HETEROGENEOUS MULTISCALE METHODS FOR STIFF ORDINARY
DIFFERENTIAL EQUATIONS

BJORN ENGQUIST AND RICHARD TSAI

ABSTRACT. The heterogeneous multiscale methods (HMM) is a general framework for the numer-
ical approximation of multiscale problems. It is here developed for ordinary differential equations
containing different time scales. Stability and convergence results for the proposed HMM methods
are presented together with numerical tests. The analysis covers some existing methods and the new
algorithms that are based on higher order estimates of the effective force by kernels satisfying cer-
tain moment conditions and regularity properties. These new methods have superior computational
complexity compared to traditional methods for stiff problems with oscillatory solutions.

1. INTRODUCTION

We consider stiff ordinary differential equations (ODES)

d

(1.1) dif = fo(Ue,t),
whereug : RT — RY, and assume that the eigenvalt)é@ (t) of the Jacobian off satisfy the
following conditions fort > 0: 1) R&\{’ < Cy, 1< j < d, 2) there isko > 1 such thafAl’| < C,,
for1<j<ky<dandCz;< s]}\é”\ < Cy, for kg < j < d; hereCy C,,Cs, andC, are constants; 3)
ming, j, A& (€)= A2 (1)] > p > 0, j1 < ko andjz > ko.

A linear equation of this sort can be written as

d
(1.2) d—% = Ae(t)ue + (1),
where L
ETAL(L 0
aw=so( ©GY Ay )St0,

S St A andA!l' are bounded independentgflo(Al)| > & > 0, Re(o(Al)) < 0, and|dg/dt| is
bounded independent ef

We will also consider the nonlinear model systeg(t) = (X(t),y(t)) that takes the form:

ex=f'(x,y,t)
49 LTSt

wheref, andf;, are smooth functions. We caltthe slow variable of the system.

1.1. Description of methods. The numerical methods that we shall discuss in this paper are de-
vised under the HMM (Heterogeneous Multiscale Methods) framework [6]. We first present the
general structure of the proposed methods and then relate them to other existing work.

Assume that there exists an “effective” equation

(1.4) dy—fuy,
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FIGURE1.1. A basic HMM ode solver schematics.

that is derived from (1.1) as converges to 0, such that the partial derivatived @fre bounded
independent of. Our methods construct solutions to (1.4) by evaluating the right hand side of (1.4)
“on the fly” via numerical solutions to (1.1). We point out that the explicit fornf @& not usedn
the algorithm, and the precise definition for (1.4) may depend on the explicit forms of (1.1) and on
different applications.

For example, in the linear constant coefficient cases of (1.2), if

A = ( —ch i% ),a>O,ImB:0,andB;AO,

and
A =y,
then
B 000 000
f=s[ 0 0 0]st+rs[ 0 0 0 |Stet).
00y 001

In nonlinear examples, the “effective” equations may come from averaging [1][2]. In the exam-
ples discussed in this papér,has the same dimension as and its components are the strong or
weak limits of those ofi.. In more general settings, does not have to be in the same space:as

A generic HMM method is described by the scheme (macro-solver) used to solve (1J4diod
another scheme (micro-solver) used to solve (1.1) for evaluating the missing data; i.e. the effective
force f. This structure is best illustrated by Figure 1.1: the upper directed axis represents the grid
imposed by the macro-solver to hold the valuedJofand the lower axis contains the finer grids
on which the solutions of (1.1) are constructed by the micro-solver, with initial conditio($,)
determined from the grid values 0f. The downward pointing arrows symbolize the determination
of ug n(tn) fromU att,. The upward pointing arrows relate the evaluatiori & the time history of
microscale variables, »(t) and the forces, (ug n(t)), that are obtained from each micro-grid on the
bottom axes. This evaluation is accomplished through filtering, using a compactly supported kernel
K. We present the theory of kernels in Section 2.

A basic algorithm can be summarized by the following steps:

(1) Force estimation:
(@) ALT =tp, ug=U".
(b) Solve
due n
dt

= fg(Ugn,t), Ugn(th) = Uo,

fort € [tn,ta+n].
(c) Averaging:f (tn) ~ f(tn) = K * fe(Ugn).
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(2) Evolve the macro variables: computét atT =t 1 using{Uj}?:0 and{f(tj) o
(3) Repeat
As an example, a generic HMM multistep method can be arranged in the following form:

(1.5)  aU"+aU" 14+ +aU" K =H(bof(U") +b f(UT 1) + ... + b (UMK,
wheref is computed by

~

2m ) )
(16) f(U nvtn) = ;hK(tn?tJ ) fS(Sh(tnvtrJ])U n7trj1)7
J:

wheret} = t, + jh, and$"(to,t1) is the discrete solution operator defined by the micro-solver. Here,
as well as in the remaining of this paper, we is@ndh for the discrete time steps used in the
macro- and micro-grid respectively.

In the Sections 2 and 3, we will see that an HMM scheme can be analyzed systematically by
examining the evaluations of the scheme on the macroscale grid

du -

— =f(U.t).

5= U
Thelocal error of the macroscale scheme contains the local truncation error of the macro-solver
(Step 2), and the numerical and analytical errors of Step 1, i.e. the locaEe#Emacro+ EHMm,

where

Eavm = | F (U tn) — H(fe,U" 1)),
and # (f,U",t,) denote Step 1 of the algorithm. At the end of Section 3, we will show the com-
plexity of an HMM ODE solver through balancirnacro and Eqmm -

We call a method HMM-X-y, if X-method is used in step 2, y-method is used in Step 1(b).
Therefore, HMM-FE-rk4 is a method that uses forward Euler as macro-solver, and a fourth order
Runge-Kutta method for micro-solver. In Section 3, we will present a few standard HMM schemes
and discuss their stability in detail.

1.2. Generalizations. We notice from the basic algorithm above ttias approximated a, which
is the beginning time of each fine scale calculation in Step 1(b). In Section 2, we show that it is
possible to select a kernkl so thatf is approximated at timg, + ot,. This is a key feature of our
proposed algorithm. In many examples of this paper, we choose a kernel that is symmetric with
respect to the center of its support, and &ise= /2. The algorithm of [11] is similar to the case
in which the Dirac delta function is used as the averaging kernelfasdevaluated at, + n. We
remind the reader tha&t denotes the length of each evolution performed in Step 1(b).

Here, we present a more complete algorithmic description below:

(1) Force estimation:
(a) Reconstruction: a =t,, ug = RU".
(b) Solve
dug n
dt

= fe(Ugn,t), Ugn(tn) = Uo,

fort € [tn,th+n].
(c) Averaging: _ B
(i) Estimate force:f (th+ &t,) ~ f(th+Ot,) = K fg(Ugpn).
(i) CompressionU* = Q[ug ).
(2) Evolve the macro variables: compute! at T = t,, 1 using {Uj}’j‘:o,{f~(tn)}rj‘:0 and
U*, f(t,+0ot.).
(3) Repeat



(@) (b)

FIGUrRe 1.2. HMM ode solver schematics.

Notice that Step 1(a) and Step 1(c) are changed a bit from the previous section. In this paper,
the reconstruction operat® will be taken to be the identity operator; i.&RU" = U", and the
compressio®[Ug n| = Ug n(th + 3t, ). In [32], we apply the HMM ODE methods to a class of specific
problems for whiclRis no longer the identity operator.

There is a benefit in evaluatirgat the center of each microscopic evaluation; it makes it possible
to use a symmetric kernel that typically yield more accurate approximations to the averages. In
many problems, such as the ones involving Hamiltonian systems, it is possible to evolve the given
microscopic equation backward in time. In Step 1(b), one can instead abain [ty —n/2,t, +
n/2] and computef atT =t,. Figure 1.2 illustrates the structure of two such schemes.

In the rest of this paper, we will refer to the Steps of the algorithms described in this subsection.

1.3. Related work. A detailed review of numerical methods for stiff problems can be found in the
books of Wanner et al [13, 14], and in a review paper [29].

There are essentially two types of stiff problems for which the solutions vary onttime scale
()\é” = 0(e1)): one is dissipative with rapid transients ()Fé’é < 0) and the other is oscillatory in
nature (Raé” = 0). There are two standard approaches to such problems — numerical approxi-
mations and analytic techniques. Analytical techniques, such as perturbation and homogenization
methods, typically require extensive algebraic manipulations and suffer from a limited applicability.
Our focus will be on numerical approximation methods to which the main challenges come from
the cost associated with maintaining the accuracy and stability of the approximation schemes for a
time interval independent @&f In the following, we first briefly review the common methods related
to each type of problem and compare their computational complexities to that of HMM methods.
Finally, we comment on some other approaches that are not easily categorized.

