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Abstract. After Turing’s ingenious work on the chemical basis of morphogenesis fifty years ago, reaction-diffusion
patterns have been extensively studied in terms of modelling and analysis of pattern formations (both in chemistry
and biology), pattern growing in complex laboratory environments, and novel applications in computer graphics. But
one of the most fundamental elements has still been missing in the literature. That is, what do we mean exactly by
(reaction-diffusion) patterns? When presented to human vision and visual system, the patterns usually look deceptively
simple and are often tagged by household names like spots or stripes. But are such split-second pattern identification
and classification equally simple for a computer vision system? The answer does not seem to be confirmative, just as
in the case of face recognition, one of the greatest challenges in contemporary A.Il. and computer vision research.

Inspired and fuelled by the recent advancement in mathematical image and vision analysis (Miva), as well as mod-
ern pattern theory, the current paper develops both statistical and geometrical tools and frameworks for identifying,
classifying, and characterizing common reaction-diffusion patterns and pattern formations. In essence, it presents a

data mining theory for the scientific simulations of reaction-diffusion patterns.
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1. Introduction and Motivation.

1.1. Turing and Hopf Reaction-Diffusion Patterns. Fifty years ago in his seminal pa-
per [60], Turing surprised the entire scientific community by revealing the foundation for morphogen
pattern formation in a diffusive chemical reaction environment. By intuition, as a smoothing and fil-
tering process broadly applied even in image and vision analysis [48, 1], diffusion would wipe out any
inhomogeneous spatial patterns like the stripes on zebra skins [42]. Turing, however, brilliantly iden-
tified Mother Nature’s behavior as the counterintuitive consequence caused by the non-commutativity
of linear operators [46], the very same mechanism underlying Heisenberg’s uncertainty principle in
quantum mechanics [26].

Consider a planar two-species model as an example. Locally near a stable uniform kinetic
equilibrium, let D denote the positive diffusivity matrix, and K the stable kinetic matrix with
negative real parts of its two eigenvalues. Then the one-parameter family of (linearized) reaction-

diffusion operators:
L,=-uD+K, p>0, (1.1)

could lose stability for some positive y, i.e., at least one eigenvalue of L, could cross the imaginary

axis from the left. (The parameter p is proportional to the eigenvalues of —V?2, the negative Lapla-
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cian.) This could never happen if reaction commutes with diffusion: [K,D] = KD — DK = 0. For

a non-commutative reaction-diffusion pair such as

2 1 1
K= 7 and D= 0 , onehas Ly = 7 ,
-1 -3 0 10 -1 -8

and det L; = —1. As a result, one eigenvalue becomes positive and stirs up Turing instability.
Such linear Turing instability, once stabilized by nonlinear kinetics, could sustain stable spatial
or temporal patterns such as zebra stripes. In the current paper, we shall only work with planar

two-species reaction-diffusion models in the common form of

ug = D1Au + f(u,v)
vy = DaAv + g(u,v),

where f and g denote the nonlinear kinetics.

Reaction-diffusion patterns also frequently arise when Hopf instability occurs, i.e., when a fo-
cusing spiral loses its stability and a stable limit cycle is born from bifurcation. In fact, many
simulation evidences (e.g., Roy Williams’ comprehensive computational results obtained on Cal-
tech’s supercomputing facilities [63]) seem to show that reaction-diffusion patterns are more easily
observed on the region of Hopf instability.

After Turing’s pioneering work, exactly four decades elapsed before a remarkable experiment
design by Castets et al. [3] in 1990 eventually confirmed Turing patterns in laboratory. The longtime
resisting difficulty had lied in the design of reaction-diffusion systems like (1.2) in a controlled and
analyzable manner in actual complex environments.

Coincidentally, almost at the same time, computer scientists started to pick up the reaction-
diffusion mechanism for graphic designs. Around 1991, Turk [61] and Witkin and Kass [64] artis-
tically applied reaction-diffusion systems like (1.2) to generate a variety of animal skin patterns in
graphic applications. Like flow simulations based on the Navier-Stokes equation, such biochemical

simulations of life phenomena, surely hold a bright future.

stripes spots

n

Fig. 1.1. Some typical examples of reaction-diffusion patterns.



1.2. Quest for the Meaning of “Pattern”. Despite all the afore mentioned remarkable
historical works on the theoretical modelling, laboratory growing, or graphic simulations of reaction-
diffusion patterns, some key elements have still been surprisingly missing, or blindly taken for granted
for a long time. That is, what do we mean precisely by reaction-diffusion patterns? how to identify
and classify them? and how to characterize their detailed properties?

Human vision and intelligence have become so superior after millions of years’ evolution, that
centuries after centuries, their swift and effortless recognition of complex patterns has deceived most
scientists. In the entire reaction-diffusion literature, for example, it has become household to identify
and call some common patterns by “spots,” “hexagons,” or “stripes.” But just as in the case of face
or voice recognition, such identification and classification cannot be so trivial as they appear since
our central nerve systems do carry out massive computation before reaching these succinct yet quite

accurate descriptions.

As David Mumford put it in his most recent perspective article for ICM 2002 [37], pattern theory,
a booming interdisciplinary field, is really about the mathematics of perception. Its mission is to
reveal and model all the key elements and processes of human perception and intelligence, which are
involved in a split-second action of pattern recognition. To achieve this goal, many mathematicians
are intensively working on proper mathematical and statistical frameworks for effectively learning,
classifying, analyzing and synthesizing general complex patterns (see for example, Grenander [25],
Mumford [37], and Poggio and Smale [49]).

1.3. Pattern Analysis Meets Pattern Formation. On the other hand, the trend is growing
stronger that pattern analysis theory should be tightly coupled with pattern formation research. This
is mainly driven by the digital and information technologies, and the thirst of being more automatic
and independent of human involvement in many areas of data formation and analysis (such as in
numerous astronomical and medical applications). Take the simulation of Navier-Stokes fluids for
example. Many researchers are striving to design efficient algorithms for automatically reporting and
analyzing important flow features and patterns such as vortex sheets (see, for example, Thompson
et al. [59] and the references therein) from massive 4-D (space plus time) simulation data. Another
remarkable example is Molecular Dynamics. Someday in the future when the complete folding
processes of proteins or DNA chains are successfully simulated, could a computer win the Nobel
Prize by automatically recognizing some crucial yet unknown patterns (as analogous to the double-
helix pattern discovered by James Watson and Francis Crick [62] based on the analysis of Rosalind
Franklin’s X-ray images of DNA)?

It is guided by the very same spirit that the current work has been carried out. We attempt
to apply novel tools recently developed in image and vision analysis, as well as in general pattern
theory, to analyze and characterize generic Turing and Hopf reaction-diffusion patterns.

Since reaction-diffusion patterns are generated from the evolutionary partial differential equa-
tions, our tools are mainly statistical as well as based on geometric measures. Statistical tools such

as histograms, invariant moments, and the entropy, allow to efficiently differentiate and classify ma-
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jor spatial patterns. On the other hand, tools from geometric measures lead to robust schemes for

computing important geometric features of each class of patterns, such as the average radius of a

spots pattern, and the total length of a stripes pattern, etc.

1.4. Contributions and Organization. We now highlight what we believe the most signifi-

cant contributions of the current work.

(1)

Our approach systematically combines many important tools developed in modern mathematical
image and vision analysis (Miva), and could foster further broad applications of Miva techniques
in numerous data mining and analysis problems arising from physical, chemical, or biological
simulations.

For the first time, generic reaction-diffusion patterns such as spots and stripes are analyzed
both statistically and geometrically. Many novel notions and tools are developed based on the
intrinsic characteristics of these patterns.

Although mainly focused on the patterns from the Gray-Scott model [47], most statistical
and geometric tools developed here apply to more general reaction-diffusion models such as
CIMA [29, 30] and Brusselator [50]. This is achieved by developing the corresponding models
for generic patterns that are independent of the biochemical kinetics.

We introduce the notion of entropy from thermodynamics and statistical mechanics to monitor
the dynamic behavior of pattern formations. Statistical analysis of typical pattern data leads to
the exciting empirical discovery that on average the entropy steadily increases, and converges
when the target pattern is stabilized or matures.

While this inspirational connection to the Second Law of Thermodynamics awaits further expla-
nation in the future, it enables us to introduce the important notion of “maturity” for develop-
ing patterns. The determination of maturity solves a long standing problem in the literature of
reaction-diffusion simulations, namely, the problem of stopping time. To the best knowledge of
the authors, no rigorous metric has ever been introduced before us for automatically stopping
the evolution when patterns mature.

