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ABSTRACT OF THE DISSERTATION

A Multiscale Image Representation Using
Hierarchical (BV, [?) Decompositions

by

Suzanne Nezzar
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2003

Professor Eitan Tadmor, Chair

We propose a new model for multiscale image representation using hierarchi-
cal (BV, L?) decompositions. We begin with the total variation minimization
model of Rudin-Osher-Fatemi, in which we take a given image f € L*(Q) and
decompose it into the sum u+wv, where u € BV () is the minimizer of the Rudin-
Osher-Fatemi functional and v € L*(Q) is the residual (i.e. v := f — u). This
decomposition depends on a parameter A. We propose to iterate this process for
different monotone values of A\, applying the decomposition to the residual of the
previous step. In this manner, we obtain a multiscale representation of f. We
will discuss some theoretical properties of this method as well as show numerical
results of this new decomposition applied to both synthetic and real images.

We have also applied our method to color (vector-valued) images, blurred images
and images with multiplicative noise. Finally, we will show that this decomposi-
tion can also be applied to other variational models by showing some results for

a multiscale Mumford-Shah /Ambrosio-Tortorelli image segmentation model.

Xiv



CHAPTER 1

Introduction

The field of image processing is full of many interesting tasks. We see its applica-
tion in many different fields such as medical imaging, astronomy, computer graph-
ics, and security identification. Among the tasks performed in image processing
are image restoration, decomposition, segmentation and compression. Our re-
search has been focused on image decomposition and image restoration of noisy
and/or blurry images.

There are many different approaches to work in image processing. There are
Fourier and Wavelet transformations which have inspired the JPEG image repre-
sentation. These methods have also led us to new methods such as Ridgelets and
Curvelets. Also, there are statistical methods used for texture analysis. Another
approach to image processing is Variational PDE methods. In our research we
use this last method. There are many advantages to using PDEs. First, since we
consider the image as a continuous function, we are allowed to use concepts such
as curvature, gradients, diffusion and level sets. Also, it has been shown that

these methods give sharp edges between homogeneous regions.

Images could be realized as general L?-objects, f € L?, representing the
grayscale of the observed image. Likewise, color images are typically realized in
terms of vector-valued L?-RGB scale functions, f = (fi, fo, f3) € L% In practice,

the more notable features of images could be identified within a proper subclass



of all L? objects. Most notable are the edges of an image, which are known to
be well quantified within the smaller subclass of functions of Bounded Variation
(BV). Quantifying the precise L? subclasses for these different features is still the
subject of current research. We argue that a large class of notable images form
an ‘intermediate’ space between the larger L?(R?) and the smaller BV (R?). The
standard tool for studying such ‘intermediate’ spaces is interpolation. To this
end, one starts with a pair of given spaces, Y C X, and forms a scale of interme-
diate spaces, (X,Y)y,0 € [0,1], ranging from (X,Y)p_o = X to (X,Y)p—1 =Y,

expressed in terms of the appropriate K-functional
K(£N) = K(EAXY) = inf {[lollx+ Alully -

In this dissertation, the K-functional is replaced by the closely related J-functional

of the form
. —— 3 p
B XX Y) = inf Mol + [lull |-

The functional Jy(f,\) measures how well an L? object can be approximated
by its BV features, Jo(f,A) ~ A? as A 1 co. The classical argument addresses
this question of convergence rate in terms of the smoothness properties of f. In
modern theory the roles are reversed: one defines the scale of smoothness spaces,
(L?, BV )y in terms of the behavior of J(f,\). Here we will introduce a new
multiscale decomposition whose properties quantify images in intermediate space

which we denote as ‘multiscale (BV, L?) decompositions’.

This dissertation has been organized into four chapters. We begin by review-
ing some existing image restoration methods in this chapter. In chapter 2, we
focus our attention on one of these methods, namely, the Rudin-Osher-Fatemi to-
tal variation method, and discuss some of its properties. In the following chapter,

we propose our multiscale image representation using hierarchical decompositions



and state some of its properties. We further discuss the numerical implementation

of this method and present some results in the last chapter.

1.1 Some Variational PDE Based Image Restoration Mod-

els

We consider a given observed image f :  — R as a function in L?(Q), where
Q) is an open and bounded subset of R?({ is generally a rectangle in R?). The
image f is comprised of some combination of homogeneous regions, contours and
oscillatory patterns such as noise or texture. This scalar-valued (or gray-scale)
image f is represented in the following manner: at each pixel (z,y), the value
f(z,y) represents the intensity of the light at that pixel. In general, gray-scale

images take values between 0-black and 255-white.

1.1.1 Rudin-Osher-Fatemi Total Variation Minimization

Assume f is in the following form:
f=Ku+w,

where u is the true image, K is a linear operator representing the blur, and v is
additive noise of zero mean. In order to recover u, we need to have some informa-
tion about K and v. One successful model for the recovery of u was proposed by
Rudin-Osher-Fatemi in [21]. The objective is to minimize the following functional

with respect to u:

F(u) = /\/(f — Ku)*dzdy +/ \Vu|dzdy,
Q Q
where A > 0 acts as a scaling parameter, [,(f — Ku)?dzdy is a fidelity term, and

Jo, IVu|dzdy is a regularizing term called the total variation of u. If u € BV (12),



then this energy is finite and has a minimizer in this space (see [10], [1], or [26]

for the general case).

1.1.2 Vese-Osher Modification of Rudin-Osher-Fatemi Minimization

This method in [27] is an improvement in texture capturing of the Rudin-Osher-
Fatemi method. This model decomposes the image, f, into a ‘cartoon’ represen-
tation, u, and texture represented by divg. The goal is to minimize the following

functional in terms of u, g, and ¢

o\
Fy(u,91,92) = [ [Vuldsdye [ 17~ (utdivg) dodysa( [ (/o7 +93) " dudy)”,
Q Q Q

where § = (g1, 92), for g1,92 € L®(2), A\, u > 0 are tuning parameters and p —
oo. The first term insures that u € BV (£2), the second term gives us f ~ u+divg,
while the third term is a penalty on the norm in W=1?(Q) of divg. (Note that
here K = 1.)

1.1.3 Osher-Solé-Vese Modification of Rudin-Osher-Fatemi Minimiza-

tion

This is another model, in [18], which improves the texture capturing of the Rudin-
Osher-Fatemi model. In this method, the original image, f, is also decomposed
into a ‘cartoon’ representation, u, and texture v, where v := f — u. This method

minimizes the following functional with respect to u
F(u) = / |\Vu|dzdy + )\/ VAT f — u)Pdzdy
= lullavie) + A S — ullf-1(q)-

(Note that K = I in this case as well.)



1.1.4 Mumford-Shah Model
The Mumford-Shah functional from [17] is defined by

FMS(y, S) = / (@|Vul? + Bu — f)?)dzdy + HL(S),

oS

where u is a piecewise smooth optimal approximation of f, f is the given image,
S is the set of contours of u, H! is the Hausdorff 1-dimensional measure in R?,
and o, 8 > 0 are fixed positive parameters. We also note that 2 C R? is open
and bounded, S varies in the class of closed subsets of 2 and u varies in C'(Q\9).
The first term imposes the condition that u be smooth over Q\S, the second term
is the fidelity term, and the last term establishes that the length of the contours
is minimal.
By setting S = 5, the jump set of u, and minimizing over u, we have existence
of minimizers in a weak formulation of this problem (see [12] and [3]). The

functional associated with the weak formulation is:

GM5 (u) :/ (| Vul|? + Blu — f*)dzdy +H'(S.),
Q\Sy,

where f € L*°(Q2) and each minimizer of this functional belongs to the space of

piecewise C' functions.

