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ABSTRACT. The heterogeneous multiscale methods (HMM) is a general framework for the numer-
ical approximation of multiscale problems. It is here developed for ordinary differential equations
containing different time scales. Stability and convergence results for the proposed HMM methods
are presented together with numerical tests. The analysis covers some existing methods and the new
algorithms that are based on higher order estimates of the effective force by kernels satisfying cer-
tain moment conditions and regularity properties. These new methods have superior computational
complexity compared to traditional methods for stiff problems with oscillatory solutions.

1. INTRODUCTION

We consider stiff ordinary differential equations (ODEs)

(1.1)
duε

dt
= fε(uε, t),

whereuε : R+ 7→ Rd, and assume that the eigenvaluesλ( j)
ε (t) of the Jacobian offε satisfy the

following conditions fort ≥ 0: 1) Reλ( j)
ε ≤C1, 1≤ j ≤ d, 2) there isk0 ≥ 1 such that|λ( j)

ε | ≤C2,

for 1≤ j ≤ k0 ≤ d andC3 ≤ ε|λ( j)
ε | ≤C4, for k0 < j ≤ d; hereC1,C2,C3, andC4 are constants; 3)

min j1, j2 |λ
( j1)
ε (t)−λ( j2)

ε (t)|> ρ > 0, j1 ≤ k0 and j2 > k0.
A linear equation of this sort can be written as

(1.2)
duε

dt
= Aε(t)uε +φ(t),

where

Aε(t) = S(t)
(

ε−1AI
ε(t) 0

0 AII
ε (t)

)
S−1(t),

S,S−1, AI
ε andAII

ε are bounded independent ofε, |σ(AI
ε)| > δ > 0, Re(σ(AI

ε)) ≤ 0, and|dφ/dt| is
bounded independent ofε.

We will also consider the nonlinear model systemuε(t) = (x(t),y(t)) that takes the form:

(1.3)

{
εẋ = f I (x,y, t)
ẏ = f II (x,y, t) ,

where fI and fII are smooth functions. We cally the slow variable of the system.

1.1. Description of methods. The numerical methods that we shall discuss in this paper are de-
vised under the HMM (Heterogeneous Multiscale Methods) framework [6]. We first present the
general structure of the proposed methods and then relate them to other existing work.

Assume that there exists an “effective” equation

(1.4)
d
dt

U = f̄ (U, t),
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FIGURE 1.1. A basic HMM ode solver schematics.

that is derived from (1.1) asε converges to 0, such that the partial derivatives off̄ are bounded
independent ofε. Our methods construct solutions to (1.4) by evaluating the right hand side of (1.4)
“on the fly” via numerical solutions to (1.1). We point out that the explicit form off̄ is not usedin
the algorithm, and the precise definition for (1.4) may depend on the explicit forms of (1.1) and on
different applications.

For example, in the linear constant coefficient cases of (1.2), if

AI
ε =

(
−α 0
0 iβ

)
,α > 0, Imβ = 0, andβ 6= 0,

and
AII

ε = γ,
then

f̄ = S

 0 0 0
0 0 0
0 0 γ

S−1 +S

 0 0 0
0 0 0
0 0 1

S−1φ(t).

In nonlinear examples, the “effective” equations may come from averaging [1][2]. In the exam-
ples discussed in this paper,U has the same dimension asuε, and its components are the strong or
weak limits of those ofuε. In more general settings,U does not have to be in the same space asuε.

A generic HMM method is described by the scheme (macro-solver) used to solve (1.4) forU , and
another scheme (micro-solver) used to solve (1.1) for evaluating the missing data; i.e. the effective
force f̄ . This structure is best illustrated by Figure 1.1: the upper directed axis represents the grid
imposed by the macro-solver to hold the values ofU , and the lower axis contains the finer grids
on which the solutions of (1.1) are constructed by the micro-solver, with initial conditionsuε,n(tn)
determined from the grid values ofU . The downward pointing arrows symbolize the determination
of uε,n(tn) fromU at tn. The upward pointing arrows relate the evaluation off̄ to the time history of
microscale variablesuε,n(t) and the forcesfε(uε,n(t)), that are obtained from each micro-grid on the
bottom axes. This evaluation is accomplished through filtering, using a compactly supported kernel
K. We present the theory of kernels in Section 2.

A basic algorithm can be summarized by the following steps:

(1) Force estimation:
(a) At T = tn, u0 = Un.
(b) Solve

duε,n

dt
= fε(uε,n, t), uε,n(tn) = u0,

for t ∈ [tn, tn +η].
(c) Averaging: f̄ (tn)∼ f̃ (tn) = K ∗ fε(uε,n).
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(2) Evolve the macro variables: computeUn+1 atT = tn+1 using{U j}n
j=0 and{ f̃ (t j)}n

j=0.
(3) Repeat

As an example, a generic HMM multistep method can be arranged in the following form:

(1.5) a0U
n +a1U

n−1 + · · ·+akU
n−k = H(b0 f̃ (Un)+b1 f̃ (Un−1)+ · · ·+bk f̃ (Un−k)),

where f̃ is computed by

(1.6) f̃ (Un, tn) =
2m

∑
j=0

hK(tn, t j) fε(Sh(tn, t j
n)U

n, t j
n),

wheret j
n = tn+ jh, andSh(t0, t1) is the discrete solution operator defined by the micro-solver. Here,

as well as in the remaining of this paper, we useH andh for the discrete time steps used in the
macro- and micro-grid respectively.

