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Abstract

We propose a level set approach for elliptic inverse problems with
piecewise constant coefficients. The geometry of the discontinuity of the
coefficient is represented implicitly by level set functions. The inverse
problem is solved using a variational augmented Lagrangian formulation
with total variation regularization of the coefficient. The corresponding
Euler Lagrange equation gives the evolution equation for the level set func-
tions and the constant values of the coefficients. We use a multiple level
set representation which allows the coefficient to have multiple constant
regions. Knowledge of the exact number of regions is not required, only an
upper bound is needed. Numerical experiments show that the method can
recover coefficients with rather complicated geometries of discontinuities
under moderate amount of noise in the observation data. The method
is also robust with respect to the initial guess for the geometry of the
coefficient discontinuities.

1 Introduction

Consider the partial differential equation:{
−∇ · (q(x)∇u) = f in Ω ⊂ R2,

u = 0 on ∂Ω. (1)
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We want to use observations of the solution u to recover the coefficient q(x).
Output-least-squares combined with augmented Lagrangian method will be
used. We shall specifically treat the case that q(x) has discontinuities and
is piecewise constant. This problem is a model problem for many real indus-
trial applications, for example, reservoir simulations, see [16, 19, 18, 17, 29];
underground water investigations [8], medical imaging [11, 14], and many other
applications, see [13, 31, 32, 23]. Even as a purely academic problem, this seem-
ingly simple problem is rather difficult to solve by numerical schemes. In the
presence of noise in the observation data, it has been shown theoretically, c.f.
[20, 21, 40, 41, 42], that the approximation error increases as the mesh size de-
creases. Up to now, it seems that there are not many available algorithms that
can solve this inverse problem with relative large noise on a sufficient fine mesh.

The desire to recover accurately the geometry of the coefficient discontinu-
ities have motivated a number of approaches in the literature [5, 6, 24, 27, 10,
9, 1]. One approach is to use a regularization of the coefficient which respects
the jumps and the geometry of the discontinuities. For example, in our earlier
work [5, 6], the Total Variation norm regularization technique is combined with
the augmented Lagrangain technique of [24, 27] for this purpose. Other works
along this line are [10, 9], etc. An alternative approach is to model the geometry
of the discontinuities implicitly in the representation of the coefficient. Specif-
ically, several approaches using level set ideas have been recently proposed for
this purpose; see [38, 35, 25, 2, 3, 15, 30] for some poineering work in this direc-
tion. The level set method was proposed in Osher and Sethian [33] for tracing
interfaces between different phases of fluid flows. Later, it has been used to
identify the location of discontinuities for digital image functions [7, 44, 34].
Its application for finding locations of discontinuities for functions for inverse
problems and optimal shape design problems is just in its beginning stage. In
Osher and Santosa [38, 35], the level set idea was used for some inverse problems
associated with eigenvalue distributions. In Ito-Kunisch-Li [25], level set ideas
are used for elliptic inverse problems similar to the ones we are considering in
this paper. Our approach extends the model in [25] in several directions and
also incorporates the level set method in a different way.

We highlight the essential contributions of our paper in the following:

• We formulate the level set method in a variational setting, using a varia-
tional augmented Lagrangian formulation. The corresponding Euler La-
grange equation gives the evolution equations for the level set functions
and the constant values. One of the advantages of the variational approach
is that we can guarantee that the value of the minimization functional is
always reducing. The algorithm is rather stable and we could reconstruct
rather complicated geometry. In Ito-Kunisch-Li [25] and Burger [25], the
shape derivative is used to get the steepest direction with respect to the
entire boundary. This derivative is defined on the curve and it is extended
to a small neighborhood around the curve. The extended function is then
used as the gradient to update the level set function. The approach of
[25, 3] cannot guarantee that the minimization functional value is de-
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creasing all the time. The reconstructed curve may converge to the true
solution and goes away from the true solution if the iteration continues
[3]. On the other hand, it seems that the cost for each iteration for the
schemes of [25, 3] is cheaper than the scheme proposed in this work.

• We do not require that the constant values of the coefficient are known a
priori, as in [25, 3]. These values are recovered as part of our formulation.

• We regularize the recovered coefficient by the total variation norm, which
indirectly controls both the jumps in the coefficient and the length of the
level sets. We note that in the standard level set methodology, only the
length part is regularized, which is insufficient for our purpose because we
need to control the jumps as well, due to the ill-posedness of the underlying
elliptic inverse problem. Another advantage of controlling the TV-norm
instead of just the length of the level sets is that triple junctions are allowed
to have arbitrary angles; see the recent work by Vese and Osher [43].

• Through the use of a novel variational multiple level set function approach
borrowed from image processing [44], we can recover coefficients with mul-
tiple constant values associated with the discontinuous regions. If the
identified coefficient have n constant values, then we just need log2(n)
level set functions. Moreover, the exact number of constant values need
not be known a priori — an upper bound suffices. If we use more level set
functions than are actually needed, the redundant regions will disappear
or merge with the other regions during the iterative process.

We note that some preliminary experimental results with the level set method
have been reported in our related work [4]. In that work, only the length of the
level sets were used in the regularization and a different approach was used to
solve for the level sets and the constant values. However, as we pointed out
earlier, the need to control the jumps in the coefficient leads naturally to the
consideration of using the TV-norm regularization, which we do here. More gen-
erally, the variational level set approach we are proposing here is rather general
and can be used with any regularization norm. As will be demonstrated later,
the use of level set representations of piecewise constant functions can be easily
incorporated into standard variational formulations for general optimal shape
design problems, in addition to the class of elliptic inverse problems considered
in this paper. Finally, even though the presentation of our approach is presented
here only for the piecewise constant coefficient case, the formulation can be eas-
ily generalized to recover piecewise smooth coefficients, using the formulation
presented in [44].

The paper is organized in the following way: In §2, the identification problem
is formulated as several minimization problems using the output-least-squares
augmented Lagrangian approach as in our previous work [5, 6]. In §3, we give a
brief introduction to level set methods and how to compute the total variation
of piecewise constant functions represented by level sets. In §4, we present an
algorithm that combines the variational level set approach with Uzawa’s algo-
rithm for the output-least-squares functionals. In §5, we discuss some numerical
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implementation issues. Numerical experiments are shown in §6. In all the nu-
merical experiments, the examples are constructed so that the inverse problem is
identifiable, see [37, 12, 28] for some conditions to guarantee the identifibility of
the inverse problems. In one of numerical examples, we show what may happen
if the inverse problem is not identifiable. In the appendix, calculations about
the gradient of the minimization functionals which is needed for the variational
level set approach are given.