The geometric features identified by the current work could make a substantial contribution to
the solution of another long standing problem in biochemical system identification, namely, to
test modelling hypotheses and identify biochemical parameters such as diffusion coefficients.
Consider an idealized leopard for an oversimplified explanation. Suppose its spotty skin pattern
is well modelled by the reaction-diffusion system (1.2). Let d and N denote the average radius
and average spots density (per square inch, say) separately. Suppose that predictive relations

are available in the form of (e.g., Turing’s formula for intrinsic chemical wavelength [60]):
d= ¢(D1,D2) and N = ¢(D1,D2),

where D’s stand for the diffusivity coefficients. (For the purpose of illustration, all the kinetic
parameters involved are assumed to be known.) Then the measurement of d and N could help us
identify the two diffusivity coefficients D; and D», which are often extremely difficult or costly
to obtain for an on-going chemical reaction or a living leopard.
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From the surface features and patterns to the underlying driving-force parameters, this type of
inverse problems well justify the efforts and values of pattern analysis in physical, biological, or
chemical systems.

The organization goes as follows. In Section 2, the working reaction-diffusion model of the
current paper - the Gray-Scott system, is analyzed in terms of both Hopf and Turing instabilities.
To our best knowledge, the existence of Turing instability is shown here for the first time in the
literature.

Various statistical tools are developed in Section 3 for the monitoring of pattern formations and
for the identification and classfication of matured patterns. One of the most significant empirical
discoveries is that pattern formations seem to obey the Second Law of Thermodynamics, namely,
the entropy increases monotonically. Based on entropies, we are able to introduce the key quantities
of pattern maturity and the dynamic activity of matured patterns. On the other hand, direct as
well as geometry based histograms and their statistics successfully characterize and classify typical
reaction-diffusion patterns. We also explain why most of the key statistical features are intrinsic
and independent of the reaction-diffusion systems that generate them.

Pattern analysis based on geometric measure theory is presented in Section 4. Important geo-
metric measures such as total areas, total variations, and total curvatures are employed to compute
the key geometric features of common patterns, which include (a) the average radius of a (matured)
spots pattern, (b) the total number of spots in a given reaction-diffusion domain, (c) the average
width of a stripes pattern, (d) the total length of all the stripes in a stripes pattern, and (e) the
number of singular points (i.e. endpoints and Y-shaped branching points) in a stripes pattern. The
estimation errors of the leading term approximations are shown to be intrinsically controlled by the
signal-to-noise ratios (SNR, for spots and nets patterns) and the aspect ratios (for stripes patterns).

Section 5 contains a brief conclusion.
2. Hopf and Turing Patterns via the Gray-Scott Model.

2.1. Gray-Scott Model. There are a number of well known planar two-species reaction-
diffusion models in the literature, including the Brusselator model [50], and the CIMA (chlorite-
iodide-malonic-acid) reaction [29, 30]. Throughout the current paper, the major example to be
focused on is the Gray-Scott model, which was first studied phenomenologically in John Pearson’s
Science paper [47], and has also been comprehensively computed using Caltech’s supercomputing
facilities by Roy Williams [63]. Both the kinetics and reported patterns of the Brusselator model
are very similar.

The Gray-Scott model is a variant of the autocatalytic Selkov model of glycolysis and addresses

the following hypothetical reactions involving two chemical morphogens:
U+2V >3V and V = P (2.1)

Here the product P is an inert precipitate, U is fed into the system by a constant feeding rate, and
V removed by the same rate. After a step of partial dimensionless reduction, the reaction-diffusion
5



equation for the concentrations u and v becomes:

ug = D1 Au —uv® + F(1 — u)

(2.2)
vy = DaAv 4+ uv? — (F + k),

where F' corresponds to the feeding and extraction rate, and k the rate constant for the second

reaction. Following Pearson [47], we shall also simulate the model with diffusivity coefficients:
D;=2x10° and D, =107°.

We state two reasons that have motivated this specific but clever choice. First, as clear in the
next section, near the unique kinetic equilibrium that nurtures pattern formation, u acts as the
inhibitor and v the activator. Then the choice is consistent with the famous mechanism of Turing
pattern formation known as long-range inhibition and short-range self-activation [42, 45]. Secondly,
for the numerical simulation of the system, the well known CFL (Courant-Friedrichs-Levy) stability
condition requires (for 2-D diffusion equations):

At

W maX(Dl, DQ) S

|

Since the spatial grid size Az is often in the order of O(10~2), the diffusivity order O(107%) is
therefore the highest possible that allows fast numerical marching in the order of At = O(1).

It shall be assumed that the reaction-diffusion domain (2 is a Cartesian rectangle, and no feeding
or extraction is carried out along its boundary. That is, the Neumann conditions are imposed:
Ou/On = dv/On = 0 along ON.

Discussed next are the equilibrium analysis and Hopf and Turing instabilities. Related work
has also appeared in [31]. The two major contributions here are: (a) A new pair of normalized
parameters (a,d) is introduced based on the raw kinetic parameters (F, k). The former leads to
simpler solution representations and much better phase plane resolution; (b) We show for the first
time that Turing instability indeed occurs in the Gray-Scott model, which has never been reported

either theoretically or computationally in the previous works [47, 31] due to nonlinear complexity.

2.2. Kinetic Equilibria. At kinetic equilibrium,

0=—-u’+F(1—u)

| (2.3)
0 = +uv? — (F + k).

It is easy to see that (u,v) = (1,0) is the trivial equilibrium. Assume that v # 0. Define as in [31]

F+k k
= Y142 >1. 2.4
) fa +F> (2.4)

Then the addition of the two equilibrium equations lead to w + dv = 1, and the second equation

gives

u(6v) = a, with a =8§(F +k) = Fé% > 0. (2.5)
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Thus nontrivial equilibrium is subject to the canonical quadratic system:

u+dv=1 and wu(dv)=a,

(2.6)
from which u and dv are seen to be symmetric. Denote the two nontrivial equilibria by

1 1 1
(u+ = § — Z — Q, (5U+ = + Z - ) ) and (27)

_1_}_ l_ ) —1_ 1_
u- =35 \/4 a, Odv_ = \/4 a |,

N | =

2.8
5 (28)
provided that « is less than the critical value a. = 1/4, or equivalently,
VF 1 1
k<k,=——F=——(VF—--)? 2.9
L (V=) (29)
which is an upsidedown parabola k. = k.(f) with respect to f = v/F (see Figure 2.1).
10 ‘/‘
0.08 “
N (1/16, 1/16) '

\
5 \
v

\
Hopf bifurcation %,

N s, 2)

0.01 002 0.03 0.04 0.05 0.06
k

F1G. 2.1. Bifurcation diagrams in both the k — F plane and o — § plane. The solid lines indicate the onset of
equilibrium bifurcation (with the little circles symbolically representing the number of equilibria). The dashed ones

indicate the onset of Hopf bifurcation (with the arrows pointing toward the birth of stable limit cycles). It is clear
that the a — & plane better resolves (or differentiates) these two different types of bifurcation.

to

2.3. Kinetic Stability and Hopf Bifurcation. The trivial kinetic equilibrium (1, 0) is always
a stable node since by dropping the second order terms uv? = O(v?), the kinetic system decouples

up=F(1—-u) and v =—(F+k)wv.

For the other two nontrivial ones (2.7) and (2.8), notice that the kinetic Jacobian is

-2 —F
2

K = K(u,v)

—2uv

v 2uv — (F 4+ k)|
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With the definitions of a and 4, and the equilibrium conditions
uw(dv) =a and (0v)? — (6v) +a =0,
the kinetic matrix simplifies to

—dv  —2ad

PK = l ] , with trace(0’K) =ad —dv and det(6’K) = ad(dv — 2a). (2.10)

ovw—a b

Thus the signs of trace(K) and det(K) are the same as
(a0 —dv) and (v —2a). (2.11)
At (ug,v4) in (2.7), dvy — 2a > 0 since
1 1
vy > 3 and 2a < 2
Thus det(Ky) > 0 with K = K (uy,vy). Setting the trace to 0 yields ad — dvy = 0 which reveals

the onset of Hopf bifurcation:

Thus for any fixed a < a. = %, as § increasingly crosses d.(a), trace(K) changes from negative

sign to positive. As a result, (u4,v4) experiences a Hopf bifurcation (see Figure 2.1 and Figure 2.2).

pure reaction kinetics for F=0.018 and k=0.037

pure reaction kinetics for F=0.036, k=0.058 zoomed in near one equilibrim
1 -
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u

F1G. 2.2. Stream lines of the kinetic reaction system.

At (u_,v_), notice that

o a
dv_ = o < m = 2a.

implying that det K (u_,v_) < 0, and (u—,v_) is a saddle point.

Figure 2.1 shows the kinetic bifurcation diagrams in both the k¥ — F' parameter plane and the
a — ¢ plane. While the two bifurcations stay too close in the & — F' plane, they are well unfolded
and resolved in the a — § plane. Figure 2.2 displays the streamlines of the kinetic system in two
different sets of parameters. The leftmost one clearly outlines the stable spiral (u4,v;) before
Hopf bifurcation, while the middle one depicts the streamlines when (uy,vy) loses stability. The
rightmost is a zoomed-in version of the middle one.
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2.4. Existence of Turing Instability. Turing instability of the Gray-Scott model has not
been reported in any of the previous works [47, 31], largely due to the complexities caused by
nonlinearity, including the way the kinetic parameters are involved in the equilibria.