In the Sections 2 and 3, we will see that an HMM scheme can be analyzed systematically by
examining the evaluations of the scheme on the macroscale grid

dU
dt

= f̄ (U, t).

The local error of the macroscale scheme contains the local truncation error of the macro-solver
(Step 2), and the numerical and analytical errors of Step 1, i.e. the local errorE = Emacro+EHMM,
where

EHMM = | f̄ (Un, tn)−H ( fε,U
n, tn)|,

andH ( fε,Un, tn) denote Step 1 of the algorithm. At the end of Section 3, we will show the com-
plexity of an HMM ODE solver through balancingEmacro andEHMM.

We call a method HMM-X-y, if X-method is used in step 2, y-method is used in Step 1(b).
Therefore, HMM-FE-rk4 is a method that uses forward Euler as macro-solver, and a fourth order
Runge-Kutta method for micro-solver. In Section 3, we will present a few standard HMM schemes
and discuss their stability in detail.

1.2. Generalizations. We notice from the basic algorithm above thatf̄ is approximated attn, which
is the beginning time of each fine scale calculation in Step 1(b). In Section 2, we show that it is
possible to select a kernelK so that f̄ is approximated at timetn + δt∗. This is a key feature of our
proposed algorithm. In many examples of this paper, we choose a kernel that is symmetric with
respect to the center of its support, and useδt∗ = η/2. The algorithm of [11] is similar to the case
in which the Dirac delta function is used as the averaging kernel andf̄ is evaluated attn + η. We
remind the reader thatη denotes the length of each evolution performed in Step 1(b).

Here, we present a more complete algorithmic description below:

(1) Force estimation:
(a) Reconstruction: atT = tn, u0 = RUn.
(b) Solve

duε,n

dt
= fε(uε,n, t), uε,n(tn) = u0,

for t ∈ [tn, tn +η].
(c) Averaging:

(i) Estimate force:f̄ (tn +δt∗)∼ f̃ (tn +δt∗) = K ∗ fε(uε,n).
(ii) Compression:U∗ = Q[uε,n].

(2) Evolve the macro variables: computeUn+1 at T = tn+1 using {U j}n
j=0,{ f̃ (tn)}n

j=0 and
U∗, f̄ (tn +δt∗).

(3) Repeat
3
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FIGURE 1.2. HMM ode solver schematics.

Notice that Step 1(a) and Step 1(c) are changed a bit from the previous section. In this paper,
the reconstruction operatorR will be taken to be the identity operator; i.e.RUn = Un, and the
compressionQ[uε,n] = uε,n(tn+δt∗). In [32], we apply the HMM ODE methods to a class of specific
problems for whichR is no longer the identity operator.

There is a benefit in evaluatinḡf at the center of each microscopic evaluation; it makes it possible
to use a symmetric kernel that typically yield more accurate approximations to the averages. In
many problems, such as the ones involving Hamiltonian systems, it is possible to evolve the given
microscopic equation backward in time. In Step 1(b), one can instead obtainuε,n in [tn−η/2, tn +
η/2] and computẽf atT = tn. Figure 1.2 illustrates the structure of two such schemes.

In the rest of this paper, we will refer to the Steps of the algorithms described in this subsection.

1.3. Related work. A detailed review of numerical methods for stiff problems can be found in the
books of Wanner et al [13, 14], and in a review paper [29].

There are essentially two types of stiff problems for which the solutions vary on theε time scale
(λ( j)

ε = O(ε−1)): one is dissipative with rapid transients (Reλ( j)
ε < 0) and the other is oscillatory in

nature (Reλ( j)
ε = 0). There are two standard approaches to such problems — numerical approxi-

mations and analytic techniques. Analytical techniques, such as perturbation and homogenization
methods, typically require extensive algebraic manipulations and suffer from a limited applicability.
Our focus will be on numerical approximation methods to which the main challenges come from
the cost associated with maintaining the accuracy and stability of the approximation schemes for a
time interval independent ofε. In the following, we first briefly review the common methods related
to each type of problem and compare their computational complexities to that of HMM methods.
Finally, we comment on some other approaches that are not easily categorized.

Problems in the first class (Reλ( j)
ε < 0) include, for example, chemical reactions systems. Im-

plicit methods, such as BDF (backward difference formula) and IRK (implicit Runge-Kutta), are
among the conventional choice of numerical solutions. There are also special explicit methods with
variable step sizes that are designed to optimize the computation for special types of problems. In
[21], Lebedev and Finogenov proposed an iterative method with variable time steps for dissipative
systems whose eigenvalues cannot be separated into disjoint groups of different scales. Similar
methods can also be found in, e.g. [4], and recently in [11] by Gear and Kevrekidis for stiff dissipa-
tive systems whose eigenvalues are well separated into two groups. The latter is called the projective
integrator method, and has been a source of inspiration for part of our present work.