2 Augmented Lagrangian Formulations For The
Inverse Problem

Our approach to the inverse problem is based on an augmented Lagrangian
formulation used in our earlier work [5, 6] — only the incorporation of the level
representation is new. For this reason, we now give a review of the methodology
used there. In the next section, we shall combine them with the level set method
to solve the identification problems.

In order to recover the coefficient q(x), three different kind of observations
are used:

(1) We have an observation ud ∈ L2(Ω) for the solution u.

(2) We have observations ud ∈ L2(Ω), ~ug ∈ (L2(Ω))2 for the solution u and its
gradient, respectively.

(3) We have observations ud ∈ L2(Ω), ~uv ∈ (L2(Ω))2 for the solution u and
the velocity q∇u, respectively.

Let K be the set of admissible coefficients:

K = {q| q ∈ L∞(Ω) ∩ TV (Ω), 0 < q(x) ≤ q(x) ≤ q̄(x) <∞},

with q(x) and q̄(x) known a priori. For a given q and u, we shall define the
equation error e(q, u) as the solution of

(∇e,∇v) = (q(x)∇u,∇v)− (f, v), ∀v ∈ H1
0 (Ω). (2)

Thus e(q, u) = 0 indicates that

(q(x)∇u,∇v)− (f, v) = 0, ∀v ∈ H1
0 (Ω),

which means that q and u satisfy (1) in the weak sense. Here and also later,
the inner product (·, ·) is used to denote the L2(Ω) inner product. Finally, we
use u(q) to denote the solution to e(q, u) = 0 for a given q.

Corresponding to each of the three kinds of observations, we solve the fol-
lowing minimization problems:

(P1) min
e(q,u)=0, q∈K

1
2
‖u− ud‖2

L2(Ω) + βR(q) ,
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(P2) min
e(q,u)=0, q∈K

1
2
‖u− ud‖2

L2(Ω) +
1
2
γ‖∇u(q)− ~ug‖2

L2(Ω) + βR(q) ,

(P3) min
e(q,u)=0, q∈K

1
2
‖u− ud‖2

L2(Ω) +
1
2
γ‖q∇u(q)− ~uv‖2

L2(Ω) + βR(q) ,

where R(q) is a regularization functional used to control the regularity of q(x).
If the coefficient is continuous, R(q) = ‖q‖2

H2(Ω) or ‖q‖2
H1(Ω) are commonly

used as the regularization term, see [26, 24, 27]. In [27], existence, uniqueness
and convergence have been proved for such kinds of regularization. However,
if the coefficient has large jumps, the use of H2 or H1–regularization is not
appropriate due to the discontinuities of the coefficient. In this work, we shall
take as regularization functional the following:

R(q) =
∫

Ω

|∇q|dx. (3)

In the above, R(q) is in fact the total variation of q; see Ziemer [45] and Giusti
[22] for definitions. When q is not differentiable, |∇q| is understood as a measure.
More precisely,∫

Ω

|∇q|dx = sup
{ ∫

Ω

q divvdx : v = (v1, v2) ∈ C∞
0 (Ω),

v2
1(x) + v2(x) ≤ 1 for x ∈ Ω

}
. (4)

See p. 221 of [45] for some more details.
The augmented Lagrangian method is used to enforce the equation con-

straint
e(q, u) = 0.

In the case that only L2-observations are available, we define the augmented
Lagrangian functional for any r > 0 as:

Lr(q, u, λ) =
1
2
‖u−ud‖2

L2(Ω) +βR(q)+
r

2
‖∇e(q, u)‖2

L2(Ω) +(∇λ,∇e(q, u))L2(Ω).

In the above, we are trying to enforce the equation constraint −∇ · (q∇u) = f
in the H−1-norm. For problem (P2), the augmented Lagrangian functional is
defined as:

Lr(q, u, λ) =
1
2
‖u− ud‖2

L2(Ω) +
1
2
γ‖∇u− ~ug‖2

L2(Ω) + βR(q)

+
r

2
‖∇e‖2

L2(Ω) + (∇λ,∇e)L2(Ω),

for q ∈ K, u ∈ H1
0 (Ω), λ ∈ H1

0 (Ω).
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For problem (P3), the augmented Lagrangian functional is then:

Lr(q, u, λ) =
1
2
‖u− ud‖2

L2(Ω) +
1
2
γ‖q∇u− ~uv‖2

L2(Ω) + βR(q)

+
r

2
‖∇e‖2

L2(Ω) + (∇λ,∇e)L2(Ω),

for q ∈ K,u ∈ H1
0 (Ω), λ ∈ H1

0 (Ω).

To find a saddle point for the augmented Lagrangian functional for the three
different cases, the following general algorithm is used:

Algorithm 1 Choose u0 ∈ H1
0 (Ω), λ0 ∈ H1

0 (Ω) and r > 0.

• Find qk+1 ∈ K such that:

qk+1 = arg min
q∈K

Lr(q, uk, λk). (5)

• Find uk+1 ∈ H1
0 (Ω) such that:

uk+1 = arg min
u∈H1

0 (Ω)
Lr(qk+1, u, λk). (6)

• Update the multiplier as:

λk+1 = λk + re(qk+1, uk+1).

In the above, we have used the conventional notation arg minF (v) to denote
the minimizer of minF (v). The convergence analysis for this kind of Uzawa
algorithms for the inverse problem we consider here can be found in [27, 10].

The observation data ud and ~ug often contain noise. Some denoising al-
gorithms are proposed in [6]. Numerical evidence shows that these denoising
techniques are rather important to get stable numerical performances.

3 Variational Problems Involving Level Set Rep-
resented Functions

Here, we state some of the details of the level set idea, following Osher and
Sethian [33], Osher and Fedkiw [34] and Vese and Chan[44]. Let Γ be a closed
curve in Ω. Associated with Γ, we define a φ as a signed distance function by:

φ(x) =
{

distance(x,Γ), x ∈ interior of Γ
−distance(x,Γ), x ∈ exterior of Γ.

It is clear that Γ is the zero level set of the function φ. In case that Γ is not
closed, but divide the domain into two parts, then the function can be defined
to be positive on one side of the curve and negative on the other side of the
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curve. The function φ is called a level set function for Γ. It is clear that φ
satisfies the partial differential equation:

|∇φ| = 1, in Ω. (7)

However, φ is not the only function that satisfies equation (7) in the distribu-
tion sense. In order to define a unique solution for the equation, we need to
introduce the concept of viscosity solution. The existence and uniqueness of
viscosity solutions for linear and nonlinear partial differential equations is an
active research field with rich literature results. There are different ways to
introduce viscosity solutions. One way to introduce the viscosity function is to
add an extra time variables t. Let φ̃ be any function such that Γ is the zero
level set curve of φ̃ and φ̃ is positive inside Γ and negative outside Γ. Then the
distance function φ is the steady state of the following time dependent equation
(c.f. [34, 36]):

∂d

∂t
+ sign(d)(|∇d| − 1) = 0 d(x, 0) = d0 = φ̃, (8)

i.e. d(x, t; φ̃) → φ(x) as t → ∞. Moreover the steady state is unique. Later,
we shall see that we only need the value of d in a band of width ε around Γ.
Correspondingly, we only need to solve equation (8) for t ≤ O(ε).