Problems in the first class (I&*?&al> < 0) include, for example, chemical reactions systems. Im-
plicit methods, such as BDF (backward difference formula) and IRK (implicit Runge-Kutta), are
among the conventional choice of numerical solutions. There are also special explicit methods with
variable step sizes that are designed to optimize the computation for special types of problems. In
[21], Lebedev and Finogenov proposed an iterative method with variable time steps for dissipative
systems whose eigenvalues cannot be separated into disjoint groups of different scales. Similar
methods can also be found in, e.g. [4], and recently in [11] by Gear and Kevrekidis for stiff dissipa-
tive systems whose eigenvalues are well separated into two groups. The latter is called the projective
integrator method, and has been a source of inspiration for part of our present work.

Many problems in atmospheric science [17], molecular dynamics, biology, celestial mechanics,
and circuit simulations fall into the oscillatory class. The methods developed in this paper offer
solutions to the oscillatory problems as well as the dissipative ones.
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We first notice that structurally, our proposed algorithms share similarities to the multi-revolutionary
methods [10, 12, 24], or the quasi-envelope method [28]. In these meth@isstimated by fol-
lowing the oscillations for a few periods. However, these methods are not adequate for problems
with unknown periodicity of oscillations that consist of more than one frequency. We shall see in
this paper that the proposed methods do not require precise information of the periodicities of oscil-
lations, but nevertheless give accurate estimation of the effective force. This comes from our time
averaging approach with smooth kernels.

The idea of performing averaging of the forces or the solutions is closely related to some per-
turbation techniques, see e.g. [1][2]. Computationally, averaging approaches appeared in many
places, e.g. in [34][27] and [25, 26], and recently in [9] and [22]. We present a averaging theory
that includes the known moment conditions and some additional “stiffness reducing” properties of
the kernels that result in efficient computations.

The complexity of explicit methods such as the Runge-Kutta or Leapfrog methods require step
size of ordele for stability. Hence computing solution of (1.1) to the final tiferequires at least
ordere~! operations. Implicit methods such as IRK or BDF can achieve optimal complexity for stiff
dissipative problems since th@rder step sizes are only required at transients. However, when these
methods are applied to oscillatory problems, typically convergence reqpiieed) time steps.

As for the HMM methods, the gain in computational complexity emerges when the cost of eval-
uating f (i.e. the total time duration for each micro-evolution at the lower axes in Figures 1.1) is
bounded above bge~® for somea < 1. In this paper, we develop a theory for which kernels
should be used in the the evaluationfofind how long and how accurate each microscale evolution
should be for a given class of equations, so that the proposed methods become more computation-
ally efficient and flexible than the other conventional ones. We study the stability, convergence
and complexity of our algorithms. Typically, the computational complexity for an HMM scheme is
O(eYH~1) wherey < 1 andH is the step size for the macroscale varidble

The HMM technique can also be related to the operator splitting schemes used in meteorology [3]
or the mollified impulse scheme for Hamiltonian dynamics [9]. Some might even find resemblance
to the multirate methods, e.g. [10] and [22]. However, in these methods, the stiffness that comes
from the large eigenvalues are still resolved in time intervals independentaatl thus their com-
putational complexity is still formallyo(e~1). We point out, however, that some of these methods
could be adopted as micro-solvers under our proposed methods in appropriate contexts.

Recently, Iserles [15] analyzed the accumulation of global error and showed that a class of “mod-
ified Magnus methods” permits larger time steps and exhibits good long term behavior for a class of
linear highly oscillatory systems. There are also methods that prepare the initial data such that the
effect of the stiffness will not appear in the solutions. Kreiss wrote a series of papers on stiff ODE
systems, see [18][19][20]. These result can be summarized by the “bounded derivative principle”.
However, in many common situations, initial values are given and the bounded derivative principle
cannot be applied.

In the context of solving systems with the unique invariant manifold, the HMM schemes prepare
the initial data naturally as a passive calculation to the effective force estimation. It is also clear that
the method of [11] can also be interpreted as a scheme that benefits from the bounded derivative
principle by by following the transients to project onto the slow manifold .

Finally, for certain class of singularly perturbed systems, hybrid analytic/numerical methods
[30, 31] and [33] have been proposed using related techniques. In these methods, an asymptotic
expansion in the orders @fis generated so that each coefficient is the sum of a slowly varying
function and a oscillating one.

We point out that our averaging approach is not directly applicable to stochastic equations. In-
stead, multiple realizations might be used to speed up the convergence. We refer the readers to the
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work of [8][23] and [7]. There is also a related paper on the analysis of heterogeneous multiscale
method for ODE by E[5]. We should also point out here that one can generalize the HMM construct
to systems with more than one scale. However, we will restrict our attention to systems with two
scales in this paper.

The rest of this paper is structured as follows. In Section 2, we describe the framework of our
proposed methods, including the theory related to using compactly supported kernels for effective
force estimation. In Section 3, we start with a stability analysis of the simplest HMM ODE schemes
for stiff dissipative and oscillatory problems. This is followed by a more detailed exposition of
two major types of higher order variants of the simple HMM ODE schemes, namely, the ones that
are built from Runge-Kutta methods and those from linear multistep methods. Section 4 contains
numerical results of some model problems. These numerical results confirm the theoretical results
that we obtained in Sections 2 and 3. Finally, in the last section, we summarize this paper and also
discuss some additional aspects of our methods.

2. APPROXIMATION OF EFFECTIVE FORCE

2.1. Estimation of the effective force. After Step 1(b) L » is a known function, and so we simplify
our notation on the forces in this section by writifigt) instead offg (Ug n(t),1).

In our formulation, we need to estimate the effective force locally at a point using the microscale
data (Step 1(b)-(d)). Motivated by the analytic averaging techniques, see e.g. [1][2], we hypothesize
that the effective force of a system of interest can be defined by

ft) = lim {Iim ;/fs fg(r)dr].

5—0|e—0
We assume thaft is slowly varying in the sense that
dr
[t

for some constarnt independent of. Our goal in this section to show that time filtering using a
kernelK!™, defined below, witm = n(e) — 0 ase — 0 converges td:

f(t) <Cforo<p<s

(2.2) KE D fe = K9 (f+ge(t)) — f ase — 0.

In many situationsfe or ge assumes special forms suchfa@) = f¢(t,t/€) that are periodic in

the second variable. For example,
d [

diLtL: = fs(uﬁat) = g}\uﬁ—i_(p(t)?

has solution
. t
() = € Mot [ e Mgy,
0

The forcefg(t) = fe(u,t) = ig)\uer(p(t) is of the formfg(t,t/€). In this case, we define

= [ fesds

and

() = glt. o) = fe— T10).

In this part of the paper, we show (2.1) in the cagesanishes exponentially or oscillates at fre-
quencies proportional to 2.
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We will use KP4 to denote the kernel space discussed in this paper. KP4(1) if K € C¢(R)

with supgK) =1, and
/K(t)trdt: {1’ r=0
R 0, 1<r<np.

Furthermore, we will us&, (t) to denote the scaling d:

1 .t
Ky(t) := =K(=).
(V)= 5KE)
For convenience, we will also us€™? to denote a function ifKP9(l) . We useK € KP4([-1,0])

if t* =0 in Step 1 of the algorithm described in the previous section,kardKP4([—1, 1]) if
ot* =n/2.

In the following proofs, we assume that sulp = [—1,1]. However, it is clear that the proofs
are also valid for the other case.

Notation2.1 We use the notatiofi (t) for thes" order integral off from 0 with a constant that is
specified from case to case:

ot / oY (y)dy+Co

Also, we will usef(®(t) to denoted®f /dtS. In particular,f%(t) = O (t) = f(t).
The following well known results show that with suitable kern&lg f approxmatef well.

Lemma 2.2. The following are well known results.
(1) Forany fe W*P(R), K € K%,

(2.2) Ky # f(t) — f(t)] < Cnm@XPstL),
(2) Letge C(R), then for any Ke KP4, £ > 0,
(2.3) Kn+9(-/€)]| <( )19 o] [K] -

(3) If |g(to,t)] < goexp(to—t) forty <t < T, then for any Ke KP9([—1, 0])ﬂC8([—1,—Z0])
for some0 < (g < 1, then

q
€
o+ ot0./2)0) = Co £ ) & K e
(4) If g € C(R), such that ¢t +a) = g(t), 5 g(t)dt =0, for somen > 0 and|g(t)| < C for all
0 < € < &. Then for any Ke KP9ande > 0,

A q
Ko +a(-/£) (1) sc-aQ(,’j) 1Ko

Proof. We omit the first two facts, since they are well known.
(3) Definegl (to,t) = f¢ g =Y(to,T)dt for j =1,2,3,---. Then|g(to,t/€)l)] < goe! exp(to—t /€)
fortg <s/e < T. Hence, by (2), we have the desired estimate.
(4) Defineglll(t) = f5gli~Y(s)ds— a1 [¥ [5gli~Y(s)dsdt for j = 1,2,3,--- . We haveglil(t +
a) —glil(t) = 0, is a periodic function with zero average and since

0| = Jat [ [ assd-at [ [ asasd]
al/ou /t_tg(s)dsd4
aC,
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by induction, we havégll!(t)| < aiC. Hence, induction by parts yields the desired estimate.J

We first investigate the dissipative case for which we average with a non-symmetric kernel in
KPA([—1,0]) whose support lies if-1,0]. The following theorem shows that this approach lessens
the stiffness.