1.1.5 Ambrosio-Tortorelli Approximation

Ambrosio and Tortorelli proposed two approximations to the Mumford-Shah

model in [4] and [5]. We will use the simpler approximation in [5] which is

@ =1 ¢ Blu— fdady.

AT . 2 2 2
G (u,w)—/ﬂ[p|Vw| +a(u? Vaft + 2

Here the function w represents the contours of u. They show that if (u,,w,)

minimizes G;‘T, then (passing to subsequences) u, is an approximation of u, a



minimizer of GM%, and w, goes to 1, as p — 0, in the L*(Q2)-topology (i.e.
Jo lup — ul*dzdy — 0 and [, |w, — 1]?dzdy — 0 as p — 0). Here w,, is different
from 1 (and less than one) only in a small neighborhood of S,,, which shrinks as

p— 0.

By looking at the Euler-Lagrange equations associated with the minimizers of
these variational methods, we find something interesting. Since the functionals
are convex, they lead us to nonlinear PDEs, P(u, Vu, V?u) = 0. The solution
of these PDEs can be sought as the steady-state solution to the time-dependent
parabolic equation u; = P(u, Vu, V?u). This brings us to the following recon-
struction models which are formulated directly in terms of a time-dependent

equation.

1.1.6 Perona-Malik Equation

In [19], Perona-Malik suggest using a nonlinear smoothing method defined by

ou ) 9
5% div(c(|Vul*)Vu),

with u(0,z,y) = f(z,y) and where c is defined as one of the following:

1
c(s) = 15 s/k or ¢(s) = e~*/k,

and k is a constant. The main idea of this method is to smooth the homogeneous

regions while enhancing the boundaries.

1.1.7 Catté-Lions-Morel-Coll Equation

In [9], Catté et al. suggest using a slightly different equation than Perona-Malik,

but the idea is the same: smooth homogeneous regions and enhance the bound-



ary. Their method introduces some regularization via convolution with the Gaus-

sian kernel, G, in order to obtain a well-posed problem, and is as follows, for

u(0,z,y) = f(z,y),

Z_Z‘ = div(c(|VG, * ul*)Vu),

where GG, is defined as

1 _m2+y2
e 22

Go(z,y) =

2no?
1.1.8 Alvarez-Guichard-Lions-Morel Equation
This method from [2] is an affine invariant, contrast invariant operator

ou ., Vu 1
o T |VU|d1V(|vu|) ’

ot

with u(0,z,y) = f(z,y). It is equivalent to curve evolution of all level lines of u
and is a multiscale analysis of the data f. In this model, ¢ is a scale parameter
such that for larger ¢, only larger objects of u(t, z,y) are kept (i.e. t is related to

the size of objects).

All of the models listed in this chapter extract from a given image, f, a single
image u which depends on a scale parameter which is related with the size of the
objects kept in u. Now if we write f = u + v, then by keeping only u, we lose
all of the valuable details in v. In this dissertation, we propose a new multiscale
image decomposition method which considers a sequence of increasing scales in
order to recover the information lost in v. (We would like to note that the size

of the scaling parameter is inversely proportional to the size of the objects.)



CHAPTER 2

The Rudin-Osher-Fatemi Total Variation

Decomposition

2.1 Introduction

We will begin by restating the Rudin-Osher-Fatemi method from [21]. Let f, the

observed image, be defined as
f=Ku+w,

where w is the true image, K is a linear operator representing the blur, and v is
additive noise of zero mean. We assume some knowledge about the type of blur,
K and type of noise, v. This method is to minimize the following functional with
respect to u:

inf F(u)= )\/(f - Ku)dedy—i-/ |Vul|dzdy, (2.1)
Q Q

u€BV(Q)

where A > 0 acts as a scaling parameter. The fidelity term, [,(f — Ku)?dzdy,
insures that we minimize the noise and the regularizing term, fQ |Vuldzdy, is
needed to make the problem well-posed. In minimizing F'(u), we will show that

we obtain the decomposition f = Ku+ v, where u € BV (Q) and Ku,v € L*(Q).



2.2 The Space BV (Q)

Definition 2.2.1 We define the space of functions of bounded variation, BV (),

BV(Q) = {u c Ll(Q);/Q|vu| < oo},

where Vu 1is the distributional gradient of u, and
/ |Vu| = sup { / u div gdzdy; @ € Cy (4 R?), 3| < 1}.
Q @ Q

Property 2.2.1 BV(Q) is a Banach space endowed with the norm ||u||py ) =
lulli@) + [, Vul. However, we will not use this norm, but instead follow the

notation of Meyer ([15]), and use ||ullpvo) = [, |Vul.

Given this notation for |lu|gy(q), we can rewrite the Rudin-Osher-Fatemi
functional as

F(u) = AlvlZ2) + llullave)-

2.3 Existence and Uniqueness of the Rudin-Osher-Fatemi

Minimizer

We will follow the existence and uniqueness proofs of a generalized form of (2.1)

in [26] and [10].

Let © be an open, bounded, and connected subset of R?, with Lipschitz

boundary 0€2. We use standard notation for the Sobolev and Lebesgue spaces



WhH2(Q) and L*(Q2). For the theoretical study of the problem, we consider A = 1
for simplicity.
To ensure the existence and the uniqueness of the minimizer for (2.1) in BV (2),

we make the following assumptions on K:

H1. K : L*(Q2) — L?*(f) is a linear and continuous operator.

H3. K is injective.

We will also use the following result:

Result 2.3.1 For a sequence {uy,}, if [||un||L1(Q)+fQ |Vun|dxdy} < M, Vn, then
there exists u € BV (Q2) and a subsequence of {u,} (still denoted {u,}) such that

U, — u strongly in L' (), Vu, — Vu weakly in the sense of measures and

/\Vu|d:cdy < liminf/ \Vu,|dzdy.
Q n—oo 0

2.3.1 Existence

Note: In this proof we use M, a strictly positive constant which can be different

from line to line.

Let{u},>1 be a minimizing sequence for (2.1). Then u, € BV () and we
have

/ |Vu,|dzdy < M, Vn > 1.
Q

We now want to prove that | [, undedy| < M, Vn > 1.
Let

_ fnun

o and v, = U, — Wy,.

10



Then [, v, =0 and Vv, = Vu,. Hence, [, |Vv,|dzdy < M. Using the Poincaré-

Wirtinger inequality, we obtain
||1)n||L2(Q) < M.
We also have

M

v

| Kup, — f“%?(n) = || Kvn + Kwy, — f“%?(n)
(1 Kvn = fllz2) — |1 Kwall22())?
> ||Kwy| 20 (| Kwal|22() — 2| Kvn — fl|z2(02))

> [ Kwnll2 @l Kwnll @) = 21K - lonllz2@) + 1]l z2@)]-

Y4

Let z, = || Kwy||12(q) and a, = || K| - [|vn||c2@) + || fll£2(0)- Then
Tn(Tn — 2a,) < M, with 0 < a, < || K| - M + || f|lz2() = M', Vn > 1.

Hence, we obtain

0<z,<an++a2+M<M",
which implies

| KxallL2 )

<M" Vn>1,
€

1K wall 120y = ‘/undxdy‘ :
Q

and thanks to assumption H2, we obtain that | [, undzdy| is uniformly bounded.

Again, by the Poincaré-Wirtinger inequality, we have

) _ Jo tn

Un

)SC/ |Vuy,|dedy < C - M.
0

Q| llz2@
Finally, we obtain
Jotn _ Joun Jo tn /
e, ot . < M
|unllL2(0) )“ Q] + Q| 2@ = ‘u 1| 2 N ‘ nu B

Therefore, u,, is bounded in L?(Q2) and, in particular, in L*(Q2). Then u, is also

bounded in BV (2). From Result (2.3.1) and the fact that Ku, converges weakly

11



to Ku in L*(Q) from assumption H1 we have

/(Ku— f)?dzdy < lim inf/(Kun — f)?dxdy
0 n—oo O

and

/|Vu| §liminf/ |V,
0 n—o0 0

F(u) < liminf F'(u,,)

n—oo

that is to say

and v is a minimum of F'.