Equation (8) is a hyperbolic first order equation which can be solved by finite
element or finite difference method combined with the characteristic method for
hyperbolic equations. In order to introduce a finite difference approximation,
let us assume that (xi, yj) are the nodes for the finite difference method and
∆x,∆y, τ are the mesh sizes for the x, y and t variables respectively. Different
schemes have been proposed in the literature for solving (8). It is desirable that
the scheme has the following properties:

• It can reach a steady state as quickly as possible.

• The steady state solution should have the same sign as the initial solution
φ̃. This guarantees that the zero level set curve is not changed.

We use the algorithm of Peng et al [36], which has good performances with
respect to these properties. In [36, p.427], the sign function sign(d) is replaced
by:

s(d) =
d√

d2 + |∇d|2∆x2
. (9)

This will add some viscosity to the solution and helps to drive the solution to a
steady state. Among different upwind schemes used to solve (8), the following
Godunov scheme is rather stable and accurate to first order:

dk+1
ij = dk

ij −
τ

∆x
s+ij

(√
max[(a+)2, (b−)2] + min[(c+)2, (d−)2]− 1

)
− τ

∆x
s−ij

(√
max[(a−)2, (b+)2] + min[(c−)2, (d+)2]− 1

)
. (10)
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In the above, sij is the approximation to s(dij) with (9) and a, b, c, d are defined
as:

a = D−
x d

k
ij , b = D+

x d
k
ij ,

c = D−
y d

k
ij , d = D+

y d
k
ij .

The forward difference operators D+
x , D

+
y and the backward difference operators

D−
x , D

−
y are defined in the standard way. On the boundary, the forward or

backward difference operators may not be defined. If so, their values are set to
be zero. For a given number µ, µ+ and µ− denotes the actions µ+ = max(0, µ)
µ− = min(0, µ). The scheme (10) is stable under the condition

τ

∆x
|sij | ≤

1
2
.

Once the level set function is defined, we can use it to represent general
piecewise constant functions as follows. For example, assuming that q(x) equals
q1 inside Γ and equals q2 outside Γ, it is easy to see that q can be represented
as:

q = q1H(φ) + q2 (1−H(φ)) , (11)

where the Heaviside function H(φ) is defined by:

H(φ) =
{

1, φ > 0
0, φ ≤ 0.

In order to identify the coefficient q, we just need to identify the level set function
φ and the piecewise constant values qi’s.

If the function q(x) has many pieces, then we need to use multiple level set
functions. We shall follow the ideas of Vese and Chan [44]. Assume that we
have two closed curves Γ1 and Γ2, and we associate the two level set functions
φj , j = 1, 2 with these curves. Then the domain Ω is divided into four parts:

Ω1 = {x ∈ Ω, φ1 > 0, φ2 > 0} ,
Ω2 = {x ∈ Ω, φ1 > 0, φ2 < 0} ,
Ω3 = {x ∈ Ω, φ1 < 0, φ2 > 0} , (12)
Ω4 = {x ∈ Ω, φ1 < 0, φ2 < 0} .

Using the Heaviside function again, we can express q with possibly up to four
pieces of constant values as:

q = q1H(φ1)H(φ2) + q2H(φ1)(1−H(φ2))+
+q3(1−H(φ1))H(φ2) + q4(1−H(φ1))(1−H(φ2)).

(13)

By generalizing, we see that n level set functions give the possibility of 2n

regions. For i = 1, 2, · · · , 2n, let bin(i − 1) = (bi1, b
i
2, · · · , bin) be the binary
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representation of i − 1, where bij = 0 or 1. The representation of q would look
like:

q =
2n∑
i=1

qi

n∏
j=1

Ri(φj), (14)

where

Ri(φj) =
{

H(φj), if bij = 0;
1−H(φj), if bij = 1.

Even if we the true q needs less than 2n distinct regions, we can still use n level
set functions since some subdomains are allowed to be empty. In using such
a representation, we only need to determine the maximum number of level set
functions we want to use before we start.

Gradient type methods will be used to find the minimizers with respect to qi
and φi. To illustrate our approach, let us consider a very general minimization
problem:

min
q∈V

F (q), (15)

where V is a space or set containing piecewise constant functions and possibly
with some other extra constraints. Such kinds of minimization problems arise
from many inverse problems and optimal shape design problems.

For any given q ∈ V , it can be represented as in (14). Using the chain rule,
it is easy to see that the following relations hold:

∂F

∂qi
=

∫
Ω

∂F

∂q

∂q

∂qi
dx,

∂F

∂φi
=
∂F

∂q

∂q

∂φi
. (16)

For many inverse problems and optimal shape design problems, ∂F
∂q is known

and there are ready softwares to compute them. In order to use the level set
method, we just need to compute the derivatives ∂q

∂qi
and ∂q

∂φi
.

Let us first consider a simple case where we only have one level set function
and the piecewise constant function q(x) is represented as in (11). Then it is
easy to see that:

∂F

∂q1
=

∫
Ω

∂F

∂q
H(φ)dx,

∂F

∂q2
=

∫
Ω

∂F

∂q
(1−H(φ))dx,

∂F

∂φ
= (q1 − q2)δ(φ)

∂F

∂q
. (17)

In the above, δ denotes the Dirac function, i.e. δ(0) = 1 and δ(x) = 0,∀x 6= 0.
If we define Ω1 = {x|x ∈ Ω, φ > 0}, Ω2 = {x|x ∈ Ω, φ ≤ 0}, then it is easy to
see that:

∂F

∂q1
=

∫
Ω1

∂F

∂q
dx,

∂F

∂q2
=

∫
Ω2

∂F

∂q
dx.

Now we consider the more general case of n level set functions as given in
(14). From (14), we see that:

∂q

∂qi
=

n∏
j=1

Ri(φj),
∂q

∂φi
=

2n∑
i=1

qi

( n∏
j=1,j 6=i

Ri(φj)
)
D(φi), (18)
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where

D(φi) =
{

δ(φi), if bij = 0;
−δ(φi), if bij = 1.

It can be seen that ∂q
∂qi

is nonzero only in the region corresponding to q = qi.
Inside this region, ∂q

∂qi
= 1.