Theorem 2.3. Let f(t) = f(t) +g(to,t/€), where|g(to,s)| < Coexp(to—s) for 0<t <T. For
any K€ KP9([—-1,0)) NCZ([—1, —Lo]) for some0 < Lo < 1, then there exists constantgadd G,
independent of andn, such that

_ q
E =Ko+ (0~ (0] < CanP+.Ca (£ ) & Okl

In the rest of this section, we concentrate on the oscillatory case.

Lemma 2.4. If g(t,s) = a(t)b(s), where lfs+a) = b(s), [ *b(t)dt = 0, for somea > 0, and
ac CYR) and|[a¥||., < M. Then for any Ke KP4,

€
.. ac=ha (r)
Ky *g(,+/£)(1)] < Co() max & o] Kl

Proof. LetKq (t,s) =n~*K((t—s)/n)a(s), thenK(:,s) € CJ(R) and has the same supportasive
apply integration by parts by treatitkgas our new kernel:

Ko *0(-,-/2)(t)] = ‘/Kn(t,s)b(s/s)ds gsq/‘Rr(]q)(t,s)b[q](s/e)‘ds

Here,bl9 are constructed in the same wgi$ in the proof for item (4) in Lemma 2.2. Assuming

thatn < 1,
N 2 (q 1,1, 4,t—s
Sikateds = [ < > L Lo =S ga 009 s
/‘6yqn() r;r(n)n (n) (s)
C
< pall@lweallKlwse.
||bl9 ||, is bounded the same way as in Lemma 2.2. The estimate follows. O]

Theorem 2.5. Let f(t,s) be 1-periodic in the second variable adbff (t,s)/ot" is continuous and
bounded by €forr =0,--- ,0+1, ando > 0. Denote {(t) = f(t,t/€), and define

= [ fesds

and

t
g(ta E) = fe— f(t)a

then for any Ke KP4,

~ £
K (fe = F)(t) = C1|[K] |w1-q(ﬁ)q +Con°*.
Here defined ingt—kkg[‘ﬂ is defined in the proof.

Proof. Note thatfy g(t,s)ds= [g(f(t,s)— f(t))ds=0,and &g(t,s+1) = Lg(t,s) fork=0,1,-- ,c.
Define, for eacltk=1,2,--- , 0,
k

a . S ak . . 1t ak i
ﬁgm(t,s):/o wg[] 1](t’§)ds_/0 /0 ﬁg“ 1](t,S)de[,
8



forj=1,23,---. Thenyngng](t,sﬂ < Cs due to the periodicity o%kkg(t,s) ins.
Grouping the Taylor expansion gft, s), Ky *g(-, ;) (t) can be written as the sum kaf+- I, where

1=

91 4 t—s (t—9kaok s
i 2 gt,>)d

tn t— —&)° 9o+l s
\/t / O-I at(jJr]_g(E? E)dEdS

and

Then, by Lemma 2.4,

L /e\d 2 n
||1|§cl<n> maxsupsuplatkg (t,9)][|K]lwza Zl?

and
(n)cH—l o+1

~ 0
12| §C2(0+1)! SthSlst\ atﬂlg(tas)\ |[K][Ls-

Hence, we can fin@; andC, such that
Ko (fe— ) (1) = Cl||K||w1q(n)q+Czﬂ°+l

0

Remark2.6. If f¢(t) = f(t,a(t)/¢), f(t,s) periodic ins, and 0< C; < |@(t)| < Cy, we can obtain
similar bounds by the above procedures.

Hence, we have the estimate for the oscillatory case:

Theorem 2.7. Let f(t) = f(t,t/€), where ft,s) 1-periodic in the second variable addf (t,s)/ot"
is continuous for =0, - - - , p— 1,For any Ke KP9then there exists constantgdhid G, independent
of € andn, such that

— £
E=|Kyxfe(t)—f(t)] < Clr]p—l—Cz(ﬁ)q.
Furthermore, the error is minimized if is chosen to scale witf/ (Pt

In the scheme illustrated by Figure 1.1, a non symmetric kernel should be used to etaltie
beginning of each microscale evolution. The subfigures (a) and (b) in Figure 2.1 shows the graph
of such a kernel. On the contrary, in the schemes in Figure 1.2, one can use a symmetric kernel
to estimatef at the center of the time interval of each microscale evolution. A typical symmetric
kernel is shown in the right subfigure of Figures 2.1. Most of the numerical examples of this paper
are obtained from using the exponential ket@ ¢ K> ([—-1,1]):

(2.4) KE®P(t) = CoX[-1,4)(t) exp(5/(t* — 1)),
with Co adjusted so thdtK®?|| 1) = 1. Another commonly used kernel:
1
KEH(t) = SXl-1y (t)(1+cogmt)).
Figure 2.2 demonstrates the residuals of usigl® and KSS for averagingyn = cog(tn/€), t

N« 2me/11.
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FIGURE 2.1. (a) An example of an asymmetric kernell&#3([—1,0]). (b) A

shifted kernel ink%?([—1,0]) for dissipative systems. (c) An example of a sym-
metric kernel ink?3([—1,1]).

10°

FIGURE2.2. Averaging/, = cogt,/€),th =nx2re/11, 0<t, <n. The horizontal
axis is 1/e. The the circled data points are averages obtainedd§ywith respect
to differente’s and crosses represent data points obtained by Wiy The line
without crosses or circles are the graphCaffor someC, adjusted so that the line

0.5 1

lies in its current location. The dashed line indicates second order accuracy with

respect ta.

3. ANALYSIS OF THEHMM SCHEMES

In the previous section, we presented the building blocks of an HMM scheme and the theory of
averaging using a special class of kernels. In this section, we show various properties of the HMM
schemes, including convergence.

We have to define what we mean by convergence such that it makes sense for very stiff problems
(e < H). For a givere > 0, all well known methods will converge as the stepsize> 0 and there
is no difference between stiff and nonstiff problems. For system (3.5), we will measure convergence
for the slow variabler and define the limiting errde:

E=max(lim( sup [U(ta) —U"])),

H-0 O<e<go(H)

with t, = nH, &o(H)/H — 0 asH — 0.
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We commence with linear systems. We remind the readers that in many of the dissipative cases
analyzed below, since the reconstruction operBand the compression operatQrare the iden-
tities, there is no difference in; andU after the transient. Thus we will usg , to denote the
approximation ofu; (and henceaJ) att,. So in the following presentation, the our notation will
reflect this fact.

3.1. Linear systems. We first discuss the properties of the HMM schemes for linear constant co-
efficient equations; i.éA(t) is a constant matriAin (1.2).

The HMM operations for force evaluation in combination with the Runge-Kutta schemes or
Linear Multisteps schemes commute with the diagonal&endS—1. Take an HMM-LMM-rk
scheme for example, and for simplicity, we assume ¢ifgt= 0 in (1.2). The the force evaluation
att, is

funt) — ZihKan,tj)(wp(hAs))ius,n
2

2m )
— S%hK(tn,tj)(l +p(hAe)) S e
J:

With w" = S~1ug ,, andW" representing the macro variable (Ao ue ), the original system is
equivalent tov = A:w, and the force evaluation can be rewritten as

2m ) N
fUMth+t,) = s%mj Ki(I + p(hAe)) W' = SF(W" ty +t,.).
J:
Therefore, the HMM-LMM-rk scheme takes the form
k . N
aSW' I =H § bsfwn.
J; >

With the assumption tha® is independent o€, the HMM solution forW is then equivalent to
S 1U. Hence, it suffices to investigate the stability and convergence issues by looking at the fully
diagonalized system
due i
T Ag”%»
for every)\gj) is an eigenvalue of.
We present the stability and convergence properties of some basic HMM schemes built upon

Runge-Kutta or Linear Multistep Methods.