Many problems in atmospheric science [17], molecular dynamics, biology, celestial mechanics,
and circuit simulations fall into the oscillatory class. The methods developed in this paper offer
solutions to the oscillatory problems as well as the dissipative ones.
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We first notice that structurally, our proposed algorithms share similarities to the multi-revolutionary
methods [10, 12, 24], or the quasi-envelope method [28]. In these methods,f̄ is estimated by fol-
lowing the oscillations for a few periods. However, these methods are not adequate for problems
with unknown periodicity of oscillations that consist of more than one frequency. We shall see in
this paper that the proposed methods do not require precise information of the periodicities of oscil-
lations, but nevertheless give accurate estimation of the effective force. This comes from our time
averaging approach with smooth kernels.

The idea of performing averaging of the forces or the solutions is closely related to some per-
turbation techniques, see e.g. [1][2]. Computationally, averaging approaches appeared in many
places, e.g. in [34][27] and [25, 26], and recently in [9] and [22]. We present a averaging theory
that includes the known moment conditions and some additional “stiffness reducing” properties of
the kernels that result in efficient computations.

The complexity of explicit methods such as the Runge-Kutta or Leapfrog methods require step
size of orderε for stability. Hence computing solution of (1.1) to the final timeT1 requires at least
orderε−1 operations. Implicit methods such as IRK or BDF can achieve optimal complexity for stiff
dissipative problems since theε order step sizes are only required at transients. However, when these
methods are applied to oscillatory problems, typically convergence requiresO(ε−1) time steps.

As for the HMM methods, the gain in computational complexity emerges when the cost of eval-
uating f̄ (i.e. the total time duration for each micro-evolution at the lower axes in Figures 1.1) is
bounded above byCε−α for someα < 1. In this paper, we develop a theory for which kernels
should be used in the the evaluation off̄ , and how long and how accurate each microscale evolution
should be for a given class of equations, so that the proposed methods become more computation-
ally efficient and flexible than the other conventional ones. We study the stability, convergence
and complexity of our algorithms. Typically, the computational complexity for an HMM scheme is
O(ε−γH−1) whereγ < 1 andH is the step size for the macroscale variableU .

The HMM technique can also be related to the operator splitting schemes used in meteorology [3]
or the mollified impulse scheme for Hamiltonian dynamics [9]. Some might even find resemblance
to the multirate methods, e.g. [10] and [22]. However, in these methods, the stiffness that comes
from the large eigenvalues are still resolved in time intervals independent ofε, and thus their com-
putational complexity is still formallyO(ε−1). We point out, however, that some of these methods
could be adopted as micro-solvers under our proposed methods in appropriate contexts.

Recently, Iserles [15] analyzed the accumulation of global error and showed that a class of “mod-
ified Magnus methods” permits larger time steps and exhibits good long term behavior for a class of
linear highly oscillatory systems. There are also methods that prepare the initial data such that the
effect of the stiffness will not appear in the solutions. Kreiss wrote a series of papers on stiff ODE
systems, see [18][19][20]. These result can be summarized by the “bounded derivative principle”.
However, in many common situations, initial values are given and the bounded derivative principle
cannot be applied.

In the context of solving systems with the unique invariant manifold, the HMM schemes prepare
the initial data naturally as a passive calculation to the effective force estimation. It is also clear that
the method of [11] can also be interpreted as a scheme that benefits from the bounded derivative
principle by by following the transients to project onto the slow manifold .

Finally, for certain class of singularly perturbed systems, hybrid analytic/numerical methods
[30, 31] and [33] have been proposed using related techniques. In these methods, an asymptotic
expansion in the orders ofε is generated so that each coefficient is the sum of a slowly varying
function and a oscillating one.

We point out that our averaging approach is not directly applicable to stochastic equations. In-
stead, multiple realizations might be used to speed up the convergence. We refer the readers to the
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work of [8][23] and [7]. There is also a related paper on the analysis of heterogeneous multiscale
method for ODE by E[5]. We should also point out here that one can generalize the HMM construct
to systems with more than one scale. However, we will restrict our attention to systems with two
scales in this paper.

The rest of this paper is structured as follows. In Section 2, we describe the framework of our
proposed methods, including the theory related to using compactly supported kernels for effective
force estimation. In Section 3, we start with a stability analysis of the simplest HMM ODE schemes
for stiff dissipative and oscillatory problems. This is followed by a more detailed exposition of
two major types of higher order variants of the simple HMM ODE schemes, namely, the ones that
are built from Runge-Kutta methods and those from linear multistep methods. Section 4 contains
numerical results of some model problems. These numerical results confirm the theoretical results
that we obtained in Sections 2 and 3. Finally, in the last section, we summarize this paper and also
discuss some additional aspects of our methods.