To be precise mathematically, the delta function δ(φ) needs to be under-
stood as the limit of some very smooth functions in a proper norm. In the
numerical implementations, we sometimes replace the Heaviside function H by
a C∞ function Hε. Correspondingly, we replace δ by δε. The smooth function
Hε is chosen in a way such that the derivatives ∂F

∂qi
and ∂F

∂φ involving Hε and δε
converges to the corresponding derivatives of H and δ. The convergence of ∂F

∂φ
should be understood in the sense of pointwise convergence. In fact, it is better
not to interpret H and δ functions as distributions.

4 Uzawa’s Algorithm For Variational Level Set
Methods

The Uzawa algorithm outlined in Algorithm 1 can be easily modified to incor-
porate the level set representation of the coefficient. Our approach is to replace
the step corresponding to minimization with respect to q by a first step of min-
imizing with respect to qi followed by a step of minimizing with respect to φj .
The minimization steps are performed using a gradient based method with a
line search. We outline the algorithm below.

Algorithm 2 Choose initial q0i , φ
0
j , u

0 and λ0. Set k = 0.

• (Update qi’s) Let pk =
{
− ∂Lr(qk

i ,φk
j ,uk,λk)

∂qi

}2n

i=1

. Find αk such that

αk = arg min
qk

i +αpk
i ∈[ai,bi],i=1,··· ,2n

Lr(qk
i + αpk

i , φ
k
j , u

k, λk). (19)

Set
{qk+1

i }2n

i=1 = {qk
i }2n

i=1 + αkpk. (20)

• (Update φj’s) For j = 1, 2, · · ·n, define ψk
j = −∂Lr(qk+1

i ,φk
j ,uk,λk)

∂φj
and

find σk
j such that

σk
j = arg min

σj∈R
Lr(qk+1

i , φk
j + σjψ

k
j , u

k, λk). (21)

Set
φ̃k

j = φk
j + σk

j ψ
k
j . (22)
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• (Reinitialization of φj’s) If ”necessary”, reinitialize the level set func-
tions {φ̃k

j }n
j=1, i.e. set d0 = φ̃k

j . Choose an appropriate τ0 and solve
equation (8) to t = τ0. The reinitialized φk+1

j is then taken as

φk+1
j = d(x, τ0; φ̃k

j ). (23)

Otherwise set φk+1
j = φ̃k

j .

• (Update u) Calculate vk = −∂Lr(qk+1
i ,φk+1

j ,uk,λk)

∂u . Find ξk such that

ξk = arg min
ξ∈R

Lr(qk+1
i , φk+1

j , uk + ξvk, λk). (24)

Set
uk+1 = uk + ξkvk. (25)

• (Update λ) After each fixed number of iterations, update the Lagrangian
multiplier as

λk+1 = λk + re
(
qk+1
i , φk+1

j , uk+1
)
,

Otherwise do not update λ, i.e. λk+1 = λk. In the above, e is the equation
error corresponds to qk+1

i , φk+1
j and uk+1.

• Go to the next iteration for k.

The reason we need the reinitialization step is because after the updating of
φj in (22), the level set function may not be a distance function any more. See
§5.3 for explanations about when it is ”necessary” to reinitialize the level set
functions.

For Algorithm 2, we need to calculate the derivatives of Lr with respect
to {qi}2n

i=1, {φj}n
j=1 and u, i.e. we need to compute pk, ψk

j and vk for each
iteration. In addition to the calculations of the derivatives, we also need to do
three line-searches as in (19), (21) and (24). See §5.2 about some cautions that
shall be taken for the line-searches. In the Appendix, we shall give the details
about the calculation of ∂Lr

∂q . To get pk and ψk
j at each iteration, we need to

calculate ∂Lr

∂qi
and ∂Lr

∂φj
and this can be easily done using (16).

5 Implementation Issues

We discuss here several numerical issues that arise in the implementation of
Algorithm 2.

5.1 Smooth Approximations to H and δ Functions

In numerical implementations, it is desirable to replace the Heaviside functionH
and the delta function δ by some smoothed counterparts. In our simulations, the
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following smoothed functions for the Heaviside-function H and delta-function δ
have been used (c.f. [44]):

Hε(φ) =
1
π

tan−1 φ

ε
+

1
2
, (26)

δε(φ) =
ε

π (φ2 + ε2)
. (27)

In order to have good accuracy, we need to choose ε sufficiently small. For small
ε, δε is a smooth function, but with very sharp singular layers. This makes it
difficult to represent the δε function by finite element functions which is needed
for ∂Lr

∂φj
and perform the numerical integrations needed to get the derivatives

∂Lr

∂qi
. From our numerical experience, it was found that it is not good to use too

small ε for Hε and δε.
If there is no observation error or there is very little observation error, we

shall be able to recover a rather accurate coefficient. For such cases, we replace
the δ function by δε, but do not replace H by Hε, as doing so will introduce
an unnecessary error in the determination of the location of the discontinuities.
The value of ε is always taken to be ε = h and h is the mesh size used for the
spacial x and y variables.

If the observation error is large, we replace both H and δ by Hε and δε with
ε = h.

5.2 Precautions About The Line-searches

The equation error function e depends on φj , qi and u. For fixed φj and u,
e is linear with respect to qi. For fixed φj and qi, e is linear with respect to
u. The regularization functional R(q) defined in (3) is nonlinear with respect
to φj , but linear with respect to qi. Thus the Lagrangian functional Lr is
quadratic with respect to qi if the other variables are fixed and also quadratic
with respect to u for fixed other variables. Correspondingly, we see that the
minimization functions for linear searches (19) and (24) are quadratic functions.
We can therefore derive explicit formulas for getting the minimizers αk and ξk.
However, cautions must be taken for the line-search (21).

In Figure (1), we plot the line-search functions

g(σ) = Lr(qk+1
i , φk

j + σψk
j , u

k, λk)

for some given k and j and these plots show some of the typical situations during
the iterations. In Figure 1.c, the Heaviside function H is replaced by Hε. In
plots 1.a and 1.b, H is not replaced. With H, g(σ) is a stair-case function.
With Hε, g(σ) is a ”smooth” function. In Figures 1.a and 1.c, σ = 0 is the
minimizer for the line-search. In Figure 1.b, σ = 0 is a local minimizer, but
there is another global line-search minimizer at σ = 0.012. Very often, the line
search can miss the global minimizer in situations like in Figure 1.b.