3.1.1. Dissipative systems/Ve consider the case Whe)ié‘) < 0 and the stiff components decay
with an exponential factor in the scale; i.e. the solution is attracted to the invariant manifold in
the € time scale. The bounded derivative principle [20] applies to this case, and one can prepare
the initial data so that the fast scale is never excited. To prepare the initial data, one can simply
evolve the solutioni; for a small time duratiom so thatu; is sufficiently close to or on the invariant
manifold. Thus for one-step HMM method, one cantset ) in Step 1 of the Algorithm presented
in Section 2, and simply take the valuesfdt, +n) = fe(Ug(th +n),ta+n); i.e, the kerneK is
the Diracd function concentrated at. Notice that one-step methods are particularly convenient
for these problems, sindé(t, +n) = ug(t, +n), and the solutionu is actually also obtained at
t||< =to+k(n+H)+Ih,0<I <y, withn =mh Hence, we will present the following theorems only
in Ug instead of switching betwedh andu,.

11



When a linear multistep method is adopted as the macro-sol(&y) cannot be used directly as
the initial values. Instead, one should prepare the initial valu®ty= K * U (to), with K € K,ﬁ”q
depicted in the middle of Figure 2.1.

The following theorem shows the convergence of one-step HMM-RK-rk methods in the original
variableug.

Theorem 3.1. Let w(t) is the analytical solution for (1.2) with &) = A¢, and let y, be the
approximation att computed by an HMM-RK-rk scheme:

Ugni1 = (1 +P(HAe)) (I +P(hAe))™Ue n, U o = Ug(to).

Assume that the Runge-Kutta scheme used is an s-stagdes accurate scheme; i.e.(Bisas
degree polynomial in.z

Then for fixed H andg, g9 < H , there is a constant Gcro, dependent on the micro-solver, and
ng > 0 such that for > ng

|Ug n — Ug(tn)| < HS

1) p=1|1+P(h/g)| < 1,
(2) n=mh<H,
(3)

m> HOQ(Cmicro‘FCmicroman |H)\£j)|s) > IOgcmicro Cman ||OgH)\§j)|
- |logp| ~ |logp| [logp

(4)
1 eStS+1Hs+1lgno(H+n)/e
hs <
Cmicro f](85+ HS)

Proof. As we argued earlier, it suffices to show the convergence of the scheme on the fully decou-
pled equations. Therefore, we prove our theorem for the case:

u = —e tue +q@(t).

Define(Ugn)' = (I +P(hAe)) Ug n, and the erroE" = ug (th +1h) — (Ug n)', wherety =to+n(H +n),
andE" = EJ = Ug(th) — Ug n, then

Bl = (1 +P(=h/e)E +17,
wherer!! is the local truncation error of the schemetfatLet Q, = (I + P(—h/g)), andQy =
(I+P(—H/g)), we have
m-1
En=(Qn)MES+ 5 (Qn)™ ',
(=}
and

E™ = (Qu)(Qn)ME" + Ejwm + R,

whereZlym = Qn 3o (Qn)™ '~ can be considered as the local error committed by our HMM
scheme at each macrostep, @tis the local truncation error for the step fraffi to t)'+ H.
Furthermore, 1eQumm = (Qn)(Qn)™, and assum&® = 0, we have

(3.1) EM = %QET\AJ-M(EILMM"’_R])‘
J:
2

1



The local truncation errors are bounded [Bj| < C; - (h/g)* " Lexp(—(nH +nn +1h) /e), |RY| <

Cr(H/€)S*texp(—(nH+nn)/¢), and

m-1
——
ol <110l S 110
1=
< C +1efn(H+r])/£HQ HmilHQHmflfleflh/s
-~ r851+1 H Izo h .

We would like to show that wheh,n,andH satisfies certain condition§E™|| < HS; i.e. we

need to bound

n . B .
3 I1Quw " (B +IR'):
]:

It suffices to require thatQumm || < 1, |EXym| < HS L, and|R| < HS+1for 0 < k < n. However,
we require, additionally, the stability conditions for the micro-solee- |1+ P(—h/¢)| < 1, and
the HMM schemeil +P(—H /¢)||l + P(—h/g)|M < 1.
A sufficient condition forlR| < HS+1is
1
n(H+n) > max(logc—,s’+1)s(1+ |loge|) = no.
R

For ansstage Runge-Kutta methdéjs a polynomial of degreg There is a positive constaG,icro
depending o such thafl+ P(—H/¢€)| < Cnicro(1+ |H/€[®), and the condition on the number of

microsteps needed is estimated by:
m> | 109(Cicro + Crmicro|H /€%) > 109Ciicro e| logH /€|
B [logp ~ |logp| |logp

|E ym| < HS L implies
h°n —n(H+n)/e s+1
1+ P(—H/e)| gz ™ TV < HTT,

leading to
1 gSTSHIHS+1gn(H+n)/e

he < .
™ Chicro n(es+ HS)
O

We now turn to HMM-multistep schemes. Again, we consider the model linear system (1.2).
Since effective force estimation, i.e. Step 1, commutes with matrix multiplications, we may simply
consider the scalar cade(us) = A¢Ue. The effective forcef (U") is estimated by a kernel using

accurate microscale data obtained rigar
f(UM) = A=K (th — t) ((Ue.n) <+ O(JAch|P).
In fact, (ugn)* = UMexp(Ae - kh), and

f(UM = AZkhKq(th —t&) (U™ + O(|Ach|P)

= AU"A(K, g, N, h) -+ O(|Aeh|™Mn(@P))
wherea depends on the quadrature, af(K, A¢,n, h) denotes the weighted average of exgih),

0 <kh<n. Hence, Equation (1.5) becomes
aoU"+aU"N T+ +a UMK = AHA(K, A, 1, h) (bgU "+ bU™ L - - - b UK O(|Agh|™N(@P)Y)
13



Therefore, for stability, we need the root conditions for
(20— AHA(K,Ae, N, h)bo) 2+ -+ (a—AHA(K, Ae,n, h)b) = 0;

i.e. |zl <1 for non-multiple root, andlz] < 1 for multiple root. 4(K,A¢,n,h) can be estimated by
the results in Section 2.1.

3.1.2. Dissipative systems with variable coefficierit8e consider variable coefficient systems (1.2)
with @(t) = 0.

Theorem 3.2. For fixed H and0 < € < &g < H, the HMM-FE-fe scheme
Ugni1 = (I +HAg(th + n))”T;ol(l +hAe(th + jh))Ue .
is stable if h and n satisfies

n
o

~ ~h
C(So—FCH)-(l—CE)n' il =

for some constant C. Heﬁéj)(t) are the eigenvalues of.And satisfymax i< (o] \)\éj)(t)\ <Ce .

Proof. To simplify our notation, we will usé, x andS, x to denoteA¢(t, + kh) andS(t, + kh),and
Ank = SiAnkS,i- Fork<m—1
(Uen) = Skl + DA, Shk-1( +Ank-1) i1~ Sholl +hAno) S5 (Uen)
Hence,
[ (Ue.n)H] < ol |1+ WA 1| - 4118, Sl - (1ISel IS0l -

We know that the columns d§,; consist of the right eigenvectors &, ;. Using mean value
theorem, we can write

St = Sj—hBnj
By the perturbation theory of linear operators, see e.g. [16],

a1 (Il) o (lz) .

where)\éj) are the eigenvalues @& (t, + jh). Under the hypotheses on the eigenvalues,

B=¢ 'By=¢"! < Bii B > ,

By B
andBy, is a(d — ko) x (d — ko) matrix of O(1), while B11, B12 andB,; are of O(¢)
1SSl = lISHS—&thB))|
= [II—&hs B
< Consdh/e.

