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Abstract

We study numerically the anisotropic bunching effect in crystal growth
under curvature and a singular vertical diffusive regularization. Our assump-
tion is that the mobility of the growth depends on the height of the given
crystal. This assumption may result in overhanging crystals if approached
in a naive way. Instead, we embed the profile of the crystal as the zero level
set of a continuous function and study the corresponding level set evolution.
To prevent “overhanging”, we regularize the equation with a singular diffu-
sion that vanishes everywhere except at the formation of “overhanging”. In
addition, we add the mean curvature regularization to keep the convexity of
the level sets.

1 Introduction

It is observed in experiments [23] that actual crystal growth consists of different
sheets, each with the same convex shape in a different orientation. The large time
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asymptotic growth shape retained in each sheet is called a Wulff shape and can be
obtained from a given mobility [12]. In addition, viewing from the side, the sheets
structure remains as the graph of a piecewise continuous function. The formation
of jump discontinuities in this “height function” is called bunching. Our goal is to
study this type of crystal growth numerically.

A single sheet crystal growth is formulated by Hamilton-Jacobi equations if
the curvature effect is neglected. It is by now standard to empoly the level set
method for tracking the whole evolution numerically [15] and analytically [2][3].
We refer the readers to the books of [8, 13, 18] for the level set methods and [5, 6]
for recent development related to the motion by nonlocal curvatures.

The idea is to represent the regions on which the crystal resides, denoted here
by Ω, by a continuous functionψ. More precisely,

Ω(t) = {x∈ Rn : ψ(x, t)≤ 0}.

With the given mobility functionγ, which determines the normal velocity of∂Ω,
one can then evolve the level set equation

ψt + γ(~n)|∇ψ|= 0

to trackΩ(t) implicitly. It is shown in [14, 17] and also [20] that the asymptotic
shape ofΩ(t), up to dilation, is the Wulff shape contructed through the Legendre
transform

Ω(t) = inf
θ·ν,|θ|=1

γ(θ)
θ ·ν

.

The mobility functionγ is a positive function of the outer normal~n of Ω. As
is formulated above,~n corresponds to∇ψ/|∇ψ| evaluated at∂Ω. Thus it can
also be regarded as a positive function of∇ψ, homogeneous of degree zero; i.e.
γ(~n) = γ(∇ψ) = γ(λ∇ψ)> 0.

Smereka [19] proposed a level set method to study the spiral growth of screw
dislocations numerically. The growth model used there, as was proposed in [1],
had an addition of the curvature regularization. The effect of this curvature regu-
larization on the corner shape of the Wulff problem was investigated in [12].

In this paper, we will model the growth of multiple sheets under curvature
regularization and the mobility functions that depend also on the height of the
crystal; i.e. γ(u(x, t),~n(x)), whereu(x, t) is the function describing the profile,
or the height, of the crystal, and~n(x) is the ourter normal of the crystal. Let
u : Rn×R+ 7→ R be the height function of crystal. We assume that eachl -level
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set ofu moves with the speed as the product of the mobilityγ(l ,~n) and a constant
plus its curvature. The corresponding equation is of the form:

ut + γ(u,∇u)(C−∇ · ∇u
|∇u|

)|∇u|= 0. (1)

The mobility functionγ determines the anisotropic motion of of the level sets of
u. If γ is increasing inu, then shock may develop even if the initial data is smooth.

2 Formulation

Following the paper [9, 10] and [22], we propose a level set formulation with a
singular, vertical diffusion regularization reflecting the idea of nonlocal curvature
in [5]. In this formulation, the solutionu to (1) is embedded as the zeros of a Lips-
chitz continuous functionφ : U× [0,T]⊆Rn+1×R+ 7→R; i.e. φ(x′,u(x′, t), t) = 0
for t ≥ 0, wherex′ ∈ Rn. With the notationx = (x′,xn+1), x′ = (x1,x2, · · · ,xn) and
∇x′φ = (∂/∂x1φ,∂/∂x1φ, · · · ,∂/∂xnφ), we have

d
dt

φ(x,u, t) = φt + φxn+1(x,u, t)ut = 0

d
dxj

φ(x,u, t) = φx j + φxn+1(x,u, t)ux j = 0, j = 1, · · · ,n

near(x,u(x, t), t). Thus, formally

φt + γ(u,∇x′φ)(C−∇x′ ·
∇x′φ
|∇x′φ|

)|∇x′φ|= 0,

assuming thatφxn+1 > 0.
As in [22], we extend the equation to the whole domainU × [0,T] ⊆ Rn+1×