We see from the above discussion that it happens very often in our simula-
tions that the line-search (21) returns a value σk

j = 0, i.e. we are not able to
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decrease the function value, indicating that we are at a local minimizer with the
φj functions. If this happens, we always take:

σk
j = σfixed. (28)

This corresponds to a standard gradient descent step with step size σfixed.
The fixed step size σfixed should be chosen properly in order to avoid stability
problems. The step sizes obtained by the line-searches could give us a hint
about what range the fixed step sizes should be. Another good strategy is to
use the line-searches in the beginning stage of the iterations and then switch to
gradient descent with fixed step sizes for all subsequent steps. We did not use
this strategy in our numerical experiments.

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
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(a) With H and δε

−0.06 −0.04 −0.02 0 0.02 0.04 0.06
0.02

0.021

0.022

0.023
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0.026

0.027

(b) With H and δε
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0.02

0.03

(c) With Hε and δε

Figure 1: The plot for the line-search functions for (21) with H or Hε.

Methods of the type of Golden-section are often used for line-searches. This
kind of methods often can only find local minimizers. If the line-search function
is a stair-case function, then every point is a local minimizer. If we use Golden-
section type method, some extra checking needs to be added to avoid the case
that the line-search is trapped in an interval where the line-search function is
constant. In our simulations, we check that the values at the Golden-section
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points are not constant for a fixed number of updatings. If so, we just enlarge
the search interval by a given factor.

5.3 When to Reinitialize The Level Set Functions

The cost to reinitialize a level set function to a distance function is rather cheap
and we could do the reinitialization at each time step. However, there are two
disadvantages if we reinitialize too often. First, the scheme (10) is a first order
explicit scheme. It is known that the first order scheme is adding a certain
amount of diffusion to the obtained solution. If we reinitialize too often, the
added diffusion is too much and we may not be able to recover geometries
with sharp corners. Second, our inverse problem is ill-posed. Even when the
computed φj is still far from the true function, the gradient ψk

j can be already
very small. Very often, the correction value σk

j ψ
k
j is so small that it takes many

iterations to change the sign of a nodal value. If we reinitialize too often, it is
possible that none of the nodal values has changed sign and we are not able to
move the level set functions.

In our simulations, we reinitialize a level set function when the level set
function undergoes a sufficient amount of change. The criteria we have used
is that the L2-norm of a level set function has changed more than a given
percentage. Other criteria can surely be used also. However, if the level set
function is not reinitialized for an intensive long period, for example, a fixed
number of iterations, we reinitialize it any way.

6 Numerical Experiments

We tested Algorithm 2 on several two dimensional problems. Let Ω = (0, 1) ×
(0, 1), f = 20π2 sin(πx) sin(πy). Let u∗ be the exact solution for the exact q
and σ be the noise level. We get ũd by ũd = u∗ + σ‖u∗‖L2/‖Rd‖L2Rd. Here Rd

is a finite element function with nodal values being uniform random numbers
between [−1, 1] with zero mean. We then apply the denoising technique of
Chan and Tai [6] to smooth ũd and the smoothed function from ũd is used as
the observation data ud for our identification problem. In using the techniques
of [6], we are not eliminating the noise. Instead, the noise is diffused and the
obtained ud satisfies the following equalities:

‖ud − ũd‖L2(Ω) = ‖u∗ − ũd‖L2(Ω) = σ‖u∗‖L2(Ω).

The domain Ω is first divided into a rectangular mesh with uniform mesh
size h for both the x and the y variables, i.e. ∆x = ∆y = h. The coefficient
q and the level set functions are approximated by piecewise constants over this
rectangular mesh and we denote Ph the piecewise contant functions space over
this mesh. Thus, the derivatives ∂F

∂q ,
∂q
∂φi

, ∂q
∂qi

are piecewise constants over the
rectangular mesh. Finite difference method is used to reinitialize the level set
functions as in (10). The nodal value dk

ij is in fact the piecewise constant value
of dk over the (i, j) rectangular element.
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The functions e, u and λ can be approximated by finite difference or finite
element methods. In order to re-use some softwares that we already have, finite
element approximations are used for e, u and λ. The finite element mesh is pro-
duced from the rectangular mesh by dividing each square into two triangular
elements using the diagonal of positive slope. Piecewise continuous linear func-
tions are used for the finite element space and we denote this piecewise linear
finite element space by Sh.

As line search is used in our simulations, the numerical integration used for
Lr(q, u, λ) must be consistent with the discretized approximations we use to get
∂Lr(q, u, λ)/∂q and ∂Lr(q, u, λ)/∂u. To explain the details, let us use Aq to
denote the matrix Aq corresponding to the following standard discrete elliptic
operator

(Aqu, v) = (q∇u,∇v), ∀u, v ∈ Sh ⊂ H1
0 (Ω). (29)

Assume that {ψi} are the basis functions for Sh and {φi} are the basis functions
for Ph. For a given q, the matrix Aq = [aij ]n1×n1

has the entries aij =
∫
Ω
q∇ψi ·

∇ψj . We also use Bu to denote the matrix corresponding to

(Buq, v) = (∇u · ∇v, q), ∀q ∈ Ph, ∀v ∈ Sh, (30)

For a given u, the matrixBu = [bij ]n1×n2
has the entries bij =

∫
Ω
φi∇u·∇ψj . It is

easy to see that Bu is generally neither square nor symmetric. Let C = (Aq)|q=1.
For any given function v, we use v to denote the vector containing the nodal
values of v. From (2), it is easy to see that the nodal values e of e with a given
q and u can be obtained by

e = C−1(Aqu− f) = C−1(Buq− f).

As q is piecewise contant and u, λ are piecewise linear, all the integrations
needed to get Aq and Bu can be done exactly. Similarly, all the integrations
needed to get Lr(q, u, λ) can be done exactly. When we calculate ∂Lr(q, u, λ)/∂q
and ∂Lr(q, u, λ)/∂u, we need to use the matrices corresponding to these exact
integrations. In our calculations, the matrices are never assembled. Instead, we
just have some subroutines to calculate the product of the matrices on some
given vectors. In practical implementations, we need to invert the matrix C
to get C−1. The matrix C−1 can be replaced by domain decomposition or
multigrid preconditioners for the Laplacian operator, see [39].

In all the examples, the mesh size is h = 1/64. The time step for solving
(10) is taken as τ = 0.01h. We choose τ0 = h when the level set functions are
reinitialized as in (23). The level set functions are reinitialized when the L2

norm has changed more than 10% or it has not been updated for 200 iterations
(for some of the tests, we use 500 iterations).

If the observation contains no noise, then we know that u = ud is the mini-
mizer and therefore we can keep the Lagrangian multiplier λ to be zero all the
time and we also do not need to update u. The delta function δ is replaced by
δε with ε = h, but the Heaviside function H is not replaced by Hε. In case that
the observation contains noise, we replace both H and δ by Hε and δε, ε = h.
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In theory, the Augmented Lagrangian method should converge for any r > 0.
In practice, the value of r must be properly chosen in order to have a good
convergence. Even with a properly chosen r, the convergence is normally faster
in the beginning and then slows down. One typical thing is that it is very
difficult to force the equation error function e to the machine accuracy.