2.3.2 Uniqueness

Let u, w € BV (Q2) be two solutions of the minimization problem (2.1).
We will first show that Ku = Kw. If not (i.e. Ku # Kw), then

1 1 1 1

because F' is the sum of two convex functions with independent variables, Ku
and Vu, the first one being strictly convex. However, this inequality cannot be
true if v and w are minimizers of F'. Then, Ku = Kw.

Now, since K is injective, we have u = w.

2.4 Some Mathematical Properties of the Rudin-Osher-
Fatemi Model

From now on, we will assume that there is no blurring of u, or K = I, unless

otherwise stated. First we will look at two properties from [6].

Property 2.4.1 The L? norm of uy is bounded by a constant independent of \.

12



Proof Since uy € BV(Q) is the unique minimizer of (2.1), we have for all

w € BV(Q),

)\/(f—u,\)zda:dy-i-/ |Vuy|dzdy < )\/(f—w)zdxdy—i-/ |Vw|dzdy.
Q Q Q Q

By letting w = 0, we obtain

[ = wpdsdy + [ [Vusldady < [ fasdy,
Q Q Q

which implies that
/ (f = ur)*dzdy < / f*dxdy,
Q Q

from which we can deduce, using the Schwarz inequality, that

/uidxdy < 4/f2dxdy,
Q Q

and hence the L? norm of uy is bounded by a constant independent of \.

Property 2.4.2 For every A, we have [, uxdzdy = [, fdzdy.

Proof The Euler-Lagrange equation for the Rudin-Osher-Fatemi method is
w=f+ % div (24) in 0
ou _
s = 0 on 0Q.
By integrating the first equation over €2, we obtain

Vu

1 .
/Qud:vdy—/ﬂfdxdy—{—ﬁ ; div (‘vu|)dxdy.

Using Green’s formula and the boundary condition, we have the following

Vu 1 Ou
iv [ — = [ — 2 460) =
/de (|Vu\)d$dy /BQWU\ ON (92) =0,

which concludes the proof.
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Now we discuss some more properties of this model, shown by Meyer in [15].
In this section, we are working on the domain = R%2. We would like to note
that if the image is initially defined only on a rectangle, that it can be extended

to all of R? by reflection.

Definition 2.4.1 Let G denote the Banach space consisting of all generalized

functions f(z,y) which can be written as

0 0
f(xay) = 3_xgl($’y) + a_ng(xay)a 91,92 € LOO(R2) (22)

The norm ||f||« of f in G is defined as the lower bound of all L* norms of the

functions |§| where § = (g1,92), |3(z,y)| = \/91(x,y)? + g2(x, y)? and where the

infimum is computed over all decompositions (2.2) of f.

Lemma 2.4.1 If g € L*>(R?), then

\/[f(w,y)g(x,y)dxdylféHfHBngHp

Proof For proving this observation, we first observe that it is true if f € Wb,
Then we replace f by convolutions with an approximation to the identity and
obtain a sequence f; in W"! such that f; — f as j — oco. Since g € L*(R?), we

can pass to the weak limit.

Theorem 2.4.1 If || f||« > %, then the Rudin-Osher-Fatemi decomposition f =

u + v is characterized by the following two conditions:

1 1
Joll- = 5 and [ u(e.g)oe.y)dady = 5 fullav. (2.3

If|flls < 55, then u =0 and v = f.

14



Proof The proof of this theorem uses three steps. First, since u minimizes

the functional F'(u), we have
lu+ ehllgy + Allv = €hl|z2 > lullsy + Al[v]|7:- (2.4)
We can see that ||u + eh||py < ||u|lsv + |€|||h]| BV, so we now have
lelllBllBy + Allv — ehllzo > Allv][Z-
By expanding the squared L? norm, we find that
by < Ielo Loy + S A3
€ v TaYy =~ |€ 2/\ BV 9 L2-

If we let ¢ — 0, then we obtain

1
hdxdy| < —||h
| [ ehdady] < 5y,

which implies that the norm of v in the dual space of W! does not exceed 1/2\
(i.e. ||v]l« < 1/2X).

The second step of the proof consists of taking h = u in (2.4). If € > 0, then we
obtain [ wvudzdy < 55||lullpy, but if € < 0, we get [vudzdy > Z||u||pvy. When

combined, we conclude that

1
/vudmdy = ﬁ”U”BV- (2.5)

Now, ||v]|« < 1/2X (from step one) implies that ||v||, = 1/2\ otherwise equality
couldn’t be obtained in (2.5).
Our last step is to assume that (2.3) is true and show that f = u + v is the

Rudin-Osher-Fatemi decomposition. We write

|lu + eh||py + Allv — €h||7. > 2)\/(u+eh)vdmdy+)\||v||%z

—2/\6/vhd:rdy + Ae’||h]|32
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= 2A/uvdxdy+)\||v||%g+)\62||h||%2

= lullav + AllvllZ> + A€[AlIZ

v

lull v + AllvllZ-

The first inequality follows from ||v||. = 1/2A and Lemma (2.4.1).

Example 2.4.1 Let D be a disc centered at the origin and with radius R. We
now apply the Rudin-Osher-Fatemi method to f = axp where a is a positive
constant. Let us first assume AR > 1/a. If we are working on the entire domain

R2, then the Rudin-Osher-Fatemi decomposition of f = axp is given by
f=u+v, u=(a— (AR) Yxbp,

V= (/\R)_1XD-

If \R < 1/a, Theorem (2.4.1) implies u = 0, v = f which means that f is too
small to be treated as an object.

We would also like to note that if we are on a bounded set ) instead, we have

B o 1 TR
f=u+v, u=(a—(AR)")xp + Mrea(@\D) Xo\D>
. 1 B TR
v=AR)"xp Nrea(Q\D) XN

We refer the reader to [22], [23] and [24] for more examples of the Rudin-

Osher-Fatemi minimization.

Theorem 2.4.2 A regularized solution 4 to the ill-posed inverse problem in (2.1)

f=Ku+wv
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15 characterized by the following two properties

1K flle <@V =a=0, v=f
1K flle > 20) 71 = [[K70l, = (2A) " and
(@, K*0) = (2A) ||l

Proof If u is the unique minimizer of
F(u) = |lullsv + Al — Kull7.,

and v = f — Ku, then
F(u) < F(u+ €h),

for e € R. So, we have

lullsv + AllvllZ: < llu+ ehllsy + Allo — eKhl[72

VAN

||lu + €h|| gy + /\||v||%2 + A%||Kh||2: — 2)e{v, Kh)

< llullav + [elllbllay + AlvliZ: + A K RlIZ: — 2Xe(v, Kh).

Hence, we have

2Xe(v, Kh) < |e|||h|lsv + Ae’||Kh]|7:. (2.6)
Now, we just follow the proof of Theorem (2.4.1) to obtain
2X(v, Kh) < ||h||Bv

. This says that 2)\||K*9||. < 1. Now, we go back to (2.6) and let h = u and
again follow the proof of Theorem (2.4.1) and obtain 2eA(v, Ku) < €||u|| and then
our desired result, (2)\)||K*9], = 1.
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CHAPTER 3

Multiscale Image Representation Using

Hierarchical (BV, L?) Decompositions

3.1 Introduction

The total variation minimization model of Rudin-Osher-Fatemi is very good at
denoising images, while at the same time preserving edges. However, if f contains
small textured patterns, they end up in the residual, v, along with the noise. This
means that u will be a ‘cartoon’ representation of f. If A is a large parameter,
then u is close to f and not much change has been applied to f. However, if A
is a small parameter, then the regularizing term is stronger and the image u will
contain only the large details of f. Sometimes the parameter A can be estimated
if some statistical information about the noise is known as in [21] or [10].