To overcome the difficulty, we take a demand-and-supply based unconventional approach, instead
of the traditional exhaustive analysis. That is, we pre-select a set of eigenmodes for potential Turing
instability (i.e., the demand), and then investigate whether indeed exist reaction-diffusion parameters
(i-e., the supply) to meet the instability requirement.

For numerical convenience, assume the reaction-domain is @ = [0,2] x [0, 2], and the diffusion
coefficients are D; = 2 x 107% = 2D, as explained in Section 2.1. Then the eigenmodes of the

Laplacian (with the Nuemann boundary condition) on the domain are tensor products:
z Y
Onm(2,y) = cos(mri) cos(mwi), n,m=0,1,2,---,
corresponding to eigenvalues

MHnm = (n2 + m2)(g)2> n,m > 0.

Suppose it is demanded that all the following eigenmodes lose stability in the reaction-diffusion:

u )
12 < 757 < 25, (2.12)

which will at least include the following eigenmodes:

4,6) (4,7) (4,8)
(5,5) (5,6) (5,7) (5,8)
(6,4) (6,5) (6,6) (6,7) (6,8) (2.13)
(7,4) (7,5) (7,6) (7,7)
8,4) (8,5) (8,6)

The motivation is clear: when satisfied, it will roughly lead to several standing waves in both z and

y directions, which is good for observation in simulations - neither too dense nor too loose. Since
% = 9.8796.. ., the instability demand (2.12) is contained in the more workable interval

100 < p < 250. (2.14)

Now consider the combined reaction-diffusion system when (u,,v) is a stable equilibrium, i.e.,

when

1 1/(1 1
a<ac=g and 6<6c(a)=a(§+ Z—a), (2.15)

as previously derived. In particular, observe that

1
oc(a) > % >2 for a<a., and d.(a.)=2.
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Let Ly = K — uD denote the linearized reaction-diffusion at (u4,vs), where as in (2.10),

— -2 D
62K+:[ w a(5‘|, Dzll 0

, w=dvy. 2.16
. DJ X (216)

w—a ad

Notice that the signs of the kinetic matrix K are in the form of [—, —;+,+], the type in the

reaction-diffusion literature known as cross activator-and-inhibitor [42, 45]. Define A = 6%y and

(2.17)

Ly = 52L+ _ [—w — AD; —2a6 ]

w— ad — ADo

Then Turing instability occurs if and only if det(Ly) > 0.

THEOREM 2.1. Suppose that D1 = 2 x Dy = 2 x 1073, Then Turing instability indeed occurs
over the range (2.14) for any (a,6 = 2) with a =1 —? and 0 < & < 0.003.

A careful check of the proof below confirms that by only using a three-digit decimal number,
0.003 is the best value for the upper limit. Such narrow concentration of Turing’s instability near the
critical point (a = %, 0 = 2) in the parameter plane is well supported by Roy Williams’ comprehensive
computational results [63].

Proof. When § = 2, over the range 100 < u < 250, we have A\ = §%u € [400,1000]. Define
n = ADy € [0.004,0.01]. Then under the specified conditions,

1
0l<ax< 1 and 7 <0.la. (2.18)

Also define ¢ = w — ad. Then

1 N1
¢=5+ Z—a—2a:6+252<0.0031. (2.19)

Finally, by the definition of Ly,

det Ly = ad(w — 2a) — AM(@dDy — wD3) + \2D1 Dy
= (ad + AD3)q — a®86(2 — §) — adADy + 2(AD,)?
= (2a+1n)q — 2an + 2n*
< 2.1aq — 2an + 0.2an by (2.18)
= (2.1¢ — 1.8n)a
< (2.1 x 0.0031 — 1.8 x 0.004)a < 0,

which completes the proof. O

3. Statistical Analysis of Reaction-Diffusion Patterns. Our approach has been pro-
foundly influenced by the recent progress in image, vision, and pattern analysis.

To analyze complex natural images such as wooden textures, satellite images, tissues or more
general medical images, many statistical tools including statistical mechanics have been introduced
and extended by image analysis experts. Spatial image patterns are often treated as Gibbs canonical
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ensembles or Markov random fields, whose short-range energies are defined through spatial filters
and parametric or non-parametric learning. This framework was pioneered by Geman and Geman,
Mumford, Zhu, and their collaborators [21, 65, 66, 40].

For reaction-diffusion patterns, the statistical approach is intrinsically justified. Although most
such patterns are either spatially or temporally varying from the deterministic point of view, sta-
tistically they do seem to remain stationary. Take some spots patterns for example. The sizes and
locations of the spots often look quite arbitrary. Furthermore, some spots are constantly created
while others being annihilated. But overall the spots clearly exhibit some (statistical) invariance.
Therefore they remarkably resemble a box of gas molecules in thermal equilibrium, and statistics
becomes a natural tool.

On the other hand, compared with general images with multiscale or multi-frequency features,
reaction-diffusion patterns resulting from nonlinear parabolic equations carry more geometric regu-
larity. Therefore, nonlinear geometric filters such as the curvature could play a more important role

than conventional linear ones.

3.1. Entropy and Second Law of Thermal Dynamics. Ever since Shannon’s famous paper
on the mathematical theory of communication and information [55], the notion of entropy from
statistical mechanics has been playing a universally crucial role in information theory, signal and
image analysis [13], and pattern learning and analysis [65, 66]. Information entropy (or the negative
Shannon information measure), is a natural metric for measuring the degree of “thermal” disorder
in information.

The Second Law of Thermal Dynamics, on which the entire theory of statistical mechanics stands
up, says that any adiabatic (i.e., Neumann or no flux exchange across the boundaries) dynamic
process must result in an increment in entropy, which leads to the mazimum entropy principle [22].
In this section, empirical evidences are presented to illustrate the remarkable Second Law type
behavior during the formation of reaction-diffusion patterns.

From now on, we shall only focus on the “activator” v = v(z,y,t) (see the kinetic matrix in (2.16)

of the reaction-diffusion system:

ug = D1Au —uv? + F(1 — u)

(3.1)
vy = DoAv 4+ uv? — (F + k),

with generic initial conditions u(z,y,0) = uo(z,y) and v(z,y,0) = vo(x,y), and Neumann adiabatic
conditions du/0n = 0 and dv/dn = 0 along the boundary 0. The initial conditions of ( 3.1) are

usually specified by random fields near the nontrivial uniform equilibrium:
Uo(x,y) :u++n(x,y) and 'U()(IU,:I/) =U++m(x,y),

where n(z,y) and m(z,y) denote white noises whose variances are well dominated by the signals
(u?,v?) (i.e., with a large signal-to-noise ratio). As practiced in [47], one could also replace u4 and
vy in the initial data by some compactly supported data.
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The value of the activator v(z,y,t) is understood as the activation level at site (x,y). Although
the system is formulated deterministically, with random fields as the initial inputs, as well as in the
cellular level where diffusion becomes Brownian motion, the solution v(z,y, ) is better treated as a

random field. For each constant 6 € (0, ), define the #-level set
L@ft) ={ (z,y) € | v(z,y,t) =6 }. (3.2)

[Notice that the first quadrant of the uv-plane is a kinetic invariant region, which makes it suffice to
only consider v € (0,00).] The histogram of v(z,y,t), or the empirical probability density, is defined
as

1 |Uae@,04a0) D(alt)]
P1t) = o Aim, A ’

(3.3)
where | - | denotes the Lebesgue measure in R?. We then define the entropy of v at time ¢ to be

S(t) = — /0 (6] n p(o]t)de, (3.4)

where the Boltzmann constant kg in Gibbs’ original definition has been set to 1 [22].
Our first remarkable empirical discovery is that the reaction-diffusion system appears to (ap-

proximately) follow the Second Law of Thermodynamics (see Figure 3.1).

Empirical Discovery.  The entropy S(t) consists of two components So(t) + S,(t), where (see

Figure 3.1),

(1) the mean-field or smooth component Sy (¢) is non-decreasing, and converges to some constant A
as t — oo; and

(2) the dynamically active component S, (t) is a rapidly fluctuating time series so that the signal-
to-noise ratio lim;_, o So(t)/0(Sa(t)) > 1, where o(-) denotes the standard deviation.

entropy tracking during spots formation stripes formation nets formation
5 5 5
4 4 4
33 3 3
c
J_I.
7 2 2 2
1 1 1
0 0 0
0 100 200 0 100 200 0 100 200
evolution steps n n n

Fi1c. 3.1. The entropy sequences during the formation of typical patterns.

In Figure 3.1, the entropy curve for the spots pattern appears to be bumpier than the other
two. This reflects the well known fact that the spots pattern often evolves more actively in computer
simulations, with constant annihilation and creation.
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While Figure 3.1 looks clear to human vision that the above two statements make perfect sense,
it is yet not so trivial to actually extract the two components Sy (t) and S,(t) from S(¢). One has
to apply tools from signal estimation theory such as Bayesian reference.