If the Lagrangian multiplier λ is updated too often, the algorithm is not
stable. In our simulations, we choose to update it after a fixed number of
iterations. How often do we need to update depends on the problem. For
example 1, we update after each 20 or 50 iterations. For the other examples,
we update after 200 or 500 iterations. If we can not find a proper interval to
update, we simply keep λ to be zero all the time. This reduces the Augmented
Lagrangain method to the penalization method.

In some of the figures, the dotted lines in the background show the true zero
level curves and the dashed lines are the computed zero level curves. We omit
the numerical experiments we have done for problems (P2) and (P3). When the
noise level is very low, Algorithm 2 could produce rather accurate solutions for
all the three formulations (P1) – (P3). We can get a rather accurate solution
for formulation (P2) with noise level as high as 50 times the noise level that we
can handle with formulations (P1) and (P3).

6.1 Example 1

We first test a simple problem. The exact coefficient q(x) is given in Figure 2,
i.e. q(x) = 1 inside a circle and q(x) = 4 outside the circle. In Figure 3, we
add 5% noise, i.e. σ = 5% and the zero level set for the computed solution at
different iterations are shown. Notice that we start with an initial guess for q
with the location of the discontinuities being a small circle and the constant
values specified to be the lower bounds ai’s. We see that, even with such a poor
initial guess for q, Algorithm 2 is able to recover both the constant values and
the location of the discontinuities quite well. In fact, after only about 100 steps,
the recovered coefficient is already quite accurate.

Next, we show results corresponding to different noise levels. In Figure 4,
we show the identified q and the corresponding zero level set curve for different
amount of noise. For this example, we see that the coefficient can be recovered
reasonably well even in the presence of up to 20% noise.

We also studied the effect of the regularization parameter β. In Figure 5, we
show the results for a range of β values with σ = 5% noise. As expected, with
larger β value, the identified q(x) and zero level set curve become smoother.
The recovered constant values remains good. This is true for all the examples
presented in this section. We can clearly see that β = 10−9 is too small and the
identified zero level set curve is oscillatory. Comparing the results in Figure 5,
it seems that β = 10−5 is a good choice.

In Figure 6, we consider a case where the true q(x) is a piecewise smooth,
but not constant, function. In this case, Algorithm 2 tries to approximate
q by a piecewise constant function. The true coefficient we used is given by
q(x) = c(x)e8x(1−x)y(1−y) with c(x) = 4 outside the circle and c(x) = 1 inside
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Figure 2: The exact q(x) and the location of the discontinuity

the circle. The noise level is set at 5%. The recovered q is shown in Figure
6.d. We see that the location of the discontinuities is recovered very accurately.
Moreover, the recovered q is a pretty good piecewise constant approximation to
the true q. In Figure 6.e, the error ‖q− qk‖L2(Ω) is plotted. The plots in Figure
6.f show the ‖ek‖L2(Ω) and ‖rk‖L2(Ω) and ek is the equation error at iteration k
and rk is the projection of the residual −∇· (qk∇uk)− f into the finite element
space. It is typical that the augmented Lagrangian method cannot reduce the
equation error to machine accuracy. The L2 error ‖q− qk‖L2(Ω) is reduced from
2.5 to 0.6 and stays at 0.6. The error connot be reduced further.

Another observation we can make is that the computed solutions converge to
the true solution faster in the beginning. After this initial phase, the convergence
slows down and it takes a lot of iterations to move the computed solution to
true solution. This is true for the computational results of Figure 3 and also
for all the other examples. This is quite typical of augmented Lagrangian type
methods. Also, due to the ill-posedness of the inverse problem, the derivatives
∂Lr

∂q goes to zero much faster than the error of the computed solutions. It can
happen that when the computed solution is still far from the true solution, the
derivatives have already approached zero. It would be natural to use large step
sizes when this happens. However, the algorithm is unstable if the step sizes
are increased. This is the reason for the slow convergence near the solution.

For all the tests for this example, the lower and upper bound used for the
line-search (19) are taken as: a1 = 0.5, b1 = 2, a2 = 2, b2 = 8.

6.2 Example 2

In this example, we try to identify a more complicated geometry for the location
of discontinuities. The exact coefficient q(x) is given in Figure 7, i.e. q(x) = 2
inside the two closed curves and q(x) = 1 outside the curves. Even though
there appears to be 3 distinct piecewise constant regions, since 2 of the constant
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values are identical, only one level set function is needed. The zero level set
for the computed solution with σ = 0 (i.e. noiseless) at different iterations are
shown in Figure 9. We start with an initial guess for q with the location of
discontinuities specified as a circle as shown, and with constant values given by
the lower bounds ai. We see that starting with one initial curve, Algorithm
2 is able to automatically split it into 2 pieces and capture the two separate
regions successfully. This is the intrinsic advantage of the level set approach.
Moreover, the recovered constant values are quite accurate. The errors for the
computed quantities are shown in Figure 8. The errors are reduced from 1 to
10−5 and then oscillates around 10−5. This oscillatory behavior is caused by
the approximation error from the line-searches and the approximations we have
done in the numerical integrations and differentiations.

In Figure 10, we show the results using a different initial curve. We see that
the recovered coefficient is the same as using the previous initial curve, even
though the intermediate stages are quite different. This lends confidence that
Algorithm 2 is robust to the choice of the initial guess for q. The error |q − qi|
and ‖q − qk‖L2(Ω) are reduced to 10−7 and then oscillates around it. We omit
the plot for the errors.

In Figure 11, we show the results for two different noise levels: 1% and
5%. We see that we can only tolerate about 1% noise. With 5% of noise, the
identified zero level set is rather poor. For the tests in Figure 11, we start with
|q01 − q1| = 0.4, |q02 − q2| = 0.8 which gives a corresponding ‖q0 − q‖L2(Ω) = 0.6.
We use the same initial level set curve as in Figure 9. At convergence, we have
|qk

1 −q1| = 0.01, |qk
2 −q2| = 0.1 and ‖qk−q‖L2(Ω) = 0.1 for σ = 1%. For σ = 5%,

we have |qk
1−q1| = 0.008, |qk

2−q2| = 0.1 and ‖qk−q‖L2(Ω) = 0.2. It is interesting
to note that even for the large noise (i.e. σ = 5%) case, the constant values are
recovered rather accurately, despite the fact that the recovered zero level curve
is not so good. Note that the error in L2 norm for the identified q for σ = 1%
and σ = 5% is not so much different from each other, but the identified zero
levelet curve is rather different.