2. APPROXIMATION OFEFFECTIVE FORCE

2.1. Estimation of the effective force. After Step 1(b),uε,n is a known function, and so we simplify
our notation on the forces in this section by writingfε(t) instead offε(uε,n(t), t).

In our formulation, we need to estimate the effective force locally at a point using the microscale
data (Step 1(b)-(d)). Motivated by the analytic averaging techniques, see e.g. [1][2], we hypothesize
that the effective force of a system of interest can be defined by

f̄ (t) = lim
δ−→0

[
lim

ε−→0

1
δ

Z t+δ

t
fε(τ)dτ

]
.

We assume that̄f is slowly varying in the sense that

| dp

dtp f̄ (t)| ≤C for 0≤ p≤ s

for some constantC independent ofε. Our goal in this section to show that time filtering using a
kernelKp,q

η , defined below, withη = η(ε)−→ 0 asε−→ 0 converges tōf :

(2.1) Kp,q
η ∗ fε = Kp,q

η ∗
(

f̄ +gε(t)
)
−→ f̄ asε−→ 0.

In many situations,fε or gε assumes special forms such asfε(t) = fε(t, t/ε) that are periodic in
the second variable. For example,

duε

dt
= fε(uε, t) =

i
ε

λuε +φ(t),

has solution

uε(t) = eiε−1λt(u0 +
Z t

0
e−iε−1λsφ(s)ds).

The forcefε(t) = fε(u, t) = i
ε λuε +φ(t) is of the form fε(t, t/ε). In this case, we define

f̄ (t) =
Z 1

0
f (t,s)ds,

and

gε(t) = g(t,
t
ε
) = fε− f̄ (t).

In this part of the paper, we show (2.1) in the casesgε vanishes exponentially or oscillates at fre-
quencies proportional toε−1.
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We will useKp,q to denote the kernel space discussed in this paper.K ∈ Kp,q(I) if K ∈Cq
c(R)

with supp(K) = I , and Z
R

K(t)trdt =

{
1, r = 0;

0, 1≤ r ≤ p.

Furthermore, we will useKη(t) to denote the scaling ofK:

Kη(t) :=
1
η

K(
t
η

).

For convenience, we will also useKp,q to denote a function inKp,q(I) . We useK ∈ Kp,q([−1,0])
if δt∗ = 0 in Step 1 of the algorithm described in the previous section, andK ∈ Kp,q([−1,1]) if
δt∗ = η/2.

In the following proofs, we assume that supp(K) = [−1,1]. However, it is clear that the proofs
are also valid for the other case.

Notation2.1. We use the notationf [s](t) for thesth order integral off from 0 with a constant that is
specified from case to case:

g[s]
ε (t) =

Z t

0
g[s−1]

ε (y)dy+Cs.

Also, we will use f (s)(t) to denoteds f/dts. In particular, f [0](t) = f (0)(t) = f (t).
The following well known results show that with suitable kernels,Kη ∗ f̄ approximatef̄ well.

Lemma 2.2. The following are well known results.

(1) For any f∈W∞,p(R), K ∈Ks,q,

(2.2) |Kη ∗ f (t)− f (t)| ≤Cf ηmax(p,s+1).

(2) Let g∈C(R), then for any K∈Kp,q, ε > 0,

(2.3) |Kη ∗g(·/ε)| ≤ (
ε
η

)q||g[q]||∞||K||W1,q.

(3) If |g(t0, t)| ≤ g0exp(t0− t) for t0 ≤ t ≤ T, then for any K∈ Kp,q([−1,0])
T

Cq
c([−1,−ζ0])

for some0≤ ζ0 ≤ 1, then

|Kη ∗g(t0, ·/ε)(t0)| ≤C0

(
ε
η

)q

e−ζ0/ε||K||W1,q.

(4) If g ∈C(R), such that g(t +α) = g(t),
R α

0 g(t)dt = 0, for someα > 0 and |g(t)| ≤C for all
0 < ε < ε0. Then for any K∈Kp,q andε > 0,

|Kη ∗g(·/ε)(t)| ≤ Ĉ ·αq
(

ε
η

)q

||K||W1,q.

Proof. We omit the first two facts, since they are well known.
(3) Defineg[ j](t0, t) =

R t
t0 g[ j−1](t0,τ)dτ for j = 1,2,3, · · · . Then|g(t0, t/ε)[ j]| ≤ g0ε j exp(t0− t/ε)

for t0 ≤ s/ε≤ T. Hence, by (2), we have the desired estimate.
(4) Defineg[ j](t) =

R t
0 g[ j−1](s)ds−α−1 R α

0

R t
0 g[ j−1](s)dsdt, for j = 1,2,3, · · · . We haveg[ j](t +

a)−g[ j](t) = 0, is a periodic function with zero average and since∣∣∣g[1](t)
∣∣∣ =

∣∣∣∣α−1
Z α

0

Z t

0
g(s)dsd̄t−α−1

Z α

0

Z t̄

0
g(s)dsd̄t

∣∣∣∣
=

∣∣∣∣α−1
Z α

0

Z t

t̄
g(s)dsdt

∣∣∣∣
≤ αC,
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by induction, we have|g[ j](t)| ≤ α jC. Hence, induction by parts yields the desired estimate.�

We first investigate the dissipative case for which we average with a non-symmetric kernel in
Kp,q([−1,0]) whose support lies in[−1,0]. The following theorem shows that this approach lessens
the stiffness.