We propose a hierarchical decomposition of f. By extracting more than one u

component from f, we obtain improved results and useful decompositions.

3.2 Description of the Hierarchical (BV,L?) Decomposi-

tion

Given f € L*(Q) and a small starting parameter A > 0, consider the decom-

position of f provided by the total variation minimization (Rudin-Osher-Fatemi

18



model) in the following sense. Let uy, be the unique minimizer of

inf F\(u) = )\/(f—u)dedy—l—/ |Vu|dzdy, (3.1)
Q Q

u€BV(Q)

or in other words, the unique minimizer of

inf F = 2
(W) = Al + lullavio,

and denote vy := f — uy. Then we have f = uy + v,, with uy € BV (Q2) and
Uy € L2(Q)
Formally minimizing F) with respect to u yields the following associated Euler-

Lagrange equation:

u)\:f—l—%div(v’“)inﬁ

Vuy|
%L]@ =0 on 0.
The main idea is as follows: substitute f by v, and A by 2\ in (3.1) and repeat
the process.

This means that in the second iteration, we want to solve

. _ N2
ueg%/f(m Foy(u) = 2)\/9(1),\ u) dxdy+/Q\Vu|d:rdy.

This will, in turn, give us a new unique minimizer, usy, and hence a new residual,

Ugy 1= Uy — Usgy. SiNCE Uy = Ugy + Vg), We have

J = ux+vx=ux+ ugx + vox.
Now let A\, = 2%X (so \g = A). After k steps, we have vy, , and we want to
minimize

inf F = —u)? . 2
f B =N /Q (vn, . — u)2dady + /Q Vudzdy (3.2)
Let uy, be the unique minimizer of (3.2), and vy, := vy,_, — uy,, the residual.

By putting all the pieces together, we obtain the following hierarchical decompo-

sition of f:
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= ux + vy
= Up, + Uy T Uy

= U), + Uy, + U, + (DY

= Upg T UN T UN T Uy T UN T U,

or vy, = f— (ur, +un, +un, + - +uy,_, +uy,) (the residual at the (k+1)-st
step).

This procedure defines a multiscale image decomposition of f.

Images could be realized as general L?-objects, f € L?, representing the
grayscale of the observed image. Likewise, color images are typically realized in
terms of vector-valued L?-RGB scale functions, f = (fi, fo, f3) € L% In practice,
the more notable features of images could be identified within a proper subclass
of all L? objects. Most notable are the edges of an image, which are known to
be well quantified within the smaller subclass of functions of Bounded Variation
(BV). Quantifying the precise L? subclasses for these different features is still the
subject of current research. We argue that a large class of notable images form
an ‘intermediate’ space between the larger L?(R?) and the smaller BV (R?). The
standard tool for studying such ‘intermediate’ spaces is interpolation. To this
end, one starts with a pair of given spaces, Y C X, and forms a scale of interme-
diate spaces, (X,Y )y, 0 € [0, 1], ranging from (X,Y)p—o = X to (X,Y)p=1 =Y,

expressed in terms of the appropriate K-functional

K(£,0) = K AXY) = inf {Jlollx + Allully -
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In this dissertation, the K-functional is replaced by the closely related J-functional

of the form
. — 3 p
BEXXY) = it Aol + ully |-

The functional Jy(f, \) measures how well an L? object can be approximated
by its BV features, Jo(f,\) ~ A as A 1+ oo. The classical argument addresses
this question of convergence rate in terms of the smoothness properties of f. In
modern theory the roles are reversed: one defines the scale of smoothness spaces,
(L?, BV)y in terms of the behavior of J(f,\). Here we will introduce a new
multiscale decomposition whose properties quantify images in intermediate space

which we denote as ‘multiscale (BV, L?) decompositions’.

Remark 3.2.1 By setting A\, = 2%\, we obtain a decomposition using dyadic

scales.

Remark 3.2.2 We can also obtain a finer or coarser decomposition by changing
the factor of 2 in the expression of the scaling parameter N\, = 25)\g. Let A\ =
ok, for o > 1 instead. For a finer decomposition, let 1 < o < 2 and for a
coarser decomposition, let o > 2. This will also hold for all of the multiscale

decomposition methods to follow.

3.2.1 Some Mathematical Properties of Our Scheme

Theorem 3.2.1 If || f||« > ﬁ, then Vk > 0, we have ||vy, ||« > ﬁ

Proof From Theorem (2.4.1), we have

1 S 1
) VAR) VI

[oxll« =
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since Agy1 = 2.
This means that if we can make the first decomposition, we can make all the

proceeding ones.

Theorem 3.2.2 Let ||f]|. > ﬁ If we obtain a multiscale decomposition of

f=uy +up +---4uy_, +uy + v, then

lvall« = 0 as k — oo.

Proof This follows directly from Theorem (2.4.1), since

1
1oxelle = Hlvatnolle = Sy

Now by letting k& — oo, we obtain the desired result.

Corollary 3.2.1 Under the same conditions as Theorem (3.2.2), we have

k
||f—2u>\i||* — 0 as k — oo.

1=0

Proof Since vy, = f — Zf:o uy,, it follows from Theorem (3.2.2).

Theorem 3.2.3 Let (h,g) = f hg denote the inner product of h and g. For any
h € BV,

k
(B, f =D ua)| = 0, as k — oo,
i=0
and hence, limy_,, vy, L BV.

Proof From Lemma (2.4.1),
k k
[y f =Y ) < NBllsvllf = ulls,
i=0 i=0

but ||f — Zf:o uy ||« = 0 as k — oo from Corollary (3.2.1) and h € BV, so the

results follows.
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Corollary 3.2.2 For any h € BV,

k
|(h, ) — Z(h, uy)| =0, as k — oo,

=0
or in other words

k
Z(h, uy,) — (h, f) as k — oc.

=0

Proof Just substitute

k k

(B f =) un) = (h f) = (h,un,)

1=0 =0

in Theorem (3.2.3) and the proof is done.

Theorem 3.2.4 The L?-norm of both sequences, {uy,} and {vy,}, is uniformly

bounded.

Proof First, we will look at the sequence {vy,}. Let u,,,, be the unique

minimizer of [ |Vu|+ Aey1 [(vy, — ). Then if u = 0,

e llBy + Aesillon, — uneallze = Nung By + Aeslloae., 72

< A floagllZe-

From this we obtain
loaeeallZe < lloaglIZ--

Thus {||vs, |32} is a decreasing sequence which is bounded below by 0, and hence
it is uniformly bounded.

As for the sequence {u,, }, using Property (2.4.1), we have

[uniys lIZe < 4lloac Mz,

and so it is also uniformly bounded.
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Example 3.2.1 Let D be a disc centered atl the origin and with radius R. We
now apply the multiscale decomposition algorithm to f = axp where o is a posi-
tive constant. Let us assume AR > 1/a. If we are working on the entire domain

R2, then the multiscale decomposition of f = axp is given by
J = Fun + s, + Uy oy,
k
Zu)\i = (a' - ()‘kR)_l)XD’
i=0
Uy = (/\kR)_IXD-
Proof From Property (2.4.1), we have
uy, = (a— (MNR)™H)xp and
U)\o = ()\OR)_1XD-
In the next step, we decompose v,, instead of f, so by Property (2.4.1) again,
Uy, = ((AoR)_l — (/\IR)_I)XD and
Uy, = (AlR)_IXD.
If we continue this process for (k — 1) more steps, we obtain

uy, = ((M_1R)™'— (MR)™")xp and

UV = (/\kR)_IXD-

k
Now we have f =" uy, + vy, where

k
Y ux = (a—(MR))xp, and
=0

vy, = (MR)'xb-

We can clearly see that the multiscale decomposition obtains a better approx-

imation of f than the Rudin-Osher-Fatemi method in this example. If we look
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ahead a little bit to the next chapter, we can see an example of this property in

figure (4.11), in which we plot the images of Z;:o uy; and vy, for i =0,...,4.