Employed here is the deterministic version of Bayesian estimation [39, 10] - Tikhonov regular-
ization [15]. Due to the monotonicity consideration on Sy, we apply Rudin-Osher-Fatemi’s total
variation (TV) restoration model [53, 4, 6] to extract the two components. Define an error functional

for any estimation g(t) by

A

T T
eloo]s@] = [ g+ 3 [ (s@)-g)ar (3.5)

where T is the total running time (e.g., T = 250At for Figure 3.1), and |a|l. = Va2 + €2 the
regularized absolute value for some fixed small constant. The least square fitting term implies
that Gaussian type fluctuations have been assumed. As in Bayesian estimation, the parameter A
is inversely proportional to the fluctuation variance, and is either tunable or estimated. We then
define the mean-field (or trend) entropy So and the dynamically active (or fluctuating) entropy S,
by

So(t) = argming(t)e[g(t)|5(t)] and S, (t) = S(t) — So(t).

It is well known [4, 15, 35] that the decomposition does exist and is unique.

Plotted in Figure 3.2 are the extraction results for the examples in Figure 3.1. Notice that the
dynamically active component have been plotted in the dB unit: 10log;, |S.(¢)|, as customary in
signal analysis and processing [44]. The dynamic difference is manifest in the S, plotting between
the active spots pattern and relatively quieter stripes and nets patterns. (Assuming At = 1 in

Figure 3.1, we have taken the TV regularizer ¢ = 0.01 and A = 1.)

3.2. Pattern Maturity r(¢) and Dynamic Activity o,. The main goal of this section is to
define two important quantities based on entropies: maturity 7(¢) and dynamic activity o,.
Assume the fluctuation component S, (t) has a zero mean E[S,(t)] = 0. Then the trend Sy(t) =
E[S(t)] is precisely the mean field of the entropy time series. In particular, by approximating the
expectation operator by empirical averaging, ones obtains
1 t
A= lim So(t) = lim — S(t)dt, (3.6)
t—o00

t—o00 h t—h

where h could be any prefixed window length. We shall call A the saturated entropy of the pattern

formation. Let B be a positive weight constant. The ripeness index or maturity is then defined by
r(t) = r(v(t)) = e~ AU, (3.7)

Notice that r(t) € (0,1], and lim; ,o 7(t) = 1. Thus the closer r(t) gets to 1, the more matured

the pattern appears to be. [Note: One could also try Gibbs’ form e #(A=50(%)) since the mean

entropy So(t) has been assumed non-decreasing. The quadratic Gaussian form is adopted here since
13
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Fi1G. 3.2. Eztraction of the mean-field entropy So(t) and the dynamically active entropy Sq(t) by the model in
Eqgn. (3.5). Notice that Sq has been plotted in the dB unit: 10logqg |Sa(t)|, as customary in signal processing. It

clearly shows that the spots pattern is more dynamically active.

numerical extraction may never get the exact monotonicity. Also notice that the weighting constant
B corresponds to the reciprocal of the temperature in Gibbs’ form and of the variance in the Gaussian
form.]

The ripeness index is a valuable measure for deciding a good stopping time T in computer
simulation after the pattern has become “ripe” enough. For example, one could preset a maturity

level rg € (0,1) close to 1, and define the stopping time by
Ts = Ts(ro) =sup{t > 0 | for any s < t, r(s) < ro }. (3.8)

Then arises a natural issue regarding the actual computation of the ripeness index r(¢). On one
hand, its definition (3.7) crucially depends on the saturated entropy A, which is obtained from Sy (t)
by letting ¢t — oc0. On the other hand, the major goal of introducing r(t) is to offer an effective
strategy for automatic termination and avoid running the simulation all the way to the infinity.

The issue could be resolved by two approaches. First, if one is experimenting on a fixed sys-
tem with fixed reaction-diffusion parameters, but with different initial conditions for instance, the
saturated entropy A could be learned and well estimated from a single full run of a particular but
generic set of initial conditions. Alternatively, one could modify the definitions in (3.7) and (3.8)
so that they become progressive or causal, independent of any “future” development. This can be
done as follows. Suppose the targeted maturity level is rg = 1 — €2 with € < 1. Then (3.8) implies

that for any t1,t2 : Ts < t1 < t2 (under the assumption that the mean entropy is non-decreasing),
r(t;) >ro=1-¢2, i=1,2.
On the other hand, by (3.7), to the first order,

r(t;) = e PATSMD" ~ 1 — B(A — So(t:))?.
14



Thus, again to the first order,

which leads to

|So(t2) — So(t1)| S bE, b= ﬁ (39)

This inspires a causal definition of the stopping time: with a being any fixed time duration,
Ts =Ts(e) =sup{t > a : |So(t) — So(t —a)| >¢ }. (3.10)

Compared with the original definition, it is ceusal and independent of future computation. In real
simulation, one may add a further delay of some fixed length h so that numerical error could be
diminished and the pattern could get securely matured up to the precision . That is, one takes
Ts(e) + h as the actual stopping time.

The fluctuation entropy S, (t), though behaving like noise, does reflect important dynamic prop-
erties of matured patterns. Weak fluctuations often correspond to static standing waves, while
stronger ones are often associated with travelling waves like spontaneous spots. We thus define the
dynamic activity for any matured pattern to be

0a = lim E[S.(t)?]2. (3.11)

— 00

As before, S, has been assumed to have zero mean. In application, the expectation operator is
replaced by empirical averaging, and the limit is approximated at any moment ¢ > T + h,
t
s 1
a

=5 S2(r) dr, for some time interval h.
t—h

g

For the typical patterns in Figure 3.2 for instance, o, = 0.0982, 0.0022, 0.0020 separately for the

matured spots, stripes, and nets patterns. The difference is as big as nearly 50 times.

3.3. Patterns of Histograms via Invariant Moments. So far, we have only defined key
quantities for monitoring the maturity and activity of developing patterns. In the coming two
sections, we discuss how to differentiate and classify the matured patterns.

Let us first briefly review the general framework of pattern classification [17]. Let X denote a
set of target objects to be classified. A feature map of dimension n associates to each object x € X

a feature vector in R™:

z = F(z) = (fi(x), -, fa(z)).

For any subset E C R™, the collection of objects F ~*(E) C X is called an E-pattern class. A finite

and exclusive patten classification based on the feature map F' is a finite partition of R™:

R"=FE1UE>U---U En, for some N,
15



and its induced partition of X into different pattern classes:
X=X U---UXn, with X, = F "' (E), k=1:N.

The main challenges of pattern classification reside in [65, 66, 49]
(a) how to establish a suitable feature map F which is neither too coarse (with substantial infor-
mation loss) nor over-redundant; and
(b) how to properly partition the feature space based on either supervised or unsupervised learning.
In the current application of reaction-diffusion patterns, X is the collection of all matured
patterns, and the main challenge is to properly define features and patterns. On the other hand,
pattern classification could be conveniently benefited from supervised learning, as supervised by
human vision and popular classification name tags such as spots and stripes.
Our first scheme for characterizing reaction-diffusion patterns is directly based on the histogram
defined in Section 4.1:

12
AfH—0 A6|Q| ’ (3 )

where it has been assumed that ¢ > T (after the pattern matures) so that p,(0) is effectively
independent of ¢ (i.e., the stationary assumption).
Let M denote the collection of all continuous probability measures supported on (0, 00). Then

the histogram could be considered as a feature map:
p: X —>M: v—p,,

which maps any matured pattern v to its histogram. From 2-D to 1-D, it already achieves a significant
amount of data compression by being blind to the spatial organization of each individual activation
level T'(6) (see (3.2), with ¢ dropped as well for matured patterns).

Plotted in Figure 3.3 are the histograms of three typical matured patterns corresponding to
spots, stripes, and hexagon nets. It appears quite clear to human vision that the histograms have
easily differentiated the three. The histogram of the stripes pattern is bimodal and almost symmetric,

while those of the spots and nets are both monomodal but tilted toward the opposite ends.

histogram of a spots pattern histogram of a stripes pattern histogram of a nets pattern

1600 1600 1600

1400 1400 - 4 1400

1200 1200 1200

1000 1000 1000

F1c. 3.3. The histograms of three typical matured patterns.
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This inspires further data compression and feature representation. To characterize the features
of a probability measure (such as symmetry, tilting, and resemblance to Gaussians, etc), one could
project them onto different templates such as canonical monomials or orthogonal polynomials. Here
we work with two high order invariant moments - skewness and kurtosis, which have been frequently
applied in language modelling and image analysis [37].

The skewness of a given continuous probability distribution p(#) (supported on (0,00)) is the

= [ () o,

where m and o are the mean and standard deviation. Similarly, the kurtosis is the 4th order

= [ (9;’”)4p<0> .

For the Gaussian class N(m, o) for instance, the skewness always vanishes while the kurtosis is 3.