Theorem 2.3. Let fε(t) = f̄ (t) + g(t0, t/ε), where|g(t0,s)| ≤ C0exp(t0− s) for 0≤ t ≤ T. For
any K∈ Kp,q([−1,0])

T
Cq

c([−1,−ζ0]) for some0≤ ζ0 ≤ 1, then there exists constants C1and C2,
independent ofε andη, such that

E = |Kη ∗ fε(t)− f̄ (t)| ≤C1ηp +C2

(
ε
η

)q

e−ζ0η/ε||K||W1,q.

In the rest of this section, we concentrate on the oscillatory case.

Lemma 2.4. If g(t,s) = a(t)b(s), where b(s+ α) = b(s),
R s+α

s b(τ)dτ = 0, for someα > 0, and
a∈Cq(R) and||a(q)||∞ ≤M. Then for any K∈Kp,q,

|Kη ∗g(·, ·/ε)(t)| ≤Cαq(
ε
η

)q max
0≤r≤q

||a(r)||∞||K||W1,q.

Proof. Let K̃η(t,s) = η−1K((t−s)/η)a(s), thenK̃(·,s)∈Cq
c(R) and has the same support asK. We

apply integration by parts by treating̃K as our new kernel:

|Kη ∗g(·, ·/ε)(t)| =
∣∣∣∣Z K̃η(t,s)b(s/ε)ds

∣∣∣∣≤ εq
Z ∣∣∣K̃(q)

η (t,s)b[q](s/ε)
∣∣∣ds

Here,b[q] are constructed in the same wasg[q] in the proof for item (4) in Lemma 2.2. Assuming
thatη < 1, Z ∣∣∣∣ ∂q

∂yq K̃η(t,s)
∣∣∣∣ds =

Z ∣∣∣∣∣ q

∑
r=0

(
q
r

)
(−1

η
)r 1

η
K(r)(

t−s
η

)a(q−r)(s)

∣∣∣∣∣ds

≤ C̃
ηq ||a||W∞,q||K||W1,q.

||b[q]||∞ is bounded the same way as in Lemma 2.2. The estimate follows. �

Theorem 2.5. Let f(t,s) be 1-periodic in the second variable and∂r f (t,s)/∂tr is continuous and
bounded by Cf for r = 0, · · · ,σ+1, andσ > 0. Denote fε(t) = f (t, t/ε), and define

f̄ (t) =
Z 1

0
f (t,s)ds,

and

g(t,
t
ε
) = fε− f̄ (t),

then for any K∈Kp,q,

Kη ∗ ( fε− f̄ )(t) = C1||K||W1,q(
ε
η

)q +C2ησ+1.

Here defined in∂k

∂tk g[q] is defined in the proof.

Proof. Note that
R 1

0 g(t,s)ds=
R 1

0 ( f (t,s)− f̄ (t))ds= 0, and ∂k

∂tk g(t,s+1)= ∂k

∂tk g(t,s) for k= 0,1, · · · ,σ.
Define, for eachk = 1,2, · · · ,σ,

∂k

∂tk g[ j](t,s) =
Z s

0

∂k

∂tk g[ j−1](t, s̃)ds̃−
Z 1

0

Z τ

0

∂k

∂tk g[ j−1](t,s)dsdτ,
8



for j = 1,2,3, · · · . Then| ∂k

∂tk g[ j](t,s)| ≤Cf due to the periodicity of∂
k

∂tk g(t,s) in s.
Grouping the Taylor expansion ofg(t,s), Kη∗g(·, ·ε)(t) can be written as the sum ofI1+ I2, where

I1 =
σ

∑
k=0

1
η

Z t+η

t−η
K(

t−s
η

)
(t−s)k

k!
∂k

∂tk g(t,
s
ε
)ds,

and

I2 =
1
η

Z t+η

t−η

Z t

s
K(

t−s
η

)
(t−ξ)σ

σ!
∂σ+1

∂tσ+1g(ξ,
s
ε
)dξds.

Then, by Lemma 2.4,

|I1| ≤ C̃1

(
ε
η

)q

max
0≤k≤σ

sup
t

sup
s
| ∂k

∂tk g[q](t,s)| ||K||W1,q

σ

∑
k=1

ηk

k!
,

and

|I2| ≤ C̃2
(η)σ+1

(σ+1)!
sup

t
sup

s
| ∂σ+1

∂tσ+1g(t,s)| ||K||L1.

Hence, we can findC1 andC2 such that

Kη ∗ ( fε− f̄ )(t) = C1||K||W1,q(
ε
η

)q +C2ησ+1.