Our chosen HMM-FE-fe scheme, in particular, can be written as
Y™ = (I +HAg(tm)) T (1 + hAc (tm + h))Yo.
Now if hA(t) is always inside the regions of absolute stability for the forward Euler scheme; i.e.
hmax; o \)\é”(t)| = Ch/e < 1, we then have
ly™] < Const{|l + HA(tm.1)|- (1~ Ch/g)™ M H|§ S 4]]

m

~ ~ h
< Const(1+CH/g)-(1—Ch/g)™. o

14



Hence we proved that HMM-FE-FE is stable if

~ ~ hm
forall 0 < € < g. O
3.1.3. Oscillatory systemsDefine D@ := (@j+1 — @;)/h, andD~@; := (¢; — @j_1)/h, and the
discrete semi-norm for grid functioniD~@||n := Y Lo|D~@j|h. The following lemma shows the
property of effective force estimation in a discrete setting (this is in parallel to Lemma 2.2):

Lemma 3.3. Let gj = (1+P(ih/g))) =D*Gj, Go=0andRz) =55_,c,2". Letw= {w; € R:
wj=0for j <0or j>m}, and G = max<y<s|Cy|, then

m h2
(3.2) | 3 wigihl < Coe(1+ )™ 10" Wl

In particular, if w; = K(—jh/n)/n corresponds to the grid values of the kerngl knen|D~w;| <
n—?||K'||» wheren = mh, and if0 < h/e < pg < 1, then

m
€ _
(3.3) 3, 141h] < Corsexp(nne /2] K|

Proof. This is an application of summation byparﬁ’lowjgjh ZJ oWj(Gj11—G )——ZJ LoD W;Gjh.
Since,Gni1 = Gn+hoh = (Gn-1+hgh-1) +hgh--- = 3]_40jh, Go =0,

(1+P(ih/g))i+1

ingjh:iDWjGjh. = hZZ)Df B(in )

With the hypothesis that & h/e < 1, there is a consta@, depending only on the polynomi&
such that

|1+ P(ih/€)|™ < Cp(1+hZe~2)™2,
Hence we have (3.2). In particularyvif = K, (—jh), then

K(E - K

- 1 n n 2
H g —_ < 0.
Dw| = I S <K

With mh=n,

m

€
|y wigihl < Cp—expnhe™?/2)||K'||e
J; i9i P

The following stability result is a direct consequence of the above lemma.

Theorem 3.4. Consider HMM-FE-rk methods with uniform macroscale step:

U™t = (1+H zth” 1+P(Ih))j)U”,

whereK;" = K(t" Jh) is the discretization of the kernel used, an@P=S3_, ¢,2’ is the polynomial
corresponding to the Runge Kutta scheme. KetE€max <y<s|cy|.For fixed Hg, if h is chosen such
thatO < h/e < 1andn = mh m> 2, then

U™ < exp(CRKnH;e”h52/2)|U°|.

15



The reason that we choose> 2 is to reflect our true algorithm. If we choose= 1 for example,
the kernel used in our force evaluation is not resolved at all. In fact, the boundary conditions will
resultin the “summation” to be zero. In a later part of this section, we will analyze a model nonlinear
problem. There, we will estimate how far the discrete operations approximate the continuum-level
HMM operations such as convolution with a kernel.

We see that in this coarse estimate from the discrete scheme, the kernel estimation lessens the
amplification factor from ex@H?e=2/2) to exp(He/nexp(nhe=2/2)). (We omit the constants here
for convenience. ) We also remark that the same estimate holds (with a different constant, of course)
if a variable time step HMM-FE-RK is used.

Theorem 3.5. HMM-LF-FE for U =i tuis
kil _ gkl C 7 hi ik
(3.4) Ut =u*t+2H %th(l—i——)‘U .
L £
J_
Fix q> 0, for any given He, T = nH, if = mh< Coe'/9, and h< C1£2-1/9, then there is a constant

€ independent af and h such that

UK| < exp(CheX~/aT),
for1<k<n.
Proof. Direct calculations involving summation by parts show:

m N P j
Ukt — Uk‘l+2HhUkZ)D‘Kj(l.::lh/s)h
£ ih/e
= Uk_1+28hHUk%D‘Kj(lJrhzs‘z)J/ze”e,
=

where(1+h?%e~2)Y2exp(iB) = (1+ihe1).

Let ym = ™, D~K;(1+ h?%e~2)}/2exp(i j6), andp = ehH > 0. The characteristic roots for
(3.4) arez = pym = (14 p?y2,)Y?, and|z < eVl From Lemma 3.3, we havigim| < ||K'||o(1+
h%e=2)™2/n. Therefore,

o < ex2Sn(L e MK T)

By the hypothese$ = C,e2~ /9, (1+h%e~2)™ < exp(nhe—2) < Cy4, and

17" < exp(Chel~Y/9T),

Remark3.6. The factorel~1/%in the estimate above shows the discrete averaging effect.

3.2. Nonlinear systems.Our main focus has been to discuss the HMM technique for stiff ODEs
in general and to develop the convergence theory for linear problems. In this section, we shall
briefly consider nonlinear problems and start with a simple class of systems. The purpose is to
present examples for which it is easy to see how HMM methods converge but for which the standard
ODE methods for stiff problems do not work. After the analysis, we shall also give numerical
approximations of more general nonlinear systems.

16



3.2.1. Simple analytical example® simple class of systems has the form
X = fl(xyt) =ie x4+ f'(x,y,1)
y =fl(xyt),

with initial conditionsx(0) = xo andy(0) = yo, and Lipschitz continuous functiorfé and f"'.
Let us first give an example for which the implicit Euler method does not converge.

(3.5)

Example 3.7. Our first example to show that HMM schemes converge-asO is
x=ie~1x X\ _ (1
y=1x2 *\yw )" \0)

x =gt
{y=t '

In this case, we know that the effective force of the system is
= 0
f:(l)

{ Xl (g)qeis*lTn

whose solution is

Typical HMM solution is
n
YrH’l — tn

A typical stiff implicit method resembles the Implicit Euler scheme which will generate the

solution

X"l = (1—iH /e)x"

yn+1 — yn+ H ‘Xn+1‘2 :
Ase— 0,

W s 1,n=0

Oon>1"
and
y' — 0.

(x",y") is apparently a wrong solution.

Notice that the trapezoidal rule works for the above example, but fails for slightly more nonlinear

examples.
x=ige"1x X\ _ (1
y=p-12"\yo /) \ 0 )’

x=de 't
y= L [Z(2—2co)de

However, trapezoidal rule, in the limit af— 0, will give X" =1 or —1, andy" = 0.

Example 3.8.

whose solution is

We point out here a situation in which the simple HMM constructions, though stable, do not yield
correct results.
17



Example 3.9. Consider (3.5). Lete = (X,y) solves (3.5) withp = ¢ = 1 andx(0) = %o, and
% = (%,Y) solves (3.5) withp(X,¥,t) = @ = %* andx{0) = xo. Note that under the settings qn
X(t),y(t) is independent of(t) andy{t).

One can write down the explicit forms af andug:

Xe(t) =é&VE(xg—gi)+ei
Re(t) =xoetel/e '

Therefore, we know that as— 0, both x and X converge weakly to 0 as well &g andg,. Let
U™ = (X",Y") andU" = (X",Y") denote the corresponding macroscopic variables constructed by a
HMM scheme. At a given time step, the direct averaging strategy (Step 1, with the identity operator
as the reconstruction operat), proposed earlier will approximate the weak limit@fande, and
yield in the limit X" = X" = xo.

If the quantity|x| is needed in the equation fare.qg. if f'' (x,y,t) = |x|2, then the proposed HMM
schemes do not converge for the problem wgts ¢, since Step 1 evaluate® (th) = |)2”\ = Xo.
However, ! = %2 = |xo|%€?.

3.2.2. Model nonlinear oscillatory example.et us = (X¢,Ye ) be the solution int € [to, T1] for

{é’txs = Ixe + ' (%, ¥e)

3.6
( ) %yﬁ = fII(X€7y€)7

with initial conditionsug (tg) = Up = (Xo,Yo0). Letxe = eig*ltwg. Then(we, Vg) solves the following
system:

d _ et fl eie*1t
(3.7) céth e|| 's*lt( Ve Ve
mv‘g = f (el Wg,Vg),
with initial conditionswg (tp) = X0 andvg(to) = Yo.
We define the averaged force

{f" (xY) = Jg e 1 (€% y)de

&) M(cy) = £ 1" (€%y)de.

Denote(w,V) as the solution for
q.— _

(3.9) W =T WY
=g

with initial conditionsw(tg) = up andv(tog) = Vo,

In the following discussion, we will assume thiltand f"' are smooth and bounded. However,
most analysis carries over under a more relaxed conditionftretd f'' are Lipschitz continuous.
We notice that O< € < g, there is a timel; and a constar¥ such that the family of solutions
(We, Ve) to (3.7) exist and are bounded uniformly B i.e. |we(t)|+|Vve(t)] < M for all t € [to, T4,
for all € € (0,&0], hencelxg(t)| + |ye(t)] < M. This can be established from the construction of
solutions through Picard’s iterations. Hence, given Lipschitz continuous fundtiandg, we also
obtain a bound on the maximal values| 6f(x, y)| and|f" (x,y)| as long as$x| +|y| < M. Hence, in
the remaining of this section, we will just assume thlaand f"" are bounded functions.

Theorem 3.10. There exists Tand a constant C such that fay £t < T/, |wg — W] + |ve — V] < Ce.