3.3 Description of the Hierarchical (BV,L?) Decomposi-

tion for Vector-Valued Images

We would now like to extend this technique from scalar-valued, gray-scale images,
to vector-valued, color images. In particular, we would like to use the RGB
representation for color images, so f = (fi1, fo, f3) = (fr, fa, f5) € L2(2)3. Note
that even though we will only discuss the color image case, this discussion could
be made in any dimension.

We will now extend the total variation minimization to vector-valued functions.
First, we say that a vector-valued function @ = (uy,us, uz) € L'(Q)? is of bounded

variation if the quantity [, |Vi|dzdy defined by

3
[ Vitdady =sup {3~ [ s div gidudy; 5 € O ), (2, )] < 1}
Q g ‘i Ja

is finite, and we will again denote it by ||| gy (n). The new minimization model

can be written as

inf F,\(ﬁ) = / \/|VU1|2 + |VU2‘2 + |Vu3|2da:dy
Q

@=(u1,u2,u3)EBV(Q)
3
+ A [ i idody
i=1 79

This can also be expressed as

3
inf () = [[@lavie) + A llui — filli ).

t=(u1,u2,u3)EBV(Q) i=1
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Formally minimizing the energy above with respect to u;, uy and ug gives the

following system of coupled Euler-Lagrange equations

1 . Vu1
= —d
Uy f1+2)\ iv QVU‘)’

. 1 . V’UQ

Uo = f2+ﬁdlv (‘V’IZ‘)’
1 . VU3

uz = f3+ﬁd1v (|Vﬁ|)

The hierarchical decomposition is constructed as in the previous case, so again

—

fzu)\0+u>\1 T Uy e UN L, U T U,

3.4 Description of the Hierarchical (BV, L?) Decomposi-

tion for Blurred Scalar-Valued Images

Given f € L*(Q), a small starting parameter A > 0, and the blurring kernel
K, consider the decomposition of f provided by the total variation minimization

model. Let uy, be the unique minimizer of

inf Fy(u) = )\/(f—Ku)2d:rdy+/ |Vu|dzdy, (3.3)
Q Q

u€BV ()

or equivalently, the unique minimizer of

inf  Fy(u) = M Ff = Kull2,
,onf Mu) = Af = Kullzzq) + [lullsve),

Let vy := f — Kuy, so f = Kuy + vy, with uy € BV(Q) and Kuy, vy € L?(Q).
Formally minimizing F) with respect to u yields the following associated Euler-

Lagrange equation:

K*Kuy = K*f + % div (122)) in ©

%‘—ﬁ:OonaQ.
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Again, we construct the hierarchical decomposition as before, and so

[ = Kuy, + Kuy, + Kuy, + -+ Kuy, | + Kuy, +v,

= K(u)\o T UN T UN, T Uy, —{—’U,)\k) + V-

3.5 Description of the Hierarchical (BV, L?) Decomposi-

tion for Images with Multiplicative Noise

Let f € L*(Q2), where f = u - v, u is the true image and v is multiplicative noise
with mean 1.
Consider the decomposition of f provided by the Rudin-Osher model in [20]. Let

uy, be the unique minimizer of

inf Fy(u) = )\/(i — I)dedy—i-/ |Vu|dzdy, (3.4)
Q 0

u€BV(Q) U

or equivalently, the unique minimizer of

. ¥ ,
e BV(Q) (1) )‘“u [z2(0) + llullBv(a)

Set vy := L. Now, f = uy - vy, with uy € BV(Q) and vy € L*(Q).

Again, here A > 0 is a scaling parameter. Formally minimizing F) with respect

to u yields the following associated Euler-Lagrange equation:

(£-1) (- %) = aw (Fy) e

Again, we construct the hierarchical decomposition as before, except we replace
sums with products and subtraction with division.

Thus, f = uxy - Uxn, - Uxy =« " Une_, - Un, ~ VUn,-
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3.6 Multiscale Ambrosio-Tortorelli Approximation of the

Mumford-Shah Functional

In this section, we would like to show that we are able to create a multiscale
version of other existing variational PDE models. We have applied the same
technique to the Ambrosio-Tortorelli approximation to the Mumford-Shah model
as the Rudin-Osher-Fatemi model. Now recall that the Mumford-Shah functional
is defined by
FMS(y, ) = / (| Vul + Bu— £)2)ddy + HL(S),
o\s

where f is the given image, u is a piecewise smooth optimal approximation of f, S
is the set of contours of u, H' is the Hausdorff 1-dimensional measure in R?, and
a, B > 0 are fixed positive parameters. Also, remember the Ambrosio-Tortorelli
functional

_1\2
G (uw) = [ 9l + awVuf? + L0 gl sy, (39)

where w represents the contours of u. The Euler-Lagrange equations associated
with (3.5) are
Bu — aV(w?Vu) = 8f

_ 1+4ap|Vu|? _ 1 _
Aw + 4p? (’U) 1—|—4ap|Vu|2) =0.

Definition 3.6.1 The space SBV (Q) is defined as follows
SBV () = {u € BV(9) : Du = Vudzdy + (u* —u")H!(J.) },

where H' is the Hausdorff 1-dimensional measure in R?, J, is the set of jumps

of u and (ut —u~ ) is the magnitude of the jump.
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3.6.1 Description of the Hierarchical (SBV, L?) Decomposition

Given f € L*(9), a small starting parameter 3 > 0, a fixed « and small fixed p,
consider the decomposition of f provided by the Ambrosio-Tortorelli minimiza-
tion in the following sense. Let pair, (ug, wg), be a minimizer of

. _ 2 2 o (w—1)° _rp2
inf, Go(uw,w) = [ (pIVul + o Vul + 5 4 plu = fPdady, (36

and denote vg := f — ug. Then we have f = ug + vg, with ug, wg € H*(Q2) and
vg € L*(Q).

Formally minimizing G's with respect to v and w yields the following associated
Euler-Lagrange equations:

Bug — oV (wzVug) = Bf

1+4ap|Vug|?

1 —
—Awg + v (wg — 1+4ap|Vum2) =0.

We construct the hierarchical decomposition in the same manner as before, so
f =g, +ug, +ug, +---+ug,_, +ug, +vg,. Now, what about the wg,’s?” The

combination of all of the wg,’s gives the set of edges of the image w.

Remark 3.6.1 For this multiscale decompostion we can also obtain a finer or
coarser decomposition by changing the scaling parameter 3 by something smaller
than 2 for a finer decomposition and something greater than 2 for a coarser de-

composition.
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CHAPTER 4

Numerical Experiments

In this chapter, we give the details of the numerical scheme and algorithm used
for the decompositions. We also present some results of the decompositions ap-
plied to both synthetic and real images. In each case, we discretize (using finite
differences) the Euler-Lagrange equation associated with that minimization to

solve every step of the hierarchical decomposition.

4.1 Numerical Discretization of the Hierarchical Decom-

position of Gray-Scale Images Without Blurring

From [21], at each step of our scheme, we would like to find the unique minimizer,
uy, of

. _ 2
ueg%/fm) Fx(u) = Af = ullzeo) + llullavioy,

where f is the original image and A > 0 is a scaling parameter. The associated

Euler-Lagrange equation of the Rudin-Osher-Fatemi model is

ur = f + & div (éﬁi\) in O
du
S = 0on o012.