�

Remark2.6. If fε(t) = f (t,a(t)/ε), f (t,s) periodic ins, and 0< C1 ≤ |a′(t)| ≤C2, we can obtain
similar bounds by the above procedures.

Hence, we have the estimate for the oscillatory case:

Theorem 2.7.Let fε(t) = f (t, t/ε), where f(t,s) 1-periodic in the second variable and∂r f (t,s)/∂tr

is continuous for r= 0, · · · , p−1,For any K∈Kp,qthen there exists constants C1and C2, independent
of ε andη, such that

E = |Kη ∗ fε(t)− f̄ (t)| ≤C1ηp +C2(
ε
η

)q.

Furthermore, the error is minimized ifη is chosen to scale withεq/(p+q).

In the scheme illustrated by Figure 1.1, a non symmetric kernel should be used to evaluatef at the
beginning of each microscale evolution. The subfigures (a) and (b) in Figure 2.1 shows the graph
of such a kernel. On the contrary, in the schemes in Figure 1.2, one can use a symmetric kernel
to estimatef at the center of the time interval of each microscale evolution. A typical symmetric
kernel is shown in the right subfigure of Figures 2.1. Most of the numerical examples of this paper
are obtained from using the exponential kernelKexp∈K1,∞([−1,1]) :

(2.4) Kexp(t) = C0χ[−1,1](t)exp(5/(t2−1)),

with C0 adjusted so that||Kexp||L1(R) = 1. Another commonly used kernel:

Kcos(t) =
1
2

χ[−1,1](t)(1+cos(πt)).

Figure 2.2 demonstrates the residuals of usingKexp
0.1 andKcos

0.1 for averagingyn = cos(tn/ε), tn =
n∗2πε/11.

9
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FIGURE 2.1. (a) An example of an asymmetric kernel inK2,3([−1,0]). (b) A
shifted kernel inK1,2([−1,0]) for dissipative systems. (c) An example of a sym-
metric kernel inK2,3([−1,1]).

103

10−10

10−5

FIGURE 2.2. Averagingyn = cos(tn/ε), tn = n∗2πε/11, 0≤ tn≤ η. The horizontal
axis is 1/ε. The the circled data points are averages obtained byKexp

0.1 with respect
to differentε’s and crosses represent data points obtained by usingKcos

0.1 . The line
without crosses or circles are the graph ofCε for someC, adjusted so that the line
lies in its current location. The dashed line indicates second order accuracy with
respect toη.

3. ANALYSIS OF THE HMM SCHEMES

In the previous section, we presented the building blocks of an HMM scheme and the theory of
averaging using a special class of kernels. In this section, we show various properties of the HMM
schemes, including convergence.

We have to define what we mean by convergence such that it makes sense for very stiff problems
(ε� H). For a givenε > 0, all well known methods will converge as the stepsizeH → 0 and there
is no difference between stiff and nonstiff problems. For system (3.5), we will measure convergence
for the slow variablev and define the limiting errorE:

E = max
n

( lim
H→0

( sup
0<ε<ε0(H)

|U(tn)−Un|)),

with tn = nH, ε0(H)/H → 0 asH → 0.
10



We commence with linear systems. We remind the readers that in many of the dissipative cases
analyzed below, since the reconstruction operatorR and the compression operatorQ are the iden-
tities, there is no difference inuε andU after the transient. Thus we will useuε,n to denote the
approximation ofuε (and henceU) at tn. So in the following presentation, the our notation will
reflect this fact.

3.1. Linear systems. We first discuss the properties of the HMM schemes for linear constant co-
efficient equations; i.e.A(t) is a constant matrixA in (1.2).

The HMM operations for force evaluation in combination with the Runge-Kutta schemes or
Linear Multisteps schemes commute with the diagonalizerS and S−1. Take an HMM-LMM-rk
scheme for example, and for simplicity, we assume thatφ(t) = 0 in (1.2). The the force evaluation
at tn is

f̃ (Un, tn) =
2m

∑
j=0

hK(tn, t j)(I + p(hAε)) juε,n

= S
2m

∑
j=0

hK(tn, t j)(I + p(hΛε)) jS−1uε,n

With wn = S−1uε,n, andWn representing the macro variable (asU to uε,n), the original system is
equivalent tow′ = Λεw, and the force evaluation can be rewritten as

f̃ (Un, tn + t∗) = S
2m

∑
j=0

ω jK j(I + p(hΛε)) jwn = Sf̃ (Wn, tn + t∗).

Therefore, the HMM-LMM-rk scheme takes the form

k

∑
j=0

akSWn− j = H ∑bl Sf̃ (Wn−l ).

With the assumption thatS is independent ofε, the HMM solution forW is then equivalent to
S−1U . Hence, it suffices to investigate the stability and convergence issues by looking at the fully
diagonalized system

duε

dt
= λ( j)

ε uε,

for everyλ( j)
ε is an eigenvalue ofAε.

We present the stability and convergence properties of some basic HMM schemes built upon
Runge-Kutta or Linear Multistep Methods.