IThis equation does not fall into the class of linear system that we considered in the previous section.
18



Proof. From basic existence theory, due to the smoothness assumptioraofi ', and conse-
quently f" and ', 3T’ > to such that bottwe, ve) and (W, V) exist into, T'].

_We bound the dn‘ferengew “w, andv— V¢ for t € [tp, T']. LetL be a positive constant such that
| f")(X17Y1) — T (x2,¥2)| < L(|xe —X2| +[y1 —y2[) and | " (x1, y1) — 9%z, ¥2)| < L(|x1 —X2| +[y1 —
y2|).

t

Wi(t) —we(t)] = | [ FIOW(1), V(1) — eV f (€7 e (1), ve(T)di|

to

= | ttF(VV(T)ﬂT))—f_'(Wa(T)jve(T))dTH

\/t; L (We (1), Ve(T)) — 7"V f' (7 Fme (1), ve (1)) |

(t—to)L S[UI%(\VV(T) = We(T)| + V(1) = Ve (D)) + 11,
T€E|to,

wherely = | fi f1(We(T),Ve(T)) — e /e (V8w (1), V(1)) dT|. We shall show that & I; < Ce for
some constar€.
Due to the periodicity of ex@t/¢), we can write down the above integrals as sums of averages:

/ YT 1 (/e (1), ve (1))

IN

to
n ti+
=3 [ e e (), velt) it R e, 0ty < 27,
. t
wherelg = f; €7/ f (e w(T), ve(T))dT,
ti+2 . . i
R= [ et (f'(e‘t/swg(t),vg(t)) - f'(ét/sws(ti),vs(tm) dt,

t

tn th _ —
Rl <Y 2m||f||og?® < 2T | f oot
LR = g

and|lg| < g||f|e-
The main summation

n ti+2me—“/sf(e‘it/ewg(ti),Vg(ti))dt _ —lef oW (1), Ve (ti))dB
iZO t ZO

_ i;m'zn/o e 10 F (€O (t), ve(ti))dO

is a Riemann sum oﬁ (W, Vg )dT. Hencely < Cj,e.
Similarly,

f"(é”e We(T), Ve(T))dT

to
n ti+21E
- /t P (oW (1), Ve (1)t + R + 11,
with 51" |R | < €C3 and|ll¢| < €C4, and

N ri+2me _
%/t ' (e"/fwe (t), Ve (1)) dit

is a Riemann sum fof; ! (we, ve)dt.
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Therefore, fotg <t < T’, I, + I, < Ce for some constarg. O
In the remainder of this section, we assume that the fundtion (3.6) has the property:
f'(xy,t) = f' (€% y,t), VO e R.

The following lemma shows how well a kernel K”9([—1,0]) estimates the effective forces if
given the exact data. For convenience, we drogEthigbscript inxe andy.

Lemma 3.11. Let (x,y) solve the equations (3.6) fof £ t < n with initial data xt,) = w", and

y(tn) = V", and letf', f'! be defined in (3.9). Let(t) = &{~")/ex(t), and (t) = y(t), then wv solve
equations (3.7). We have the estimates:

Erer(W, V10 £1) 0 = [[Kn 10Xy, ) (tn) — T (W, V)|
Cin () K] +Ce /¢

IN

and
Exer(W', V' tn; £11) 1 = HKn*f”(u,v)(tn)—f—” (vV(tn),\Rtn))H

€
Cu (ﬁ)qHKmeJrrlLfn (1 oo + 11" []o).-

IN

for some constantsi@nd G, independent of andn.

Proof. We first derive the bound oBye (W™, V", ty; f'1). With w(s) = w(t,) + (s — tn) f' (W, "),
wherew}, comes from mean value theorem, we have

tnH1] I As/e
Ko #Q(UV) () = /t K (t — ) F'" (€%/5W(tn), V(tn) )ds
th .
[ Ky (= 9) (s—t) (és/salf” fl 49, f" f”)ds,
th

whered f'' andd,f'" denote the partial derivatives éf' with respective to its first and second
arguments, respectively. Thus the second integral is bounded aboyg k| f'|| + || f'' || ), and

L is a Lipschitz constant of''. Let "' (t) = f'' (e'w", V"), then f" is a 2 periodic function.
Furthermore, we notice that

17y Y T _ 4T _. T
E[/O i (t)dt_ﬁ/o £ (P, ) dt = 1 (WP, ) = T

and thatf" (t) — f!! is a 2t periodic function with zero average. Thus by Lemma 2.2, we have

th . th - th
/+nKn(t—s)f”(e's/sw(tn),v(tn))ds _ /+”Kn(t_s)(f“(s)—f7n')ds+ o(t—9)fds
th th tn

= G UKo+ 77
Therefore, we have
[[Kn # £ (x,y) (ta) — 1 (W) || < (rE])qHKme +0Lg(||f' e+ 119" []eo)-
We now prove the firstinequality. Singé) = exp(i(t —tn)/s)vT/”+ftt] exp(i(t—s)/e) ' (x(s),y(s))ds

Kn* fe(tn) = LKn*(ésl““)W 'é““s)f'(x(s),y(s»dS) (tn)

th
+Kn * £ (%, Y) (tn)

l1+ 12+ Ky * £ (X, y) (1),
20
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wherel; = ‘EW‘KH xexp(ie~1(- —tn)), andl, is the second term in the convolution. Thig|| <
Cogd1/n9 by Lemma 2.2. Integration by parts shows:
o = ko (91 X9.9)ds) )
tn

€
94 ¢ (X(s) y(s))ds) .
ds ’
Notice that the first term cancels with the last term in (3.10). By Lemma 2.2, the second term
| exp(—ig Uty f! (W, VK, + €8 | < C| f' (WP, )[€9/n9. We now analyze the last term:

. . o
= —Kq* (6 Y)(tn) + e /EF1 (W, VK €78 4 K ( g (-
tn

n = Kn*< gt S/Eéjsf (U(S),V(S))dS) (&)
. tn1 t”+n je 1t g e 1s
_ / /t t)é b(s)dtds
where
bis) = -1 (x(9).%(9)
d

= 2 F(W(9).v(8) (Ws) =& 1/Ex(8), T(xy) = f(w))

= 0rf' (wv)e T (wv) +0,F (v,5) ' (x,y).
Switching the order of integrations, we have

th+n
ne< [ elds
s=t

Hence,
[|Kn * f& (U, v, ) (tn H<C|n )9[|K @] |o,.

th+1 i
- Kalta =t et < consh[ (£ 1IK o
t

=ty

O

Now we analyze the local errors made in one step of the HMM-FE-* schemes by grouping the
errors according to how they are committed in the HMM process. We first remind the readers of the
notations.

LetU (t,) = (X(tn),Y(tn)) be the solution of the effective equation (1.4) at grid nddestyo+nH,
with initial conditionU (tg) = Ug = (Xo, Yo). LetU" = (X",y") denote the numerical approximations
for U (tn) produced by the chosen HMM-FEscheme, her¥ is the selected micro-solver. Define
E"=U(t,) —U". Assuming thaf can be evaluated with no error, we first have the standard relation:

EM = E"+ H(f_(U (tn)) - f_(Un)) + 'Errr]mcro: (I +H Df_n)En + frrrl1acr07
where "1, is the usual local truncation error of the Forward Euler scheme Defpds the Ja-
cobian matrix obtained through mean value theorem. Next, in HMM schemes, fsinactually

approximated through Step 1 in the algorithm described in Section 2.1, there are further sources of
errors coming from microscopic processes from Step 1(a)-(d). Denofhy, the errors made

altogether from Step 1(a)-1(d). It becomes clear thayiv = ‘E,Sa,\),,,v, + E,%M Wheref,ﬂa,\),lM cor-
responds to the analytical errors committed &EI%M corresponds to the discretization error. We
have been analyzin@,(f‘,\),,,\,| in this paper and the bounds appear in the Theorems in Section 2 and

Lemma 3.11.Z£|T\)AM = erqngr Fquad IS the sum of the global error in evaluatirigaccumulated
in Step 1(b), and the quadrature ermBy,aq corresponds to Step 1(d). The justification of using

R = Q =, the identity operator, is absorbed inﬂﬁ,a,\),lM. Here, it is understood that the terms in
21



Enumm = Eum actually depend obl (t,), fe andt,. We remark that there are problems not consid-
ered in this paper in whicR or Q require further analytical and numerical approximations.
In summary, for a HMM-FEY scheme, we have

E™ = (I + HDfp)E" + H E
whereElym = Eianm + Eo+ Equac: Writing Ay = (1 +HDf,) for convenience, we have

n+1 . .
(3.11) EM=NoAE + 5 M jA (H AV ’;%m) :
=

In Forward Euler scheme, thé|Emacrd | < CiruncH?. Assuming that the macro-solver is stable, i.e.
||Aj|| is bounded

1Aj|| < Camp€™, foro < j <n.

then if we havqyf,‘ﬂ;,,lMH < CymnH for somee < go(H), andn < ne(H), andep, no decrease with
H, we have a bound on the global error of the macro-solvét.in

Assuming that we use a 4-th order Runge-Kutta scheme in Step 1(b), in the time ifttetyal
nJ, the global error in the approximation of is Cixsh*ne=>, where the last facta—> comes from

d®u /dt®; therefore the error in evaluatirfg, i.e. £\7)  become€sh*ne ..