For the discretization of the Rudin-Osher-Fatemi model, we follow [26] and [7].
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First, we remove the singularity when |Vu,| = 0, by approximating F'(u) by
F.(u), where

F.(u) = /\/Q(f — u)?dzdy + /Q V€ + |Vu|?dzdy.

Then, the Euler-Lagrange equation minimizing F(u) is:

1 . Vuy .
uy = [+ —div|]——=—=) in O, 4.1
A f X v( ﬁ-ﬁ-\VU,\P) (4.1)
% = 0 on 09. (4.2)

Assume for simplicity Q = (0,1)?, A > 0 and let z; = ih, y; = jh, h = 1/M, for

0 <1,7 < M, be the discrete points. We recall the following notations:

wi; & u(xi,yj),
fij = f(ziy5),
ANifij = F(fixrg — fig)
Aifiy = E(figer — fig),
Asfiy = (firrg — fimr)/2, and
Agfig = (figer— fig-1)/2-

The discrete form of the Euler-Lagrange equation is:

1 1 JANR TR
o N Aw [ + Z,]]
Ui Jig + 2\h T \/62 + (_Ai“iu’)? + (—Agm'j)2 "
h h
NEIPY 1 Aiuz‘,j}

1 Uitl,j = Uiy
2MR2 [ Wit1,j—Uij\2 Uipj 41 —Uij—1Y2
€ + () + ()
1 Uij — Ui-1,j

 2\R2 \/62+(U¢,j*’@;i71,j)2+(uifl,j+12*hui71,jfl)2

= fig+
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1 Uigj+1 — Uiy
+2)\h2 w1 s s s
\/€2+(Uz+1,]2h’m—1,] )2+(’u@,3+}l Uz,J)Q
1

ula] — ui,jfl

2\h? \/62 + (Ui+1,j—12*hUi—1,j—1)2 + (Ui,j_;;i,jfl)Q’
We use a fixed point Gauss-Seidel iteration method for the above equation and

so we now introduce the following linearized equation:

n _ ,ntl
R 1 Uipr,; — Uij
%, %] 2Ah2 9 uT."+1 —yT . 9 un._'_lfun. 1\9
i41,j iy iy ij—
Ve - (g 4 (M i)
TL—|—1_ n
. Ui — Uiy
2\h? wt ar
2 i,J i—1,7 \2 i—1,j+1" %i—1,7—1\2
€ +( h ) +( 2h )
n _ ntl
Lt Uijp1 = Ui
2/\h2 ul o, o—ul ul.  —ul,
2 i+1,j  Ti—1,5\2 i,j+1 4,5 \2
e+ ( 2h )? + ()
TL—|—1_ n
1 Uij — Uij1

o 2)\h2 un . —un . u? . —um. ’
2 itl,j—1 "i—1,j—1)2 4, 1,j—1)\2
€+ ( o7 )2+ (=)

Introducing the notations:

1
g - u” sy u? . L —um. ?
\/62 + ( z+1,]h i, )2 + ( z,]+12h z,]—l)z
1
@2 = ul . —ul 14 ul 1 .+1—fu,7.‘ 1.1 ’
62+(w hl 1])2+(l »J th 2] )2
1
G = 9 u7."'+1 —uh 1,5 \2 uT.‘._l_lfu?". 2’
itl,j  Ci—1,j i,J i3
Ve (Bt g (Ran )
1
C4 - 9 u"."+1. lfun 1,j-1\92 u . —uh. 1 2’
it1,5— i—1,j— G
Ve b (et 4 (Mt
and solving for u}'}!, we obtain:
n+l __ 1 )
1,] - 1
1 + N2 (Cl =+ Co + C3 + 04)
1
n n n n
[fz',j + INBZ (Cluz‘+1,j + CoUy_q; + C3U; 5 T+ C4ui,j—1)]'
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We let u); = f; ;. Then, we note that if m; < f;; < my, for any 0 < 4,5 < M,

we have m; < uit; < My, for any n > 0. We use the above equation for u?;rl for

all points (z;,y;) such that 1 < ¢,j < M — 1 (i.e. inside the boundary). The

question is how do we deal with the boundary, 027 Since we have Neumann

boundary conditions, our first approach was to set

( uldt =t fori=0,...,M
ugtt =uit for j=0,..., M
uZ“ﬁ:uzJ]{,}_l fori=0,...,M

\ u%}zu?j_llﬁj forj=0,....M

If we look at the residual in figure (4.4), we see that this approach resulted in

good results everywhere except the boundary. In order to fix this problem we
decided to extend the boundaries of f by adding rows of points to all sides of (2
(we chose to add 10 rows to each side in our experiments, however it is possible
to use less). Extension of €2 was achieved using reflection along the boundary as
shown in figure (4.1). This new approach solved our boundary problem as we

can see from the residual in figure (4.5).

Another issue that comes with numerical discretization is how can we implement
the algorithm such that we see the least amount of grid effect? We attempted
to address this issue by rotating the starting point of the algorithm between the
four corners of the grid and by alternating whether we run the algorithm row by

row or column by column. We illustrate this in figure (4.2).

Since this is a fixed point iteration, it is important to decide how many iterations

we need to make until we converge to uy. One way to do this is to iterate until
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Reflected Portion

New Boundary,

a d Boundary

Figure 4.1: We use reflection to extend the boundary of €.

)

&

i
@)

Figure 4.2: This shows the rotation of the starting point of the algorithm in order

to minimize grid effect.
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|u"*t — u|| < TOL, where TOL is some given tolerance. However, in practice,
we usually use a large fixed number of iterations.

So far, we have specified how we implement the algorithm for a fixed A. In order
to make this a multiscale decomposition, we re-iterate this process, each time

updating the value of f and A in the following way:

Jnew = Ux = foid — U

Anew = 2Xold
In other words, we take the residual of the previous step and apply the Rudin-
Osher-Fatemi minimization using a larger (here doubled) scaling parameter, \.
Let \; = 2)\, for all i. The ending result after k steps is a multiscale represen-

tation of f, defined by
J=ung Fun, +un, + - Fuy_ U

Now the question arises: how many steps, k, should we do? We have considered

a couple of different stopping criteria. The first one is to stop when ||v,,_, ||« <

L
2F X"

TOL. We know that this will eventually be achieved because ||vy, .|« =
Another is ||uy, — ua,_,|| < TOL. However, it is not clear that this will ever be
realized for a general image and any given tolerance. It is also possible to look
at ||vy,|lL2 < TOL. But, again we don’t have a guarantee this will ever occur.

We would now like to look further at some of our results. If we look at figure
(4.6), it is clear that as we recover more texture, we also start to recover the noise
which is of the same scale as that texture. This leads to a balancing act between
these two elements: how much texture are you willing to give up to eliminate
more noise. Also, in order to obtain better results in the case of noisy initial
data, it might be better to use a finer decomposition of f (see Remark (3.2.2)).

In figure (4.7), we see how our multiscale decomposition adds more and more

detail at each stage of the algorithm. Now, if we look at figures (4.8) and (4.9),
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we are able to see the different pieces originally discarded with the v term that
come back into our final result.

One last thing we would like to point out here is how the smaller values of the
scaling factor, A, correspond to the larger objects in the image. In the last row
of figure (4.10), we see how all of the objects of smaller scales are only brought
into v when we consider larger values for A, whereas, the larger objects appear in
the first few terms, or when A is smaller, so in fact we are creating a separation

of scales.