3rd order normalized moment:

normalized moment:

Both the skewness and the kurtosis are invariant under linear transforms of the associated random
variables, which makes them ideal and robust for pattern analysis. (See for example Mumford’s ICM
2002 paper [37] on the role of kurtosis in language and natural pattern analysis. For more discussion
on invariant moments such as cumulants, see for example the recent work by Rota and Shen [51].)
For a given matured pattern v, we are able to define two invariant moments s, = s[p,] and

k, = k[py]. Thus a 2-D feature map is eventually established for the collection of matured patterns:
matured R.-D. pattern v =  histogram p, = invariant moments F', = (sy, ky)- (3.13)

This is certainly a highly lossy information compression scheme going from 2-D functions to 2-
component vectors. It is, however, highly efficient as shown in Figure 3.4 — the skewness and
kurtosis do well differentiate the common patterns.

As an example of supervised learning (by human vision), one could now easily partition the
skewness-kurtosis plane to match the supervised classification of the most common patterns of spots,
stripes, and nets. For instance, for the current model, one could even try simple linear decision rules

solely based on the skewness, such as:

Esy, ={(s,k) | s > 0.8}
Ey ={(s,k) | —08<s<0.8}
Enet = {(s,k)| s < —-0.8}.

Here the decision boundaries 0.8 and —0.8 have been obtained by inspection for the illustrative

purpose. Generally, by properly assuming the distribution type (in the skewness-kurtosis half-

plane) for each pattern, one could obtain the decision boundaries from sufficiently many simulation

data, and pattern analysis methods such as cross-validation and maximum likelihood estimation
17
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F1G. 3.4. Typical matured patterns in the skewness-kurtosis feature plane. Some representative values of (sv, kv)
from simulations: spots (1.80, 5.19) and (1.69, 4.70); stripes (0,03, 1.47) and (-0.24, 1.51); and nets (-1.83, 3.74)
and (-1.19, 3.26). For a matured mizture of stripes and nets as shown below, (sv,kv) = (—0.64,2.02), which lies
between the regions of stripes and nets in the skewness-kurtosis plane. The plane also hints a natural direction from
nets to stripes, and eventually to spots, which could also be observed in the comprehensive simulation results by
Williams [63].

(MLE) [17]. For example, in the case of identical isotropic Gaussians and MLE, pattern classification
is tightly connected to Voronov partitioning of the skewness-kurtosis half-plane.

On the other hand, one could also question whether it makes perfect sense to partitions all
matured patterns of a given reaction-diffusion system into three or several specific patterns. This is
because that some matured patterns could be the mixtures of these discretized or quantized patterns,
like the one shown at the bottom of Figure (3.4). For some patterns, even human vision cannot
make a binary decision. Thus the decision boundaries must be understood as gray transitional areas

instead of clear cut binary ones. In this sense, the (s, k) half-plane itself is a good representation.

3.4. Statistical Pattern Analysis via Geometric Features. Histograms of activation lev-
els leave out the information of their geometric organization. In this section, we intend to incorporate
more geometric information into the statistical schemes.

In modern image and vision analysis, linear filters have become a common tool for representing
18



and analyzing various spatial features such as orientations, multiple scales or resolutions, and local
spatial wave numbers. Some well known examples include the Gabor filters [32] and many family of
linear filters in wavelets design [14, 58, 65, 66].

Compared with general image patterns such as textures and clusters of natural scenes, reaction-
diffusion patterns are relatively better organized due to the nature of the system (i.e., controlled by
a system of partial differential equations). Thus geometric regularity seems to be more important
and pertinent than other common image features. This observation motivates the application of
nonlinear geometric filters such as curvatures. The curvature feature has been actively employed in
modern image and vision analysis, such as in mean curvature motions [19], and image denoising,
deblurring, inpainting, and vision modeling [52, 8, 7, 9, 57].

For a smooth image v = v(x,y), the naturally signed curvature is defined to be
Vv Vo
[Vo] Vol

which is well defined at all regular points with nonzero gradients. Notice that x, is morphologically

Ky = ky(z,y) =V - [ ] =div(n), n (3.14)

invariant: Kg,) = ky for any monotonic function g, which should be the case since curvature is
geometric and only belongs to level sets. To avoid the singularity on homogeneous regions where
the gradients almost vanish, as well practiced in image processing [52, 9], &, is often regularized to
Vo . ;
Ky = Ky(z,y) =V - [W] , with |a|. = Va? + €2, (3.15)
1>

for some small regularization constant €. This regularized curvature, though not strictly morpho-

logically invariant, is well defined everywhere.
On the other hand, the curvature information on homogeneous regions is less significiant than
where activation levels change rapidly, e.g., along the “edges” of spots or stripes. Therefore, instead

of the pure curvature, we consider its weighted version:

Yo(z,y) = |Vulky = |V V - [;—le] = Av — D*v(n,n), (3.16)
where Av denotes the Laplacian, and D?v the Hessian bilinear form. The e-regularization tech-
nique (3.15) applies to ¥, as well.

Note that the weighted curvature 1), is no longer morphologically invariant due to the contrast
weighting |Vov|. To establish robust comparison schemes among different patterns, we shall work
with the statistically normalized matured patterns, as in the definitions of skewness and kurtosis.

Define the empirical mean and variance of v to be

1 oo
m =g [ vw)dsdy = [~ op.0),
] Jo 0

o? = |§12—| /Q(U —m)?dedy = / (6 —m)*p,(6)db.

0

Then we investigate the statistics of the normalized weighted curvature:

B0 =tem =~y = ~(Av ~ Dn(n ). (3.17)
19



The histogram of ¢, shall be denoted by ¢,(¢), and Figure 3.5 displays the histograms for some
typical matured patterns. It is quite clear to human vision that these geometry based histograms

successfully differentiate different patterns.
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F1G. 3.5. Histograms of the normalized weighted curvatures ¢, ’s (see Eqn. (3.17)) for typical patterns of spots,
stripes, and nets. [For a good azis scale, the histograms are actually for h X ¢, where h = 0.01 is the pizel size.] The

title lines give the corresponding information on the mean, standard deviation, skewness, and kurtosis.

Unlike the ones in the proceeding section, geometry based histograms cannot be translated along
its horizontal axis, since zero curvature has its intrinsic meaning. The peaks at zero in the weighted
curvature histograms in Figure 3.5 for example, reflect the fact that most sites in a matured reaction-
diffusion pattern are almost homogeneous. In particular, the mean itself is a valuable statistical
feature containing crucial pattern information.

Thus we define a feature map based on the first four moments:

v=>F,= Fg(‘]v(¢)) = (mg,ag,sg,kg),

i.e., the mean, standard deviation, skewness, and kurtosis. The symbol g stands for geometry. From
the empirical data shown in Figure 3.5, it is clear that the mean and kurtosis are outstandingly
effective in differentiating the patterns. Thus one could further simplify the above four-component

feature map to a two-component one:
v=>F g = (my, k).

Figure 3.6 shows the typical matured patterns on the (mg, k,) half-plane. It feature plane clearly
resolves different patterns. The discussion on pattern quantization based on supervised learning is

similar to the proceeding section.
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F1G. 3.6. Typical matured patterns in the geometric mean-kurtosis (mg,ky) half-plane.

3.5. Universality of the Statistical Features via Qualitative Models. In this section,
we explain why the statistical features observed for some typical patterns from the Gray-Scott model

are universal for general reaction-diffusion patterns.

3.5.1. Histogram features of spots, stripes and nets. A matured spots pattern typically
consists of isolated and almost circular islands in a darker sea background. A nets pattern, on the
other hand, could be qualitatively treated as the reversal of the regular spots pattern, in the sense
that it consists of dark holes in a brighter background. This explains why the histograms of the two
are approximately the reversals of each other (see Figure 3.3).

Thus it suffices to model the histogram features of the spots and stripes patterns only.

Consider a normalized circular model for a single spot in R?:
v(z,y) = g(r*) = g(a® +v?),
where the rotational generator g(z) satisfies
g(z) € C*[0,00), g(0) =1, g(+00) =0, and g decreases monotonically from 0 to +oc. (3.18)

(Notice that due to the squared argument 72, Vv(0.0) = ¢'(0)(0,0) = (0, 0), implying a smooth spot
2
center.) For example, g(r?) = e 2-% is a Gaussian spot, and

1-r%)?% r<i1
g(r?) = ( ) - (3.19)
0, r>1

is a compactly supported spot. For the convenience of superimposing many isolated spots, we shall

now work with a typical spot model (3.18) whose compact support is the unit disk, which implies

that ¢’(1) = 0. In addition, assume the domain ) is exactly the unit disk. Let z = f(6) denote

the inverse function of § = g(z) with € [0,1] and 6 € [0,1], which is well defined since g is
21



monotonically decreasing. Then by the definition of the empirical histogram,

L H@y) 0<g0?) <0+ A0) L {(@y): S0+ A0) <1 < JO)}]

po(6) = lim, Q] A6 AGD0 Q] AG
_ 2
_ 1oy, YO - fO+A) 7w ,(0)=_ldL_
Q] A550 Y 9] 1] do
As a result,

po(0F) oc —f/(07) = =1/g'(17) = o0,

which well explains the high peak at the left end of the histogram in the spots pattern (see Figure 3.3).
Figure 3.7 displays the predicted histogram for the spot model (3.19).
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FIG. 3.7. The histogram of a model spot: v(z,y) = g(r2) = g(z? + y?), with g(s) = (1 — s)? for s € [0,1], and 0
otherwise. This model histogram qualitatively matches that of the spots pattern in Figure 3.3.