By Lemma 3.11,

[l < et /n 4L (1 o+ 17 |e)-

If we take composite trapezoidal rule as our numerical quadrature. For general smooth functions,
|| Equadl| < Cquadn®. However, due to the regularity of the kernel uskds CZ(R), our integrant is
smooth and periodic, and therefore its Fourier spectrum decays very fast. Since trapezoidal rule is
exact fore?™ X for | = 0,---,2m, || Equad|| is typically very small and negligible.

Assuming that foifp <t < Ty, the analytical solutio) = (X,Y) of the effective equations (3.9)
are bounded b :|X(t)| + [Y(t)| < M, and thatX¥|| +||YK[| <M +4nf fork=0,1,--- ,n< N and
To+Nh< T;. Assume in addition that we start with the exact initial conditions. The error (3.11) is
bounded by

n+1 .
1 i
B = Y MR lIA (B il |+ | Bl )
=1

IN

n+1 .
Cie ™ (14 Y (| E il | -
=1

Forn =CyH Ya(@1/a h=Cpn-Y4HY42+2/4 ||£) | < CiaoH, fOr0< j <n,and/E™Y| <
Cexp(Tl — To)H .
With H andT; — T sufficiently small, that is, we have

[IXTEH (YT < M+ [[EMH] < M.
Thus we can iterate our arguments and obtain the following theorem:

Theorem 3.12. Given an HMM-FE-rk4 scheme. Let'd= (X",Y") be the solution att= To+ nH,
computed by this scheme applied to (3.6), ar{thWe the analytical solution to (3.9). Let,H,n

be respectively the macro-stepsize, micro-step size, and the length of each microscale evaluation.
Then there are constants C such that foig(H,€), n <no(H) < H, H < Ho, and for te [To, T1],

the global error B' := U (t,) —U" is bounded above by H:

IX™ —Xo| < CH,
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and
IY"—Y(tn)| <CH,
for0< n<N,where p+NH =T;.

3.3. Complexity estimates. In the previous subsection, we see in an HMM-FE-rk4 scheme for
the oscillatory problem (3.9), how a the kernel support siznd the step sizk for micro-solver
should scale (up to constants) with the macro-solver steptsizelhis is done trough balance
different errors to the same order lh We now describe this balancing of errors for oscillatory
problems of a general HMM¢-Y scheme. The dissipative case is analyzed similarly.

Assume that the macro-solvéf is ans-th order accurate scheme, the micro-solver-ih or-
der accurate, an& € Ki* is used. We want our kernel estimation ertBmm = || f(U") —
> j WK f(ue(tn)|| bounded byCxH® so that it is comparable to the local truncation error of the
given macro-scheme. Similar to what we have seen previously, the error in approximatng
Step 1(b) is

Chrngf(wl)’
where the factoe~("+1) comes fromd("*Yu, /dt(+Y), and thus

of
|Zm|cro| < C||7£|| nh'e” (D < Cnhr (r+2)

Hence we needh’e—("+2) = C'HS, so omitting the constant,
h= n—l/rHs/r€1+2/r_

From Section 2, we know that, for suitable problems, the force estimation error of a kefd@fin
is
3
(3.12) i < Cmp+Cgs(ﬁ)q-
Cq. in our case is proportional 140 fe /0Ug| |, thus
€ gd-1

—)¥=C—-.
Co()1=Cs
Omitting the constants, the two terms in (3.12) is or the same order whisrproportional to
n*(e) = €@ D/(P+9) and theed1/n9 term dominatesP for n < n*(g). To minimize the number
of microscale time steps, we wantto be small. Hence, we want to scaje< n*(€) such that the

dominating term
-1
e HS — = H-Y%(-1/a

The constrainf) < n* is satisfied if

H>eg®

wherew > 0 is a constant found by balancing all the exponents involving positive int@gardg.
Hence, withn = H~/%g1-1/a,

# micro timesteps= % =H %P
where L as+ Lrel
rs+gs+s r
= 9 B= d >0,
qr ar

sincep,q,r are positive integers, @ 3 < 1. Assuming that iH macro steps are needed to redch
the total complexity is
# total HMM steps=H 1% B < C.
23



Example 3.13. In the following, we give a really conservative error estimate for an HMM-FE-rk4
method using a kernel iK?°. (s=1,r =4,p=2,q=5).

e Global error inn-interval: rk4 givesh*ne=>. The last factoe > is from d°z/dt>.

e E4 scales witH givesnh*e 6 =H.

e Errorin the approximation of: €4/n®=H
Thus,n = £%/°H~1/5 and correspondinglly = €8/5H8/5. An estimate for the number of flops for the
HMM-FE-rk4 method withn /h micro steps for each of thé ~ 1/H macro steps is

# of Flopszr\l% S

We compare this particular HMM-FE-rk4 method to other methods. Any explicit methods will
need a step size of the orderafo resolve the oscillations and to be stable. The complexity then

is proportional toe, which makes the computation impossible, let along other properties such as,
possibly, unnecessary damping in the solution. These evidences suggest that our HMM-FE-rk4 is
superior.

4. ANALYTICAL AND NUMERICAL EXAMPLES

In this section, we apply our schemes to a few examples. We first present some numerical results
on certain interesting nonlinear systems. For each fexedir numerical tests verify the results for
the HMM schemes developed in the previous section.

We set up our numerical simulations as follows. The numerical approximations are computed in
the time intervalO, T;| using a macro step siz¢ € {Ty/n; : n; = 10+10j,j =0,1,2,--- ,7}. We
useH; to denoteTy /nj, h; for the corresponding micro step size, afydor the kernel support size.
With a givene, and the quadruplép,q,r,s) representing that a kernel IiP9(1) is used in Step
1(d), as-th order macro-solver andth order micro-solver is used in the chosen HMM scheme, we
determinen; andh; according to our discussion earlier:

r]J — Crl H 7S/q8171/q,

hj _ Chnfl/rHs/r81+2/r'
We compute the absolute errors in theomponent defined by

DI
e = S N"Y(nH))H;,
1

n=
and

el = max [Y"—Y(nHj)|.
1<n<Ty /H;

Finally, these errors are plotted in loglog plots in each of the following examples. In the follow-
ing subsections, as notations for the adopted macro-solvers, AB2 stands for the 2nd order Adam-
Bashforth scheme, LF for Leapfrog, FE for forward Euler scheme, and for the micro-solver, rk4
stands for the common 4th order explicit Runge-Kutta scheme.

4.1. Stiff oscillatory example. We demonstrate some numerical results on a similar example:

o (oo () =(3)

with solution
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x=¢t et 4t
y=¢é'+t '

Before applying HMM ODE schemes to this system, we remark that this systenthe class of

nonlinear equations that we have considered in the previous section. System (4.1) after a linear

transformationw,y) = (x—y,y), becomes

w=iglw—|w?+1 wo ) [ 1
y = |w|? "Ly ) \0)’

which is obviously in the form to which our convergence theory applies. We have mentioned that
the averaging approach is invariant of linear transformations, so we can worked directly with (4.1).
We see in this example that we cannot simply ignore the fast scale vaxiatitece it contributes
the dynamics of. _ _
In Figure 4.1, we pIoE(Lll) and e for each computation using macroscopic step $ize=
4/(10+ 10j) along with the following settings:
(1) HMM-FE-If: K®P([-1,1]), &, =0, (p,q,r,s) = (1,10,2,1). £ = 10-3/2m,C, = 5,C, = 0.4;
(2) HMM-FE-rk4: K®P([-1,1]), 8, =0, (p,q,r,s) = (1,10,4,1). e=10"°/2m, C, = 2.6,Ch =
0.5;
(3) HMM-LF-rk4: K®®([-1,1]), 8. =0, (p,q,r,s) = (1,10,4,2). e = 10°6/21,C, = 6,Ch = 2;
(4) HMM-AB2-rk4: K&P([-1,1]), &, =0, (p,q,r,s) = (1,10,4,2). e =106/21,C, =6,Cr =
2.
We remark that since the system is not stiffly dissipative, in Step 1(b), we &gV [tn, t, + t.] by
the given equation, and iy, t, — ot,] backward in time with the initial conditione n(T =t,) =U".
Then the effective force can be evaluatethasing a symmetric kernel.