For all the tests for this example, the lower and upper bound used for the
line-search (19) are taken as: a1 = 0.5, b1 = 2, a2 = 1, b2 = 4.

6.3 Example 3

In this last example, we use the same geometry as in the last example, but the
coefficient q(x) takes two different constant values inside the two curves. The
exact coefficient q(x) is as given in Figure 12, i.e. q(x) = 1 outside the two
curves, q(x) = 2 inside one of the curves and q(x) = 3 inside the another curve.
Thus we have 3 distinct constant regions for q and therefore we need two level
set functions to represent q(x). The zero level set for the computed solution
with σ = 0.1% at different iterations are shown in Figure 13. In this run, we
start with an initial q with 3 distinct constant regions represented by the two
circles and the background. The results show that not only are the location of
the discontinuities recovered accurately, but also the constant values (the precise
numerical values are not shown in the figure). After about 50 iterations, the
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approximate shape of the geometry of the discontinuities is already rather good,
but it take many more subsequent iterations to further refine it. Note that in
this example, the topologies of the discontinuities (i.e. the number of distinct
constant regions) of the initial guess for q and the exact solution are the same
and Algorithm 2 automatically determines that the region Ω1 is empty.

In Figure 14, we show the results using an initial guess for q with a different
topology than the true q — the initial q has 4 distinct constant regions. At
first glance, it may appear that the recovered coefficient has 4 constant regions,
which is one more than that for the true q. However, notice that a disconnected
part of the interior of one level set function (corresponding to the heart-shaped
region) is completely embedded in the interior of the other level set function.
It turns out that the recovered constant value in this embedded region is the
same as the recovered constant value for the surrounding region and therefore
the recovered q is a good approximation to the true q. During the iteration, the
shape of the embedded region continued to evolve as long as these two constant
values are not the same. However, it may also happen that the embedded region
can disappear before the two constant values become close enough, leaving only
3 regions. To summarize, starting with 4 constant regions, we may end up with
either 3 or 4 constant regions for the recovered coefficient but in either case the
accuracy is equally good. The fundamental reason for this phenomenon is due
to the non-uniqueness of the multi-level set representation of piecewise constant
functions with fewer constant regions than the maximum allowable.

In order to test how much noise we can tolerate, the computed zero level
curves with noise σ = 1% and σ = 5% are shown in Figure 15. It seems that we
cannot tolerate more than 1% of noise. For both tests, we start with |q01 − q1| =
0.4, |q02 − q2| = 0.8, |q03 − q3| = 1.2 with a corresponding ‖q0 − q‖L2(Ω) = 0.8.
The same initial level set curve as in Figure 13 is used. At convergence, we
have |q01 − q1| = 0.06, |q02 − q2| = 0.1, |q03 − q3| = 0.1 and ‖qk − q‖L2(Ω) = 0.1 for
σ = 1%. For σ = 5%, we have |q01 − q1| = 0.03, |q02 − q2| = 0.12, |q03 − q3| = 0.06
and ‖qk − q‖L2(Ω) = 0.4. We see that for large noise (i.e. σ = 5%), the
recovered zero level curve is not very good, but the constants are recovered
rather accurately.

For all the tests for this example, the lower and upper bound used for the
line-search (19) are taken as: a1 = 0.5, b1 = 2, a2 = 1, b2 = 4, a3 = 1, b3 = 6.

6.4 Example 4

Identifiibility for the inverse problems is rather important to get a corrected
recovered coefficient, see [37, 12, 28] for some analsyis about the identifibility
for the inverse problems. In this example, we try to show what may happen
if the coefficient is not identifiable in part of the domain Ω. The true state
u ∈ H1

0 (Ω) is chosen to be constant in a sub-domain Ωc ⊂ Ω, i.e. u = constant
in Ωc. The true coefficient q has two constant values, i.e. q = 1 or q = 4, see
Figure 16. The coefficient has jumps on two curves. One of the curves is inside
Ωc and another one is outside. The f function for equation (1) is obtained from
the known u and q. It is clear that q is not identifiable in the sub-domain Ωc. In
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the test for Figure 16, we use the true u as the observation without adding noise.
The recovered coefficient is shown in Figure 16.c. It is amazing to see that the
discontinuity which is outside of Ωc is recovered rather accurately. However,
the algorithm is not able to identify the discontinuity inside Ωc. The recovered
contant values are q1 = 4.25 and q2 = 0.79 and it seems that it is difficult to
get the contant values to a much better accuracy.

In practical applications, it is possible that the gradient |∇u| is vary large
in some regions and very small in some other regions. For such cases, we may
also have problems to recover q inside the region where |∇u| is very small and
the recovered value may have very poor accuracy.

7 Conclusions

We have introduced a variational level set approach for elliptic inverse problems
with piecewise constant coefficients. The key ingredients are a multi-level set
representation of the coefficient and a way to regularize it in this representation
using the total variation norm. A nice feature of our approach is that we do
not require knowledge of the exact number of constant regions, only an upper
bound is needed. Results from a range of numerical experiments show that the
method can recover coefficients with rather complicated geometries of disconti-
nuities under moderate amount of noise in the observation data. The method
is also robust with respect to the initial guess for the geometry of the coeffi-
cient discontinuities, at least for low noise levels. Our formulation can be used
with other forms of regularization and for more general optimal shape design
problems.

8 Appendix: Calculations Of The Gradient Of
The Minimization Functionals

We recall from (16) that we have:

∂Lr

∂qi
=

∫
Ω

∂Lr

∂q

∂q

∂qi
dx,

∂Lr

∂φi
=
∂Lr

∂q

∂q

∂φi
. (31)

Thus, we need to calculate ∂Lr

∂q for the functional Lr defined for (P1) - (P3).
First, let us note that the derivative of the regularization functional R(q) can
be given as in the following:

∂R

∂q
= −∇ ·

(
∇q
|∇q|

)
. (32)

In order to get (32), we need to assume that

β|∇q|−1 ∂q

∂n
= 0, on ∂Ω.
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As the regularization parameter β is always chosen to be small, we neglect the
contribution from the boundary term even in case that the above condition is
not satisfied on the boundary of Ω.

The equation error function e defined in (2) depends on q and u. From the
definition, it is easy to see that the Gateaux differentials of e with respect to q
or u in a direction µ satisfies

(∇
(
∂e

∂q
· µ

)
,∇v) = (µ∇u,∇v), ∀v ∈ H1

0 (Ω). (33)

(∇
(
∂e

∂u
· µ

)
,∇v) = (q(x)∇µ,∇v), ∀v ∈ H1

0 (Ω). (34)

For problem (P1), we have(
∂Lr

∂q
· µ

)
(q, u, λ) = β

(
−∇ ·

(
∇q
|∇q|

)
, µ

)
+ r

(
∂e

∂q
· µ, e

)
+

(
λ,
∂e

∂q
· µ

)
.