In a realistic pattern when NV spots almost independently float on a uniform darker background,

the histogram is simply

_ p1(0)| ] + -+ + o (0) ||

Py (0) |Q|

(3.20)

where Q; U --- U Qpy partitions €2 into effective influence regions associated to the N spots. When
the profiles of the spots are very similar, or identical most ideally, then we have p, () = p1(6). For
general situations where the sizes and profiles of the spots do vary slightly, formula (3.20) could be
thought of a smoothing (or filtering) process of the histograms of individual spots.

We now explain the histogram features for the stripes pattern. Consider a canonical ideal stripe

along the y-direction on the square @ = [0, 1] x [0, 1]:

v :L.; - Xz Wi‘h

g(1)=0, and ¢ >0.

Furthermore, we assume that g is symmetric: g(z) = g(1 — x) about the stripe “edge” z = 1/2. For

example, one could take

o(z) = 1- cc;s(mc)

22
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Let z = f(#) denote the inverse function of § = g(x). Then by the definition of empirical histogram,

it is easy to obtain

1
0)=f'(0) = —
p’U( ) f( ) g’(x)’
which well explains the blowups at the two ends in the histogram of the stripes pattern (see Fig-

ure 3.3), since

1
0t) = = d 17) = = +o00.
py(07) g,(0+) +oo and p,(17) g'(lf) +00
As an example, consider 0 = g(z) = % Since g¢'(x) = % sin(wz), one has
1 1 1

2
Y oy Ay sy

Thus for this ideal model, the empirical histogram is precisely the beta distribution B(%, 1) on (0,

1), which also well explains the bimodal pattern of the actual stripes histogram in Figure 3.3.

3.5.2. Feature interpretation for the geometric histograms. We now qualitatively ex-
plain why the geometric histograms of different patterns are noticeably concentrated on different

regions (see Figure 3.5).
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Fic. 3.8. The normal vector fields near the “edges” of different patterns. The normal field is contractive for
a spots pattern, expansive for a nets pattern, and almost constant for an ideal stripe pattern, leading to negative,

positive, and almost zero divergences (i.e., curvatures).

Consider the normal fields n = Vu/|Vu| of the patterns of spots, stripes, and nets. Near
the “edges” where |Vu| is relatively large, the normal fields are typically depicted by Figure 3.8.
For a spots pattern, the normal field n is contractive and points toward the peak at the center.
Therefore, its divergence x, = div(n ) (i.e., curvature) must be negative by the divergence theorem.
This explains why in Figure 3.5, the geometric histogram for ¢, = |Vv|k, associated to the spots
pattern is mostly concentrated on the negative axis. The situation reverses for a nets pattern. For
an ideal local stripe, the normal field is close to be constant which leads to almost zero curvatures.

On the other hand, for all the three patterns, the peaks at ¢, (= |Vv|ky,) = 0 are due to the fact
that away from the transitionary edges, v is almost a constant and |Vv| close to zero.
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4. Geometric Measures of Reaction-Diffusion Patterns. In this section, we employ tools
from geometric measure theory to answer questions like: what is the average spot size in a spots
pattern? how many are there on a square inch on average? and what is the aspect ratio of the
stripes in a stripes pattern. Many of these tools have been recently revived in mathematical image

and vision analysis.

4.1. Total Variation and Curvatures. The broad applications of the total variation (TV)
measure in image processing started from Rudin, Osher, and Fatemi’s work on TV based image
denoising and deblurring [52, 53]. From the applied harmonic analysis point of view, total variation
and its sibling Besov norms are also naturally connected to wavelets based image denoising and
regularization [12, 16, 35].

The total variation TV([u] or [, |Du| of an integrable function v € L' () generalizes the regular

Sobolev norm [, |[Vu|dzdy, and is defined in the distributional sense [24]:

TV[u] z/ |Du| = sup /u(V-g)d:cdy, (4.1)
Q gect(,B2) /o

where C}(Q, B2?) denotes all compactly supported C! vectorial functions that take values inside the

unit disk in R2:
B>={g = (91,92) : lg|=/9} + 93 <1}.

Applying (4.1) to any open subset of 2, one could define rigorously the set function [, |Du| as a
finite Radon measure on , provided that TV[u] < oco.

Unlike the Sobolev norm in W1(f), the total variation of the indicator function y g of a Borel
set £ C  is well defined (though can be 00), and is finite for any Lipschitz domain with finite 1-D
Hausdorff measure of its boundary. In the latter case they are in fact identical. Thus total variation

leads to a more general definition of the perimeter of a Borel set E C (2 by:
Per(E|Q2) = / |DxE|-
Q

Any function u € L'(Q) with finite total variation is said to have bounded variation (BV). The

space of all such functions is denoted by BV (Q), which is a Banach space under the BV-norm:

lullsy = lullo: + /Q |Dul.

It is the space of BV(Q) that has been recently widely applied as an approximate but efficient image
model for general images [35, 9, 10].

The geometric nature is reflected in the celebrated co-area formula of Fleming and Rishel [20]
and De Giorgi [23]:

TV[u] = /Q \Dul = /R length(u = \)d, (4.2)
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where u = A denotes the A-level set, assuming that u is regular. For general BV functions whose

individual level sets are less meaningful, the co-area formula is given by

TV[u]:/Q|Du|:/RPer(u<)\|Q)d/\,

where u < A represents the set Ex = {(z,y) € Q@ : u(z,y) < A}. Thus total variation provides a
natural way to collectively sum up the lengthes of all the level sets, which has made it so powerful
in image processing and vision analysis.

Although general smoothing operators such as heat diffusion are not continuous in BV(Q2), they
are often continuous in terms of the value of the TV measure. That is, suppose u. € W11(Q) or
C>(Q) is a family of mollifications of u € BV(Q) (often spatially adaptive when Q is bounded), so
that u, — w in L' as e — 0. Then,

TV[us —u] — 0 is generally untrue, while TV[u.] = TV][u] could be easily achieved. (4.3)

If the sequence is not from a mollification design, then generally only the lower semi-continuity could
be guaranteed [24]. This observation is very useful for numerically computing the total variation
norm using ordinary schemes such as finite differences (also see later sections).

For BV functions with smooth level sets, such as the indicators of smooth domains, one could

further investigate high order geometric measures. For instance, the m-th order total curvature is

defined by
Ky[u] = / K™ |Du :/ (/ nmds> dX, (4.4)
Q R U=\

where ds denotes the arc length element along the level lines, and k = V - (Vu/|Vu|). For instance,
Euler’s elastica measure Eu] = aTV[u] + bK»[u] has numerous applications in image analysis ever
since Mumford first introduced it into computer vision [38, 43, 34, 56, 5, 18, 54]. Theoretical
difficulties on analyzing high order geometric measures still remain open (see for example, the
remarkable work by the De Giorgi school Bellettini, Dal Maso, and Paolini [2]).

4.2. Binary Segmentation of Reaction-Diffusion Patterns. When one asks questions
like: what is the average radius of the spots, or the average width of the stripes, it has already been
assumed that the spots and stripes are isolated “objects” with clear-cut boundaries. The human
vision system could carry out this so called segmentation task unconsciously but effortlessly even
for complex images. Its mathematical modelling and algorithm design, however, have turned out to
be highly nontrivial, challenging, but the most fundamental in a number of fields. For example, the
celebrated Mumford-Shah segmentation model and its variations have been proven very powerful
in segmenting complicated image scenes with low textures [41, 11]. Another well known method if
David Marr’s zero-crossing theory [33].

Reaction-diffusion patterns are more regular compared with general natural images. Thus in the
current work, we adopt a simpler segmentation scheme which is directly based on binary thresholding.
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Let v2(x,y) be the binary image perceived by human vision from the matured pattern v(z,y). Then

we model v2 by

1, v>80,
U2 (ZL’, y) =
0, v<é@,,
where 6. is the critical activation level for binary thresholding. An effective threshold 6. has to
depend on the image v(z,y) itself: 6. = 6.[v].

In what follows, we take 6. to be the mean value:

0. =0.v] = ﬁ/ﬁvd&:dy = /0 Op, (6)d6.