4.1.1 Localization of the Algorithm

We address one last question: can we localize this algorithm such that we do
more work in a region with more texture and less in a homogeneous region? We
looked to the ideas in [11]. Let f be a function defined on €, a rectangle in
R?. They propose a way to split  into regions depending on how much texture
they have. They calculate either || f|| gy or ||f — ave(f)||z> (where ave(f) is the
average of f on the region) on the region they are considering. Let Qy = Q. If
|f — ave(f)|lL2(q0) < TOL (or || f|lBv(n, < TOL), they stop since the region
is homogeneous enough. Otherwise, they split the current region, {2y into four
equal rectangles, €2¢;, for + = 1, 2, 3,4, and the process continues on each of these
smaller regions. In figures (4.12) and (4.13), we can see both of their criteria in
action. The first image is our starting image, f. The second and fourth rows
correspond to a representation (for three different values for the tolerance, where
e = TOL) of how many times the region had to be looked at by ||f — ave(f)||zz
and || f|| sy respectively, to obtain the desired tolerance. In this case, the regions
with darker colors were worked on less than the regions with lighter colors. We

can see that they give us what we would expect: the areas with more texture
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or variation have the lighter colors, whereas the more homogeneous regions have
the darker colors. (The values represent the number of times that region was
visited.) In the third row we show a way to approximate the image f for the
case when we have decomposed §2 using || f — ave(f)||r2. For each of the resulting
small rectangles, we approximate f by its average on that small rectangle.

We have chosen to implement this idea into our algorithm. We have tried two
different criteria to determine whether or not to work further on a given region.
The first was to look at the BV -norm of the residual, ||v)||gy. The other value we
considered was F'(uy). It is important to note that we used images that were of
the size 2¢ x 2¢ in our experiments to make it easier to implement (if the image’s
size is not of this form, reflection can be used to extend the image).

Let’s say we are looking at F'(uy), then our algorithm works as follows: first find
ux. If F(uy) < TOL, we stop, otherwise we split the region it into four equal
regions as shown in figure (4.3). In other words, if our current image is of size
32x32 plus an extended boundary of 5 rows on each side, making it 42x42, then
the four equal pieces would be of size 16x16 plus an extended of boundary of 5

rows on each side, making it 26x26.

The algorithm will now create four different images. Note that there is over-
lapping between these new images. The reasons for the overlapping are first, as
we saw earlier, we need to expand the boundaries in order to obtain good re-
sults there, and also to ensure that when we put the pieces back together again,
there won’t be any obvious lines where the split was made. (Note that when
the pieces are put back together, we ignore the expanded boundaries.) Now,
for each of these regions, we first check to see if F\(uy) < TOL. If it is, we
stop. If not, we continue our multiscale decomposition, so we find wuo, which

minimizes F'(u) = 2\||vx — u||z2 + ||u||sv (in the smaller region). Now we check
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Extended Boundary

1 2
3 4
7

Original Boundary

Figure 4.3: Method of splitting the domain into four equal regions. The shaded

region represents the first image.

F(ug)) < TOL and continue the splitting process if necessary. It is clear that
this process can not go on forever because the size of f is finite. In our algorithm,
the smallest region we work on is 2 x 2, and so if we have not reached the de-
sired tolerance by that point, we just continue with our original implementation
(without decomposing 2). We see that in this manner we obtain a method which
is essentially localized.

In figure (4.15), we use ||vx||py, and in figure(4.14), we consider F'(uy). The first
column represents the old algorithm (before we introduced spacial decomposi-
tion) for different values for the tolerance (where ¢ = TOL). The middle column
represents the way in which Q was decomposed (again lighter means more tex-
ture), whereas the last column contains the new u. The resulting image u is
therefore comprised of some regions which may need as much as 10 terms, while
others only need 3. What is remarkable is how close this approximation is to
the result of our original method, even with a fairly large tolerance. What is

also interesting to note is that both approaches for the decomposition of € yield
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similar results.

4.2 Numerical Discretization of the Hierarchical Decom-

position of Color Images

Let us recall the system of Euler-Lagrange equations associated with

3
inf F(4) = ||a + A 1 Ji 22
ﬁz(ul,uzl,Ll:s)EBV(Q) )\(U) ||u||BV(Q) ;”u f“L (@)
are
Vu,
up = fi+ ﬁ div (\Vﬁ\)
Vus
Uy = f2+— div (\Vu\>
\V4
uz = f3+ d1v (\V—UEO

The numerical implementation of this case is exactly the same as in the previous

case except that we solve three coupled equations simultaneously. Ultimately,
the only things that change are the value of the ¢;’s. If @ = (uq, ug, us3), then for

ug, we have the following

1
Cpl = ,
o 2 3 AU \2 DGy \2
@ 4 3oy () 4 (Fpay)
1
Cpo = ,
- 2 3 Aful i 1,i\92 Agumz 1,512
@+ Y0, ((Fmayr 4 (P y)
. 1
Ck3 = ) s Au%” ) Ayu%” ) ;
6+Zm:1(( h )2+ ( h ))
1
Cka =

A?J u”

A n-i j— m;i .
N N ()
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Solving for uZ“ZL ;-, we obtain:
kataj 1 + ﬁ(ck:l + Ck:2 + Ck:3 + Ck::4)

f~-+—1 (ChaUpiin ; + CroUf 1 5+ CeaUl iy + Challp 1)
kii,j I\h2 k:1Wgi41,5 k:2Wgi—1,5 k:3Uk:, 541 k4% -1/ |-

If we look to figures (4.17) and (4.16), we see yet again how well the decomposition

works, even for natural images.

4.3 Numerical Discretization of the Hierarchical Decom-

position of Gray-Scale Images With Blurring

We follow the method of discretization in [26] and [7]. We implement our algo-
rithm for this type of image in essentially the same way as for the case without
noise. The only difference is that we have to deal with the blurring operator K,

a Gaussian kernel. Recall that the Euler-Lagrange equation associated with

ueiBI%/f(Q) Fy(u) = A f - KUH%?(Q) + l|lullBv (@),

is

_ 1 qi0 (¥ .
K*Kuy = K*f + 55 div (W&) in ©
Quy _
5 = 0 on 0.
We will work with the case that K is a convolution-type integral operator, so in

the numerical approximations, (K, )mn=14 1S @ symmetric matrix with

d
Z Kmnzla

m,n=1

and the approximation of Ku can be defined as

d
Kui,j= E Kmnui+d/2—m,j+d/2—n-

m,n=1
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Since K is symmetric, we have K* = K and thus, K*Ku = KKwu, which is
approximated by

i d
KKu;; = E E Kin KriUivd +mjt+d—t-n-

my,n=1rt=1

Using the same notation as before for ¢;, we have

QAR K* Kulft + (eo(uf)) + ca(uf;) + es(ufy) + ca(ully))uii?!

%]

= Cl(u’ ) ;L-:—llj + 62( ) ZH—llj + 63( ) ?;——I{l + 64( ) ?;Hl + 2/\h2Kf1,j

Figure (4.18) illustrates how the decomposition works for blurred images. We
can see that it has become sharper, but it will still never recover the lost texture

due to the blurring.

4.4 Numerical Discretization of the Multiplicative Hier-
archical Decomposition
The associated Euler-Lagrange equation for
inf  Fy(w) = ML~ 1) + lullovio
weBV(Q) u )

is

f2 f 1 .. Vu
— 3 + 2 2/\d1V( EERm |Vu|2>’ (4.3)

that we solve by a dynamic scheme (z,y,t) — u(z,y,t):

8u_f2_f 1 ( Vu

9w + ﬁd v \/ﬁ>’ u(z,y,0) = f(z,y). (4.4)

Let ul; = u(w;, y;, nAt).
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The discretization that we have used is a linearized semi-implicit scheme:

1 n
vy~ Th o Sy
At (uiy)?  (ugy)?