R
+, and add a singular diffusion term along thexn+1 direction,

η
∂

∂xn+1

φxn+1

|φxn+1|
|∇
R

n+1φ|,

whereη > 0 is a suitable constant as motivated in [7, 9]. See also [4]. The level
set equation that we solve numerically takes the form:

φt + γ(xn+1,∇x′φ)(C−∇x′ ·
∇x′φ
|∇x′φ|

)|∇x′φ|= η
∂

∂xn+1

φxn+1

|φxn+1|
|∇
R

n+1φ|, (2)
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with a Lipschitz continuous dataφ(x′,x,0) satisfingφ(x′,u(x′,0),0) = 0, and

{(x′,x) ∈ Rn+1 : x≤ u(x′,0)}= {(x′,x) ∈ Rn+1 : φ(x′,x,0)≤ 0}.

Note that the zero level set ofφ may overturn ifη = 0 or if η is sufficiently small.

2.1 Numerics

The first order derivatives in

γ(xn+1,∇x′φ)(C−∇x′ ·
∇x′φ
|∇x′φ|

)|∇x′φ|

is approximated by the 5th order WENO method, see [11], with Lax-Friedrichs
Hamiltonian described in [16]. The curvature term,

∇x′ ·
∇x′φ
|∇x′φ|

,

is discretized by a compact centered differencing described, e.g., in [24].
The singular diffusion term can be approximated by a compact central differ-

encing on a regularized signum function ofφxn+1. Here we regularize the signum
function by using the tanh function or by adding a small positive number to the
denominator. More precisely,

∂
∂xn+1

φxn+1

|φxn+1|
(x)

is approximated by

1
∆x

(
S(Dxn+1

+ φ(x))−S(Dxn+1
− φ(x))

)
,

where∆x is the spatial grid size,S(p) = tanh(δ−1p) or (p2/(p2 + δ2))1/2, for
some smallδ> 0, and

Dxn+1
± φ(x) =±φ(x′,xn+1±∆x)−φ(x′,xn+1)

∆x
.

In our computations, we tookδ = ∆x. We point out that a related regularization
technique and the corresponding numerical issues is studied in the paper of Torn-
berg and Engquist [21].

The spatially discretized system is then evolved in time by the 3rd TVD Runge-
Kutta scheme [16] with the Courant-Friedrichs-Levy condition∆t ≤C∆x3.
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3 Examples

With the singular vertical diffusion term, we have successfully prevent different
sheets of a crystal structure from overhanging (the bunching effect). Our model
mobility function is the following:

m(θ(xn+1)) = 1.0+ α(|cos2θ(xn+1)|−0.5).

With C andα big enough, the Wulff shape of each level set is a square of differ-
ent orientation, depending on functionθ(xn+1) that is taken to be some staircase
function.

Figure 1 shows a numerical result withη = 0 in (2). It is observed that the
level set ofφ develops overhanging in thexn+1 direction. Figures 2, and 3 show
two numerical simulations withη = 1.5. We observe in particular in Figure 3
that there is no overhanging in thexn+1 direction. However, without the curvature
term, the convexity of the regions enclosed by each of the level sets shown is not
preserved.
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Figure 1: A crystal profile and its level contours obtained without either curvature
or vertical viscosity regularization.

4 Summary

In this paper, we present a level set method to study the anisotropic bunching
problem related to multiple sheets crystal growth. We show, numerically, that
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Figure 2: Two crystal profiles obtained with vertical diffusion regularization. The
one one the left is obtained without curvature, while the one on the right is ob-
tained with curvature in the mobility function.
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Figure 3: The level contours of the level set functions depicted in Figure 2. The
one one the left is obtained without curvature, while the one on the right is ob-
tained with curvature in the mobility function.
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under the curvature regularization, the shape remains convex for all time. We also
show that the singular diffusion term does prevent the overturning of the level sets.
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