With the help of (33) , it is easy to see that(
∂Lr

∂q
· µ

)
(q, u, λ) = β

(
−∇ ·

(
∇q
|∇q|

)
, µ

)
+ r(µ∇u,∇e) + (∇λ, µ∇e).

From the above formula, we get that

∂Lr(q, u, λ)
∂q

= −β∇ ·
(
∇q
|∇q|

)
+∇u · ∇(re+ λ). (35)

Using similar techniques and (34), one could get

∂Lr(q, u, λ)
∂u

= u− ud −∇ · (q∇(re+ λ)). (36)

For problem (P2), the calculation of ∂Lr

∂q is the same, and we can also easily
get that

∂Lr(q, u, λ)
∂u

= u− ud − γ∇ · (∇u− ~ug)−∇ · (q∇(re+ λ)).

We omit the details for problem (P3).
As explained in §6, piecewise constant functions Ph over a rectangular mesh

are used to approximate q and the level set functions. Continuous piecewise
linear functions Sh over a triangular mesh are used to approximate functions
e, u and λ. From the definitions of the matrices Aq and Bu, we can see that
discretized values of the differentials ∂Lr(q, u, λ)/∂q and ∂Lr(q, u, λ)/∂u given
in (35) and (36) can be obtained by

∂Lr(q, u, λ)/∂q = βR′(q) +B∗
u(re + λ); (37)

∂Lr(q, u, λ)/∂u = M(u− ud) +Aq(re + λ). (38)
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In the above, M is the stardard mass matrix which would be the identity matrix
if we use reduced integrations only for the term ‖u−ud‖2

L2 , B∗
u is the transpose

of Bu and q, e, λ,u,ud are the vectors of nodal values for the corresponding
functions.

The q function is approximated by piecewise constants over the rectangular
mesh. In implementations, we approximate the regularization functional R(q)
by

R(q) =
∑

i

∑
j

√
|qi,j − qi−1,j |2 + |qi,j − qi,j−1|2 + εh2. (39)

In the above, qi.j is the value of q over the (i, j) rectangular element. It is
known that R(q) reduces to the TV-norm of q if we take ε = 0. In order to get
R′(q), we just need to calculate ∂R(q)/∂qi,j for all i and j. Using (39), it is
easy to get the formula for calculating ∂R(q)/∂qi,j , which is essentially a finite

difference approximation for −∇ ·
(

∇q√
|∇q|2+ε

)
. We always take ε small (for

example ε = 10−10) to avoid dividing zero numbers.
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Figure 3: The computed solution at different iterations and the computational
error for Example 1 with σ = 5%, r = 10−3, β = 10−6. Even with a rather poor
initial guess, Algorithm 2 is able to recover both the constant values and the
location of the discontinuities quite well. In fact, after only about 100 steps, the
recovered coefficient is already quite accurate.
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Figure 4: The identified zero level set curve and the identified q(x) with noise
level σ = 0%, 5%, 20%, 40%. For noise level less than 20%, both the discontinuity
location and the constant values are recovered accurately.
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Figure 5: The identified zero level set curve with different β for σ = 5%. With
larger β, we get a smoother curve. The recovered constant values remains good.
For this problem, it seems that β = 10−5 is a good choice.
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Figure 6: Identifying a piecewise smooth function by a piecewise constant func-
tion. We have σ = 5%, r = 10−3, β = 10−5. The location of the discontinuities
is recovered rather accurately. Moreover, the recovered q is a pretty good piece-
wise constant approximation to the true q. The L2 error ‖q−qk‖L2(Ω) is reduced
from 2.5 to 0.6 and stays at 0.6. The error connot be reduced further.
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Figure 7: The exact zero level set curve and q(x) for Example 2.
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Figure 8: The convergence of the identified functions with σ = 0. The errors
are reduced from 1 to 10−5 and then oscillates around 10−5. This oscillatory
behaviour is caused by numerical approximation errors.
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Figure 9: The identified zero level curve at differnet iterations with σ = 0, r =
10−4, β = 10−9. We see that starting with one initial curve, Algorithm 2 is
able to automatically split it into 2 pieces and capture the two separate regions
successfully. The approximate shape of the two objects is identified rather well
after about 300 iterations.
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Figure 10: The identified zero level curve at differnet iterations with another
initial guess and with σ = 0, r = 10−4, β = 10−9. We see that the recovered
coefficient is the same as using the previous initial curve, even though the inter-
mediate stages are quite different. The approximate shape of the two objects is
identified rather well after about 500 iterations.
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Figure 11: The identified zero level curve for different noise levels for Example
2. It seems that we can only tolerate about 1% noise. For the large noise (i.e.
σ = 5%) case, the recovered zero level curve is not so good, but the constant
values are recovered rather accurately.
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Figure 12: The exact zero level set curve and q(x) for Example 3.
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Figure 13: Identified zero level curve at different iterations with an initial guess
that only gives three regions. After about 50 iterations, the approximate shape
of the geometry of the discontinuities is already rather good, but it take many
more subsequent iterations to further refine it. The topologies of the disconti-
nuities (i.e. the number of distinct constant regions) of the initial guess for q
and the exact solution are the same and Algorithm 2 automatically determines
that the region Ω1 is empty.

34



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

iteration =0
Computed and exact φ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

iteration =500
Computed and exact φ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

iteration =1000
Computed and exact φ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

iteration =4000
Computed and exact φ

Figure 14: Identified zero level curve at different iterations with an initial guess
that gives four regions. The extra region does not disappear and the constant
for this region is equal to to the constant for the region surrounding it. This
region stops to change as soon as the two constants are nearly the same. The
final identified q is the same as in Figure 13. Both the discontinuity location
and the constants are accurately recovered.

35



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Computed zero level−set

(a) With σ = 1%, r = 5×10−4, β =

5 × 10−6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Computed zero level−set

(b) With σ = 5%, r = 5 ×
10−4, β = 5 × 10−5

Figure 15: The identified zero level curve for different noise levels for Example
3. It seems that we cannot tolerate more than 1% of noise.
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(a) The true state u
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(b) The thrue coefficient q
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(c) The recovered q
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(d) The location of the exact and
recovered discontinuities for q

Figure 16: The true state u is constant in a subdmain Ωc and q is not identifiable
in this subdomain. The coefficient has two discontinuities. One is inside Ωc and
another one is outside. The one which is outside Ωc is recovered accurately.
The algorithm is not able to identify the discontinuity inside Ωc.
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