From the statistics in the proceeding section, the histograms for typical matured stripes patterns
are almost symmetric, and the two peaks at the two ends correspond to the dark valleys and bright
peaks in v(z,y) (Figure 3.3). Thus the mean provides a natural cut-off for the boundaries. For a
typical spots pattern v, the mean is tilted toward the dark background, and the associated binary
segmentation often produces “fatter” bright spots compared with human perception. The situation
reverses for a typical nets pattern. However, due to the well known reaction-diffusion mechanism of
short-range activation and long-range inhibition, the transition is often rapidly realized. As a result,
the mean based binary segmentation cannot be too fat nor too slim. Figure 4.1 shows two examples

of mean based binary segmentation of matured reaction-diffusion patterns.

matured spots V(x,y) matured stripes v(x, y)

L ] L)
O.o':i. 20

F1G. 4.1. Two examples of mean based binary segmentation of matured reaction-diffusion patterns.

From now on, we shall only work with the binary images vs.

4.3. Geometric Analysis of Spots and Nets. As clear from Figure 4.1, all spots are almost
circular. Thus consider the following approximate model of spots distribution. Suppose there are

totally N non-overlapping circular white spots in the binary image vo, and their radii are

r1,T9, "+ ,TN, subject to certain unknown random distribution. (4.5)
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Definition [Average Radius].  The average radius 7 of a binary spots pattern v, is defined to be:

_ rn+re+---+ry
= = . 4.6
r=(0) = (46)
By the definition, it appears natural to first compute all the individual radii and then have
them averaged. Such computation is generally very costly due to the individual segmentation,
identification, and information extraction. Part of the beauty of the geometric measure approach is
that it carries out all the tasks at once.
THEOREM 4.1. Suppose the circular spots do not overlap in a binary image vo. Then the average
1
dius is gi by T = —— Dus|.
radius is given by T 271_N/Q| 9]
Proof. Let Dy C Q denote the disk region corresponding to the k-th circular spot with radius

rk, k =1: N. Then we must have

N
’U2(.CL',y) = ZXDk ($7y)
k=1

Since D}’s have been assumed non-overlappin,
?

N N N
/ |Dvs| = Z/ |Dxp,| = Per(Dy) =21 Y .
Q k=17 k=1 k=1

This leads to the conclusion. O

For simplicity it has been assumed that there are no incomplete spots along the boundary of
the reaction-diffusion domain 2, which is at least a very good approximation since the population
of incomplete spots is a negligible fraction. In Figure 4.1 for example, the binary image v2 contains
only two incomplete spots along the boundary, out of a total about 100 ones.

The main issue with Theorem 4.1 is that in reality N is unknown either. How to count the
number without getting down to the individual level? This is again made possible by suitable
geometric measures.

To start, suppose that rp, =7 + érg, k= 1: N, with
(ry =0 and o2 ={((6r)?) <« 1. 4.7

Then,

1 1 1 <
— dedy = — Y dedy = — Y 13
77_7\7/9”2 ray ka_l/QXDk Ty Nk:f’“

which is precisely the second empirical moment (r?) for the random radii (rj))_,. Since o? =

(r?) — 7%, we have

1
~ /Q vodxdy = 2 + o2
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Combined with Theorem 4.1, it gives

[rN]~! [, vodady _ 72 + o2
[2aN]-1 [, |Duvs| T

=F(1+¢?), (4.8)

where € = ¢ /7. Therefore, we have proved the following theorem.

THEOREM 4.2. Suppose the signal-to-noise ratio (SNR) e~1 = #/a > 1, then the average radius
18
2 [, vodady

T ibw] 1+ 0(2)). (4.9)

r =

Compared with Theorem 4.1, Theorem 4.2 does not require the a priori information of N, as
long as the SNR is high, or equivalently, the variation of the radii is small.
The combination of Theorem 4.1 and Eqn. (4.8) also gives a formula for N.

THEOREM 4.3. Following the assumptions of Theorem 4.2, the total number N of spots is given
by

_ [faIDwl ) 2
N = W (14 O(g?)). (4.10)

Note that the computation of the TV measure can be benefited from the discussion in the
equation line (4.3). In all the numerical examples in the current section, we always employ the heat

diffusion as the mollifier u(z,y;?):

u; = Au, (z,y) € Q; with

ou
B loq = 0, u(z,y,0) = va(z,y),

and approximate TV measure / |Dvs| by the Sobolev norm / |Vu(z,y,)|dzdy for some small
time step 7 (often several nume?ica.l steps). The computation ?)f the latter is easily achieved by
uniform finite differences.

As an example, we have applied the formulae in Theorem 4.2 and 4.3 to the binary spots pattern
vz in Figure 4.1. Our numerical results show that

A
Fzﬁ and N =103,

where the average radius has been compared with the side length A of the square domain. Thus the
average diameter of the spots is about 1/16 of A. On the other hand, out manual counting of all the
spots gives N = 107, which has even taken into account automatic splitting (by using human vision
intelligence) of seemingly merged spots pairs. Thus Theorem 4.2 and 4.3 do perform remarkably
well.
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vsp:1/33.10 side length;N _ =102.73

s

Fic. 4.2. Estimating the average radius 7 and total number N of spots for a segmented binary spots pattern by
Theorem 4.2 and 4.3. Our results are T = A/33 and N = 103 where A denotes the side length of the domain. The
time consuming manual counting as marked on top of the image gives N = 107, which has even taken into account
automatic splitting of some “merged” pairs relying on human visual intelligence (e.g., pairs 6 and 7, 46 and 47, 77
and 78, 94 and 95, and 99 and 100).

4.4. Geometric Analysis of Stripes Patterns. In this section, theory and a number of

interesting tools are developed to study important geometric features of stripes patterns.

4.4.1. Zebra curves: Definitions and properties. Recall that a C(™ diffeomorphism
¢ : U = V between two open sets in R% (or more generally, between two differential manifolds)

is a C(™) map q = ¢(p) whose inverse p = 1)(g) : V — U exists and is also C{™).

Definition [Zebra Curves]. A compact set I' C R? is said to be a C(™) zebra curve if for any
p € T, there is an open neighborhood U C R?, and a C(™ diffeomorphism ¢ : U — R?, under
which ¢(p) = (0,0) and T'NU is mapped onto either the z-axis R x 0, the half axis RT x 0, or the

standard convezr Y-junction:
Yy =R x0{ JOx R | JR"(cosb,sinf), with 0<6 < /2. (4.11)

Here Rt =[0,00) and R~ = (—0o0,0]. (See Figure 4.3.)

Explanation is needed to specifically address the notion of convex Y-junctions. First, the word
convexity refers to that the convex hull of Yy for all 0 < @ < 7/2 is the whole plane R%. It is
in this sense that any Yy with 8 € (7/2,2n) is not convex. Remarkably, visual inspection of any
generic matured stripes pattern shows that all the Y-junctions seem to be convex (see Figure 4.1 for
example). The essential difference between convex and non-convex Y-junctions is addressed in [27],

and will also be mentioned later.
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Three diffeomorphism templates for a zebra curve

© (e}

aregular point anendpoint  aconvex Y-junction

(s

-/

An example of a zebra curve

Fi1G. 4.3. Zebra curves: The three diffeomorphism templates and an example.

Secondly, the value # = 0 is permitted in the definition to include T-junctions, i.e., structures
that are diffemorphic to R x R~. T-junctions are fundamentally important in human and machine
vision [43, 28].

Finally, the notion of convexity is invariant under diffeomorphism since locally a diffeomorphism
coincides with its non-degenerate Jacobian, and convexity as a linear concept is invariant under
invertible linear transforms.

For convenience, we shall denote by I'° all the regular points on a zebra curve I' which are locally
diffeomorphic to R x 0, and I'* all the singular points on I" which are either diffeomorphic to Rt x 0
or a convex Y-junction Yjp.

We shall also assume that the diffeomorphisms involved are all at least C®), so that second
order geometric features such as curvatures could be properly defined and easily controlled.

THEOREM 4.4. Let T be a C™) compact zebra curve. Then, (a) the singular set T* is finite; and
(b) the regular set T° has finitely many connected components, each of which is C™) diffeomorphic
to R! or S'.

Proof. By definition, a singular point, whether an end point or a Y-junction, must be isolated.
If T is infinite, it must have at least one limit point ¢ in I since I' is compact. Now that q
can no longer be singular, it must be regular. But by definition, a regular point has at least one
neighborhood that contains only regular points, which leads to contradiction. This proves (a).

By definition, the regular set I'° is a 1-D C{™) submanifold in R2. According to the well known
classification theorem for 1-D connected manifolds [36], each connected component of I'° must be
diffeomorphic to either S* (in the compact case) or R' (non-compact case). Since the zebra curve
is compact, the number of components diffeomorphic to S! must be finite. To prove (b), therefore,
it suffices to show that the number of connected components diffeomorphic to R! is finite as well.
For convenience, such components are said to be open.