3.1.1. Dissipative systems.We consider the case whereλ( j)
ε < 0 and the stiff components decay

with an exponential factor in theε scale; i.e. the solution is attracted to the invariant manifold in
the ε time scale. The bounded derivative principle [20] applies to this case, and one can prepare
the initial data so that the fast scale is never excited. To prepare the initial data, one can simply
evolve the solutionuε for a small time durationη so thatuε is sufficiently close to or on the invariant
manifold. Thus for one-step HMM method, one can sett∗ = η in Step 1 of the Algorithm presented
in Section 2, and simply take the values off̄ (tn + η) = fε(uε(tn + η), tn + η); i.e, the kernelK is
the Dirac-δ function concentrated atη. Notice that one-step methods are particularly convenient
for these problems, sinceU(tn + η) = uε(tn + η), and the solutionuε is actually also obtained at
t l
k = t0+k(η+H)+ lh, 0≤ l ≤ µ, with η = mh. Hence, we will present the following theorems only
in uε instead of switching betweenU anduε.

11



When a linear multistep method is adopted as the macro-solver,uε(t0) cannot be used directly as
the initial values. Instead, one should prepare the initial value byQuε = K̃ ∗uε(t0), with K̃ ∈ Kp,q

η
depicted in the middle of Figure 2.1.

The following theorem shows the convergence of one-step HMM-RK-rk methods in the original
variableuε.

Theorem 3.1. Let uε(t) is the analytical solution for (1.2) with Aε(t) = Aε, and let uε,n be the
approximation at tn computed by an HMM-RK-rk scheme:

uε,n+1 = (I +P(HAε))(I +P(hAε))muε,n, uε,0 = uε(t0).

Assume that the Runge-Kutta scheme used is an s-stage, s′ order accurate scheme; i.e. P(z) is a s
degree polynomial in z.

Then for fixed H andε0, ε0 < H , there is a constant Cmicro, dependent on the micro-solver, and
n0 > 0 such that for n≥ n0

|uε,n−uε(tn)| ≤ Hs′

if

(1) ρ = |1+P(h/ε)|< 1,
(2) η = mh< H,
(3)

m≥
| log(Cmicro+Cmicromaxj |Hλ( j)

ε |s)
| logρ|

≥ logCmicro

| logρ|
+s

maxj | logHλ( j)
ε |

| logρ|
,

(4)

hs′ ≤ 1
Cmicro

εs+s′+1Hs′+1en0(H+η)/ε

η(εs+Hs)
.

Proof. As we argued earlier, it suffices to show the convergence of the scheme on the fully decou-
pled equations. Therefore, we prove our theorem for the case:

u′ε =−ε−1uε +φ(t).

Define(uε,n)l = (I +P(hAε))l uε,n, and the errorEn
l = uε(tn+ lh)−(uε,n)l , wheretn = t0+n(H +η),

andEn = En
0 = uε(tn)−uε,n, then

En
l+1 = (I +P(−h/ε))En

l + rn
l ,

where rn
l is the local truncation error of the scheme att l

n. Let Qh = (I + P(−h/ε)), and QH =
(I +P(−H/ε)), we have

En
m = (Qh)mEn

0 +
m−1

∑
l=0

(Qh)m−l−1rn
l ,

and

En+1 = (QH)(Qh)mEn +En
HMM +Rn,

whereEn
HMM = QH ∑m−1

l=0 (Qh)m−l−1rn
l can be considered as the local error committed by our HMM

scheme at each macrostep, andRn is the local truncation error for the step fromtm
n to tm

n + H.
Furthermore, letQHMM = (QH)(Qh)m, and assumeE0 = 0, we have

(3.1) En+1 =
n

∑
j=0

Qn− j
HMM(E j

HMM +Rj).

12



The local truncation errors are bounded by|rn
l | ≤ Cr · (h/ε)s′+1exp(−(nH + nη + lh)/ε), |Rn| ≤

CR(H/ε)s′+1exp(−(nH+nη)/ε), and

|En
HMM| ≤ ||QH ||

m−1

∑
l=0

||Qm−l−1
h || |rn

l |

≤ Cr
hs′+1

εs′+1 e−n(H+η)/ε||QH ||
m−1

∑
l=0

||Qh||m−l−1e−lh/ε.

We would like to show that whenh,η,andH satisfies certain conditions,||En+1|| ≤ Hs′ ; i.e. we
need to bound

n

∑
j=0

||QHMM||n− j(|E j
HMM|+ |Rj |).

It suffices to require that||QHMM||k≤ 1, |Ek
HMM| ≤Hs′+1, and|Rk| ≤Hs′+1 for 0≤ k≤ n. However,

we require, additionally, the stability conditions for the micro-solver:ρ = |1+P(−h/ε)| < 1, and
the HMM scheme:|I +P(−H/ε)| |I +P(−h/ε)|m≤ 1.

A sufficient condition for|Rk| ≤ Hs′+1 is

n(H +η)≥max(log
1

CR
,s′+1)ε(1+ | logε|) = n0.