4.2. Dissipative systems.

4.2.1. Stiff system with fast transientVe test the HMM-AB2-rk4 solver (with a 4th order Runge-
Kutta for microscale and the 2nd order Adam-Bashforth for macroscale) on the following equation:

(4.2) y = —e Y(y+cos), y(0) =20

Since the macro-solver is a linear multistep method that requires uniform step size, we use the non-
symmetric kernelk € K23([—1,0])NC3([—1,0.2]), depicted in Figure 1.1 to estimate the effective
force at the left end of each microscale evolution.

HMM-AB2a-rk4: 8t, = 0.6n, (p,q,r,s) = (2,3,4,2). e =104C, =25 C,=0.25H € {T1/n; :
nj =40+20j,j=0,1,2,--- ,10}, Ty = 4. The errors are plotted in Figure 4.2.

4.2.2. Oscillatory system with transient.
%= i+ 31— x=y?))(x—y) +ily—t) +1 X \_ (3
(4.3) . 5 , = .
y=i(y—t)+Ix-y| Yo 1
We see from the equation that a stiff transientxiwould take place whenevéx —y| is not 1.
However, passing the transients, the averaged solution should be identical to that of system (4.1).
In the following computations, the macro time step is taken télbe {2/n; : n; = 104+ 10j, ] =
0,1,2,---,8}.
HMM-AB2-rk4: K € K23([-1,0])NC3([-1,-0.1]), 8, =0, (p,q,r,8) = (2,3,4,2). e = 1076 /2m,
C,=023C=10.T, =2
HMM-AB2-rk4: K(t) = K®P(t 4 0.2), &. = 0.6n, (p,q,r,s) = (10,1,4,2). e = 10°6/2m, C, =
20.3,Cy, = 2. T = 2. Note thatU is constructed af, = 0.6n + nH.
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FIGURE 4.1. The horizontal axes/H. The lines with x-markers aré) and the
lines witho-markers are(l_‘l). The dotted lines are proportionallth and the dashed

lines are proportional tbl2. The detailed settings are provided in the example in of
Section 4.1.

FIGURE 4.2. HMM-AB2a-rk4. The horizontal axis is/H. The lines with x-
markers areld) and the lines wittb-markers ar@ﬁ‘l). The dashed lines are propor-

tional toH?. The detailed settings are provided in Section 4.2.1.
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10 10

(a) AB2a-rk4 (b) AB2s-rk4

FIGURE 4.3. Numerical accuracy study of (4.3). The lines with x-markergiate
and the lines witlk-markers are(le). The dotted lines are proportionallth and the

dashed lines are proportional k?. The detailed settings are provided in Section
4.2.2.

4.3. A three-body problem. Let x = (xg,%2,X%3) € R? x R? x R? and (mg,mp,mg) € R® denote,
respectively, the positions and the masses of the three planets of the system. See Figure 4.4 for an
illustration of the setup. The potential energy of this system takes the form:
m; m m
V(X) = — mm; _ MM n 1M s
& 1% =X X1 —Xz|  [xa—Xs| = [X2—Xa]

The corresponding equations of motion are:
m¥X = OxV(X), i=1,2,3.

We solve these second order equations as a system of first order equations by introducing new
dependent variableg = x; andv; = %;. In our setting, we assume thag is O(1) andO(g) = my <
my < mg = O(1/p). x3 is stationary. We assume that

’Xl —X2|2 ~ &

X2 —xa|? ~ p~t and|x; —xa|2 ~ p71,

so that the equations fer have only two scales:

. (Xl — Xz) (Xl — X3) I 1

- _ _ —f -
V1 Xe %ol Xe —¥a]® (x) + Sg(X)

o(L/e) o)
. (X2 —X1) (X2 — X3) I
_ - = ' (x).
Vo m1|X27X1|3 ms|x2—x3\3 (X)
o(1) o(1)

Thus, with suitable initial conditionsy spins aroundln, in € time scale whilam, orbits aroundng
in the slow time scale. Essentially, we have two time scales in this problem and the HMM method
resolves the trajectory @i, andmy in a short timen then take a big time step. See Figure 4.5 for a
snapshot of an actual computation.
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FIGURE 4.4. This is a diagram showing the planar three body problem. In our
setup,my spins aroundr is thee time scale.
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FIGURE 4.5. n-body problem (2)

Simulations 1.Simulation settinge = 107°/2m, p= 104, (my, mp, mg) = (500%€,0.4,5/p), X1 (0) =
%2(0 )+0 5(\f V), %2(0) = (/P 0), x3(0) = (0,0), andv1(0) = (5, -5), v2(0) = (0,10),v1(0) =
(0,0). T:
HMM LF rk4. K®® &, =0, Cy = 230/2 C, = 120, T, = 5.0. We first apply the scheme with

differentH’s to establish a convergence evidence for this method. Deno)(%"f)()'/4 the position

of massm, at T; constructed this way using macro step dizeWe obtalnyxzLF (05) XZLF(0 25)] :

1829904 |X5 (029 _ x F(0129) = 5 47153 |x[F (0129 _ x[F(00629) - 1 94626 and from these
data, we saw that the difference is deceasing at a rate proportlohél ta Figure 4.6 plotted the
trajectories oTXé‘F(H) and also the total energy of the system versiid,lwhich shows a conver-
gence in total energy at a rate proportionaHte

In the following set of simulations, we compare the numerical approximations obtained from two
different first order schemes to th’éF (0.09) Tl). In our simulations, we ran the following two first
order schemes:

o HMM-FE-rk4: K®?([—1,1]): &, = 0,(p,q,r,s) = (1,10,4,1). C; = 230/2 or 20Q Cy =

120, T, = 5.0.
o HMM-FE-rk4: K&P([—1,1]): &, =n/2, (p,q,1,) = (1,10,4,1). G, = 230/2 or 20Q Cy, =
120, T, = 5.0.

The two schemes differ in that one keeps uniform macroscopic time steps and the other one can be
considered as a variable time stepping method. We|plot X"F (0.05) | versus ¥H in Figure 4.7.

Simulation 2: £ =107°/21, p =104, (mg, mp, mg) = (500%€,5.87,1/p), X1(0) = %2(0) 4 0.5(1/£, V),
x2(0) = (1,—-2.1,/p), x3(0) = (0,0), andvy(0) = v2(0) + (60,0), v2(0) = (2.5,2.2),v3(0) = (0,0),
H = 0.2,C, = 200/2, G, = 100
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(a) Trajectories (b) Energy convergence

FIGURE 4.6. Numerical convergence study of the energy simulationl of HMM-
LF-rk4. The plot on the left shows the difference of total energy of approximation
atT; to the initial energy versus/H. C, = 230,C, = 120, T =5.0.

FIGURE4.7. Planar three body problem numerical convergence study of simula-
tion 1. The curves marked with are data obtained from HMM-FE-rk4 with sym-
metric kerneKK®*P (i.e. &t* = 0) with backward flow to enforce uniform step sizes.
The curves marked witlx are data obtained from HMM-FE-rk4 with symmetric
kernelK®® and variable step sizes. The plot on the left is obtain @ith= 200,

and the one on the right with, = 230/2.

HMM-LF-rk4: K®*Panddt, = 0. T, = 80. See Figure 4.8.

5. SUMMARY

In this paper, we introduce and analyze a new class of numerical algorithms for stiff ODE systems
based on the HMM framework. We study the stability and convergence of the HMM schemes, and
presented a few numerical computations on stiff systems using either Runge-Kutta or linear multi-
step HMM schemes. The analysis also covers some existing classes of methods that use variable
step sizes. An important component in the new effective force estimation is accomplished through
the convolution of the data with certain classes of compactly supported kernels. In particular, we
show that a general class of highly stiff systems with oscillatory solutions, for the first time can be
practically approximated with an explicit technique that requires fewer functional evaluations than

the number of oscillations.
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FIGURE 4.8. Planar three body problem numerical convergence study of simula-
tion 2. The circle is placed at the positionxaf The diamond and cross represent,
respectively thex(0) andx»(80). The dashed line shows the orbinif, = 0.

We point out that the HMM methods are not limited to the few simple schemes that we listed
above. We show that one can use this methodology to build an HMM scheme for an hierarchy of
scales. One can customize and fine tune the numerical approximation scheme in each scale more or
less independently from the other scales. For example, one can naturally adopt symplectic schemes
for Hamiltonian systems. The HMM framework provides a systematic way to build a scheme that
is suitable for a given system.
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