to the plane by stereographic projection, then the
planar coordinates are used as the texture coordinates. This texture parameter is assigned to the
brain surface through the conformal mapping between the sphere and the brain surface. All the
right angles on the texture are preserved on the brain surface.

(a) Surface with 20,000 faces (b) Surface with 50,000 faces

Figure 3: Conformal mappings of surfaces with different resolutions. The original brain surface
has 50,000 faces, and is conformally mapped to a sphere, as shown in (a). Then the brain surface
is simplified to 20,000 faces, and its spherical conformal mapping is shown in (b).
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In order to measure the conformality, we map the iso-polar angle curves and iso-azimuthal
angle curves from the sphere to the brain by the inverse conformal mapping, and measure the
intersection angles on the brain. The distribution of the angles of a subject(A) are illustrated
in Figure 6. The angles are concentrated about the right angle.

Figure 6 shows the landmarks, and the result of the optimization by a Möbius trans-
formation. We also computed matching energy following Equation 19. We did our testing
among three subjects. Their information are shown in Table 6. We took subject A as the
target brain. For each new subject model, we found a Möbius transformation which mini-
mized the landmark mismatch energy on the maximum intersection subsets of it and A. As
shown in Table 6, the matching energies were reduced after the Möbius transformation.
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(a) Intersection angles (b) Angle distribution

Figure 4: Conformality measurement. The curves of iso-polar angle and iso-azimuthal angle are
mapped to the brain, and the intersection angles are measured on the brain. The histogram is
illustrated.

The method described in this work is very general. We tested the algorithm on other
genus zero surfaces, including the hand and foot surface. The result is illustrated in Figure
6.

7 Comparison with Other Work

Several other studies of conformal mappings between brain surfaces are reported in [2, 3, 6].
In [2], Hurdal et al. used the circle packing theorem and the ring lemma to establish a
theorem: there is a unique circle packing in the plane (up to certain transformations) which
is quasi-conformal (i.e. angular distortion is bounded) for a simply-connected triangulated
surface. They demonstrated their experimental results for the surface of the cerebellum.

Subject Vertex # Face # Before After
A 65,538 131,072 - -
B 65,538 131,072 604.134 506.665
C 65,538 131,072 414.803 365.325

Table 1: Matching energy for three subjects. Subject A was used as the target brain. For subjects
B and C, we found Möbius transformations that minimized the landmark mismatch functions,
respectively.
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(a) (b)

(c) (d)

Figure 5: Möbius transformation to minimize the deviations between landmarks. The blue curves
are the landmarks. The correspondence between curves has been preassigned. The desired Möbius
transformation is obtained to minimize the matching error on the sphere.
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(a) (b)

(c) (d)

Figure 6: Spherical conformal mapping of genus zero surfaces. Extruding parts (such as fingers
and toes) are mapped to denser regions on the sphere.
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This method only considers the topology without considering the brain’s geometric structure.
Given two different mesh structures of the same brain, one can predict that their methods
may generate two different mapping results. Compared with their work, our method really
preserves angles and establishes a good mapping between brains and a canonical space.

Haker et al. [3] built a finite element approximation of the conformal mapping method
for brain surface parameterization. They selected a point as the north pole and conformally
mapped the cortical surface to the complex plane. In the resulting mapping, the local
shape is preserved and distances and areas are only changed by a scaling factor. Based on
Haker et al. [3], Joshi et al. [6] obtained a unique conformal mapping by fixing three point
correspondences between two brains. Since stereo projection is involved, there is significant
distortion around the north pole areas, which brings instability to this approach. Compared
with their work, our method is more accurate, with no regions of large area distortion.
It is also more stable and can be readily extended to compute maps between two general
manifolds.

Finally, we note that Memoli et al. [21] mentioned they were developing implicit methods
to compute harmonic maps between general source and target manifolds. They used level
sets to represent the brain surfaces. Due to the extensive folding of the human brain surface,
these mappings have to be designed very carefully.

8 Conclusion and Future work

In this paper, we propose a general method which finds a unique conformal mapping between
genus zero manifolds. Specifically, we demonstrate its feasibility for brain surface conformal
mapping research. Our method only depends on the surface geometry and not on the mesh
structure (i.e. gridding) and resolution. Our algorithm is very fast and stable in reaching a
solution. There are numerous applications of these mapping algorithms, such as providing
a canonical space for automated feature identification, brain to brain registration, brain
structure segmentation, brain surface denoising, and convenient surface visualization, among
others. We are trying to generalize this approach to compute conformal mappings between
nonzero genus surfaces. In addition, level sets offer a powerful implicit surface representation.
In future, we will try to adapt our conformal mappings to use level set concepts.
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