1 n n n n

toypa (Gt + Ui + Caufjp + ;)

1

—W(Cl + co +c3 + 04)'“?,;_1’
or, solving again for uy}",

1 12 fii
ntl ( )'[U"-JrAt e — At
" 1+ 2,\A—ht2(01 + o+ c3+cq) v (u;)® (ul;)”

t
F oz (CLliv + C2Uinyj + Calij + Catiiy) |-

Now, because we are dividing through by u, we need to make sure we don’t divide

by zero. One way to do that is to add some positive constant to f, and then at

the end, subtract that constant from the final result.

In this section, we have applied our method to the image f in figure (4.19). We

can see that just as in the case with additive noise, we must pay a price for the

recovered texture, namely the return of some noise. As in the case with additive

noise, using a finer decomposition might give improved results (see Remark 3.2.2).

4.5 Numerical Discretization of the Hierarchical Decom-

position of the Ambrosio-Tortorelli Approximation to

the Mumford-Shah Model

Our algorithm implements the Ambrosio-Tortorelli model

w—1)2
G (ww) = [ 19+ aw Wl + L) + glu— g Pldsay
Q
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which has the following Euler-Lagrange equations
Bu — aV(w?Vu) = 8f

1+4ap\Vu\ _ 1 _
—Aw + (w 1—|—4ap|Vu|2) =0.

Discretizing the Euler-Lagrange equations, we obtain

Yo .
Ai(w?.ﬂ) A?}_’(w.?.ﬁ)
Blij = Puij —« b — b
i,j — 1,J h h
(ABui j+08u; ;)
1+4ap 2] 072,
1Az Az y — E— 1
2 AT AL w5+ A N w; ;= 1p2 (wi; 1+4QP(A8w,j+Ag“i,z‘))'
e

Using the notation

C, = ﬁ+ (2w +w], +w )

Uinq 7 — Ui 1 7\ 2 Uit — Ui 1\2 1602
¢, = 1+4ap¢(—z+w2h ) (M thm) 100

we have
Uij = [ﬁfzd ( zy(ul'i'lﬂ + ula]‘H) + wz 1,jWi-1,5 + wzg 1 Wi j— 1)i|
Wij = [1 + T (wz+1,J T Wi, + Wijp1 + Wi 1)]

In order to minimize grid effect we alternate the above formulation with the

following

¢, = B+h2(2w +wz+1]+w11+1)

N Wi i1 — Ui i 1\2 1602
Cy = 1+4a,0\/<_ Z+1,J2h i 1,;) +( Z=J+12h i 1.) + hg ,

and
Uij = ¢y [5fm ( (uz 15+ Uig-1) + wz—|—1 Uit T Wi ]+1um+1)}
Wij =& [1 + ¥ (wz—l—l,] + wi—1,; + Wi 41+ wi,j—l)]-
This was obtained by substituting A, for A_ (and vice-versa) in the discretiza-
tion of the first Euler-Lagrange equation for this minimization problem. In figures
(4.20) and (4.21), we show how well this method works. We can clearly see that
we converge to the desired image as well as obtaining a function which represents

the contours of u.

43



4.6 Conclusion

In conclusion, we have proposed and implemented a new multiscale image repre-
sentation method based on hierarchical decompositions. We have shown that by
extracting information from the previously discarded residuals of existing meth-
ods, we are able to obtain better decompositions. Finally, we have included some

examples to illustrate our multiscale decomposition.
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z Ou)\z z OUAZ

z Ou)\z ’L Ou)\z
Uy, 120

Figure 4.4: Decomposition of an initial image of a fingerprint with the original

boundary conditions for 5 steps. Parameters: A\ = .01, and )\, = 2F ).
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z Ou)\z z OUAZ

z Ou)\z ’L Ou)\z
Uy, 120

Figure 4.5: Decomposition of an initial image of a fingerprint with the improved

boundary conditions for 5 steps. Parameters: \g = .01, and A\, = 2%\
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5 6 7
Zi:o U Zz’:O U Zi:O U

Z?:O u’\i Z?:O u)\i UAQ + 120

Figure 4.6: Decomposition of a noisy image of a fingerprint for 10 steps. Param-

eters: Ao = .0001, and X\, = 2% )\,



Z?:O Ux; Z?:() Uy Uy, + 120

Figure 4.7: Decomposition of an initial image of a woman with improved bound-

ary conditions for 10 steps. Parameters: Ao = .005, and )\, = 2¥),

48



Uy, + 120

U, + 120

(OW + 120

Upg + 120 Uny + 120

Figure 4.8: Representation of each uy,, for 0 < k£ < 10 . Parameters: Ay = .005,
and A\, = 2F),



Uy, + 120 Ups + 120 n, + 120

s + 120 Urg 4 120 A, + 120

Urg + 120 Uro 4 120

Figure 4.9: Representation of each vy, for 0 < k£ < 10. Parameters: Ay = .005,
and A, = 2k ),
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Zi:O Ux; Zi:o U

3 4 5
Zi:o Ux; Zi:o Ux; Zz‘:O Ux;

Larger Scales Smaller Scales

Figure 4.10: Decomposition of an image of a galaxy for 10 steps. Parameters:

Ao = .001, and )\ = 2%);. The bottom row represents the splitting of scales.
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Figure 4.11: As described in Example (3.2.1), given an initial image of a circle,
these represent the u,, components and the residuals, v, for 5 steps. Parameters:

Ao = .01, and \;, = 2% ).



| |kﬁ

Using ||f — ave(f)|| 1z

Approximation of f using ave(f)

Using || f||zv

e =.15x 128 x 128 € =.03 x 128 x 128 € =.003 x 128 x 128

Figure 4.12: Decomposition of 2 by the methods described in [11] for a synthetic

image.



Using ||f — ave(f)||zz

Approximation of f Using ave(f)

Using || f||zv

e =.05 x 128 x 128 e =.01 x 128 x 128 e =.001 x 128 x 128

Figure 4.13: Decomposition of 2 by the methods described in [11] for a fingerprint

image.
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| f
9

D o U Decomposition of 2 New Approximation

Figure 4.14: Decomposition of f and €2 using F'(u,) and the new u resulting from
it, for a maximum of 10 steps. We use ¢ = 50 x 128 x 128 for all calculations.
Parameters: Row 1: Ay = .01, Row 2: Ay = .001 and Row 3: )y = .0005, where
e = 28 ).
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| f

Z?:O Uy, Decomposition of 2 New Approximation

Figure 4.15: Decomposition of f and {2 using the total variation of v, and the
new u resulting from it, for a maximum of 10 steps. We use € = 50 x 128 x 128
for all calculations. Parameters: Row 1: g = .01, Row 2: Ay = .001, and Row 3:

Ao = .0005, where )\, = 2%
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.gh

2
Zi:o U

Figure 4.16: Decomposition of a vector-valued MRI image, for 10 steps. Param-

eters: Ao = .00025, and )\, = 2F)\,
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Figure 4.17: Decomposition of a vector-valued image of flowers for 10 steps.

Parameters: Ay = .00025, and )\, = 28\,
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S0 U S U, Uxe + 100

Figure 4.18: The recovery of u from a blurred initial image using 10 steps. Pa-

rameters: \g = .1, d =5 and )\, = 10% ).



Figure 4.19: The recovery of u given an initial image of a woman with multi-
plicative noise, for 10 steps. Parameters: Ay = .02, and )\, = 2¥),. Note that by
using a finer grid (see Remark (3.2.2)), it is possible to obtain a better denoised

image.
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Figure 4.20: The sum of the u;’s using the Ambrosio-Tortorelli approximation of

the image of a woman, using 10 steps. Parameters: Sy = .25, a« = 5, p = .0002,

and S = 2* 4,

61
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e £ e

8 9
i %w)\i iz %w&

r r

Figure 4.21: The weighted sum of the w;’s using the Ambrosio-Tortorelli approx-
imation of the image of a woman, using 10 steps. Parameters: Gy = .25, a = 5,

p = .0002, and 3, = 2*3,
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