Let C denote any open component. It can be naturally oriented and parameterized by R!:
p =p(t),—oo0 <t<oo. Let g, € R? be one of the limit points of p (t) as t — 400, and g _ as
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t =+ —o00. They must exist and belong to I since I' is compact. Notice that g . cannot be regular
since otherwise locally near q ., T is diffeomorphic to R! x 0 in R?. Thus g . € T'*. Let [T"*| denote
the cardinality of the singular set, which is finite by (a). Then by tracking the unique unordered pair
of g ;. for each open component, one could easily show that the total number of open components
is bounded by 3 x |I'*|/2. This completes the proof. O

As a result of the endpoint-tracking technique in the proof, we also conclude that

COROLLARY 4.5. Let C' denote any open connected component of the reqular set T'°. Then its
closure in R? is diffeomorphic to either a compact interval [a,b] X 0 in R2, or the unit circle S* with
at most one corner.

In combination, the theorem and corollary imply that the total length L = |T| of a zebra curve

T is well defined and must be finite.

Definition [Zebra Stripes Pattern]. Let T be any compact zebra curve and d > 0 a positive
parameter. Then the open neighborhood

(T)g ={p : dist(p,I) < g} (4.12)

is call a zebra stripes pattern, and d its width. For convenience, I' is called the skeleton of the pattern.

The main challenge is the inverse problem: for a given open domain which is the zebra stripes
pattern built upon some unknown zebra skeleton curve, how to efficiently compute its width d, and
the length L?

4.4.2. Geometric measures for width, length, and singular sets. As for spots patterns,
we start with simple stripe models for developing and analyzing proper geometric measures.

Let C' denote a C(™ simple curve in R?, parametrized by its arc-length: r = 7 (s) with
0 < s < L, where L is the total length. As a special case of zebra curves, let (C')4 denote its open
neighborhood defined by (4.12). Assume that the aspect ratio L/d > 1, which is tantamount to
letting d — 0 since L will be fixed in the analysis.

Let T and N denote the unit tangent and normal of C (see Figure 4.4). Define a map from
D =[0,L] x R to R? by:

(s,t) = p(s,t) =7 (s) + tN(s). (4.13)

By the implicit function theorem, there exists some b > 0, so that p(s,t) is a diffeomorphism
from D, = [0, L] x (—b/2,b/2) to its image in R2. For any d < b, (C|d) = p (D) is called a tubular
neighborhood of C in differential topology [36]. Due to its explicit formula, the tubular neighborhood
(C|d) is much easier to work with than (C)4 defined in (4.12). On the other hand, as d — 0, they
coincide with each other (except at the two ends). The definition of (C')4, however, is more general
since it belongs to general metric spaces.
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F1G. 4.4. The tubular neighborhood (C|d) of a simple curve segment C.

Let C(t) denote the parametric curve p (s,t),0 < s < L for any fixed ¢. Then
p(s,t) =T(s) —tsT(s) = (1 — k)T (s),
where k is the curvature. Thus the length |C(¢)| is give by
L L
|C(®)] :/ |1 —tk|ds leading to | |C(t)| — L| < |t|/ |k(s)|ds = |t| K, (4.14)
0 0

where K, denotes the total absolute curvature of C.
Now consider the total area of the tubular neighborhood (C|d). Notice that

Py(s,t) =N(s) and p(s,t) = (1—tk)T(s).

Therefore,

L pd/2 L rd/2 /2
area(C|d) = / / |p; X pg| dsdt = / / |1 —tk| dsdt = / |C(¢)| dt. (4.15)
0 J—d/2 0 J—d/2 —a/2
Combined with Eqn. (4.14), it leads to
K, ,
|area(C|d) — Ld| < Td . (4.16)
Also notice that both Eqn. (4.14) and (4.15) can be made more precise if we assume that

— < min ——, the lower bound of all curvature radii along C.
2 = 0<s<L |k(s)]

Then |tk(s)| < 1 for any t € [—d/2,d/2], and

|C(#)|=L—tK and area(C|d)= Ld, (4.17)

where K = [, k(s)ds is the total signed curvature of C.
Finally, let v2(p) = v2(z,y) denote the (binary) indicator function of the tubular domain (C|d),

whose closure is assumed to be inside a reaction-diffusion domain Q C R2. Then by Eqn. (4.14)

/Q | Duy| = ‘C (g) ‘ + ‘C (‘%l) ‘ +2d =2L+ O(d(K, + 2)). (4.18)
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Here the line segments p (0,[—d/2,d/2]) and p (L,[—d/2,d/2]) at the two ends have been taken into
account. On the other hand, by Eqn. (4.16),

/ vadzdy = area(C|d) = Ld + O(K,d?). (4.19)
Q

In combination, we have proven the following theorem.

THEOREM 4.6. Suppose the aspect ratio € = d/L <K 1, and K, denote the total absolute
curvature of C. Then
g 2 [ vadady

fQ |D1)2|

where the order symbol O(e) is independent of the given curve C and d.

(1+O0(E(Ka+2) and L= %/ \Dus| (14 0(e(Ka +2)),  (4.20)

The above analysis has been established only for a single piece of simple curve C. Note that
the number 2 inside the order symbol O(e) is caused by the two endpoints of C. For a a general
zebra curve I' and its associated zebra stripes pattern (I')4 defined in the proceeding section, let vo
denote the (binary) indicator function of (T")4 in the interior of a reaction-diffusion domain Q. By
applying Theorem 4.6 to each one of the connected components predicted by Theorem 4.4, and by

the special counting effect (as explained later) of the functional total absolute curvature K,

Ka:Ka(d):/ |/c||D112|:/ ‘v. [VW H|DU2|, (4.21)
Q Q |VU2|

we could prove the following theorem for general zebra stripes patterns.
THEOREM 4.7. Let T be a compact zebra curve with total length L, and (T')4 its associated zebra
stripes pattern with e = d/L < 1. Then

2 [, vadad
a= Mo (k) and 1= l/ Dus| (1 + O(K.,)), (4.22)
fQ |D’U2| 2 Q

This theorem has been applied to a real stripes pattern generated from the reaction-diffusion
equation (see Figure 4.5). Let A denote the side length of the reaction-diffusion domain. Then our
numerical results show that d = A/30 and L = 154, both implying that travelling horizontally (or
vertically), one shall encounter 15 black-white cycles on average. Notice that the task of estimating
the total length L is extremely difficult for human vision.

Furthermore, if the second order curvature measures are to be employed, it is even possible
to extract more detailed geometric information about a stripes pattern. This is being thoroughly
investigated in our paper [27]. Below we state one of the most interesting results.

First, divide the singular set I'* of a zebra curve I into two natural categories:
Iy ={p €T*: p is a Y-junction}
I' ={p €I'": p is an end point}.

Let z1 denote their cardinalities separately. Our goal is to develop suitable geometric measures to

compute or estimate z4.
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d=1/30.48 side length; L = 15.31 side length

Fic. 4.5. Estimating the average width d and the total length L of a matured stripes pattern by Theorem 4.7.
Our numerical results show that d = A/30 and L = 15A where A is the side length of the reaction-diffusion domasin.
Both results imply that travelling horizontally (or vertically), one should encounter 15 black-white cycles on average.

Notice that estimating the total length L is an extremely challenging task even for human vision.

Similar to the definition of the total absolute curvature in (4.21), define the functional total

signed curvature of a zebra stripes patter (I')4 to be
K =K(d) = / V. [&] |Dus|, (4.23)
Q U2

where v (z,y) denote the indicator function of (T')4 in .

Definition [Linear Zebra Curves]. A zebra curve I is said to be linear if any connected compo-

nent of its regular set I'° is a line segment.

Then one of the main results in [27] states that
THEOREM 4.8. LetT be a C™ (m > 2) compact zebra curve inside a reaction-diffusion domain
Q. Then

zy — z— = lim K(d) (4.24)
d—0

zy + z— < lim K,(d), (4.25)
d—0

and the second equality holds if and only if T is o linear zebra curve.

In particular, as in spline theory, define

+
ot = |z| + 2

5 for any real scalar z € R,

and the two half-sided total curvatures,

Ki:Ki(d):/mi|Dv2| with £ =V - [V” ]
Q |Vua|

34



Then Theorem 4.8 leads to the simple formulae:
d—0

and the two equalities hold when T is a linear zebra curve.
Theorem 4.8 and formulae in (4.26) allow to effectively and robustly compute or estimate the
singular points. They depend on the crucial assumption of convexity in the definition of Y-junctions

(see the previous section). We refer to [27] for more details.

5. Conclusion. In the current paper, statistical as well as geometric theories and frameworks
have been developed to identify, classify, and characterize generic patterns arising from reaction-
diffusion systems.

In the vast reaction-diffusion literature that permeates biology, chemistry, and computer sim-
ulations, the current paper presents the first most systematic work in the efforts of combining
pattern-theoretic analysis with pattern formation research. Many novel ideas and methodologies
have thus been inevitably developed at the risk of being completely wrong.

The present work once again proves, that the numerous contributions by the community of
modern image, vision, and pattern analysis, are not only applicable in the important fields of com-
puter vision, artificial intelligence, medical imaging, astronomic data analysis, or natural language
processing, but also universally powerful for various feature and pattern mining tasks in physical,

chemical, and biological simulations.
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