For ansstage Runge-Kutta method,P is a polynomial of degrees. There is a positive constantCmicro

depending onP such that|1+P(−H/ε)| ≤Cmicro(1+ |H/ε|s), and the condition on the number of
microsteps needed is estimated by:

m≥ | log(Cmicro+Cmicro|H/ε|s)
| logρ|

≥ logCmicro

| logρ|
+s

| logH/ε|
| logρ|

.

|Ek
HMM| ≤ Hs′+1 implies

|1+P(−H/ε)| hs′η
εs′+1e−n(H+η)/ε ≤ Hs′+1,

leading to

hs′ ≤ 1
Cmicro

εs+s′+1Hs′+1en(H+η)/ε

η(εs+Hs)
.

�

We now turn to HMM-multistep schemes. Again, we consider the model linear system (1.2).
Since effective force estimation, i.e. Step 1, commutes with matrix multiplications, we may simply
consider the scalar casefε(uε) = λεuε. The effective forcef̄ (Un) is estimated by a kernel using
accurate microscale data obtained neartn :

f̄ (Un) = λhΣkKη(tn− tk)((uε,n)k +O(|λεh|p
′
).

In fact,(uε,n)k = Unexp(λε ·kh), and

f̄ (Un) = λΣkhKη(tn− tk
n)(e

λεkhUn +O(|λεh|p
′
)

= λUnA(K,λε,η,h)+O(|λεh|min(α,p′)),

whereα depends on the quadrature, andA(K,λε,η,h) denotes the weighted average of exp(λεkh),
0≤ kh≤ η. Hence, Equation (1.5) becomes

a0U
n+a1U

n−1+· · ·+akU
n−k = λHA(K,λε,η,h)(b0U

n+b1U
n−1+· · ·+bkU

n−k+O(|λεh|min(α,p′))).
13



Therefore, for stability, we need the root conditions for

(a0−λHA(K,λε,η,h)b0)zk + · · ·+(ak−λHA(K,λε,η,h)bk) = 0;

i.e. |z| ≤ 1 for non-multiple root, and|z| < 1 for multiple root.A(K,λε,η,h) can be estimated by
the results in Section 2.1.

3.1.2. Dissipative systems with variable coefficients.We consider variable coefficient systems (1.2)
with φ(t) = 0.

Theorem 3.2. For fixed H and0 < ε < ε0 < H, the HMM-FE-fe scheme

uε,n+1 = (I +HAε(tn +η))Πm−1
j=0 (I +hAε(tn + jh))uε,n.

is stable if h and n satisfies

C(ε0 +C̃H) · (1−C̃
h
ε
)n · hn

εn+1 ≤ 1,

for some constant C. Hereλ( j)
ε (t) are the eigenvalues of Aε and satisfymaxj,t∈[0,T] |λ

( j)
ε (t)|< C̃ε−1.

Proof. To simplify our notation, we will useAn,k andSn,k to denoteAε(tn +kh) andS(tn +kh),and
An,k = Sn,kΛn,kS

−1
n,k. Fork≤m−1

(uε,n)k+1 = Sn,k(I +hΛn,k)S−1
n,kSn,k−1(I +hΛn,k−1)S−1

n,k−1 · · ·Sn,0(I +hΛn,0)S−1
n,0(uε,n)0.

Hence,
||(uε,n)k+1|| ≤Πk

j=0||I +hΛn, j || ·Πk
l=1||S−1

n,l Sn,l−1|| · (||Sk|| ||S0||).
We know that the columns ofSn, j consist of the right eigenvectors ofAn, j . Using mean value
theorem, we can write

Sn, j−1 = Sn, j −hBn, j

By the perturbation theory of linear operators, see e.g. [16],

Bn, j = (bl1l2) =
{

ãl1l2/(λ(l1)
ε −λ(l2)

ε ), if l1 6= l2
0, if l1 = l2

.

whereλ( j)
ε are the eigenvalues ofAε(tn + jh). Under the hypotheses on the eigenvalues,

Bk = ε−1B̃k = ε−1
(

B11 B12

B21 B22

)
,

andB22 is a(d−k0)× (d−k0) matrix of O(1), while B11, B12 andB21 are ofO(ε)

||S−1
i Si−1|| = ||S−1

i (Si − ε−1hB̃i)||
= ||I − ε−1hS−1

i B̃i ||
≤ Constd h/ε.

Our chosen HMM-FE-fe scheme, in particular, can be written as

ym+1 = (I +HAε(tm))Πm−1
j=0 (I +hAε(tm+ jh))y0.

Now if hλ(t) is always inside the regions of absolute stability for the forward Euler scheme; i.e.

hmaxj,t∈[0,T] |λ
( j)
ε (t)|= C̃h/ε < 1, we then have

||ym+1|| ≤ Const||I +HA(tm+1)|| · (1−C̃h/ε)m ·Πm−1
i=0 ||S

−1
i Si−1||

≤ Const(1+C̃H/ε) · (1−C̃h/ε)m · hm

εm

14



Hence we proved that HMM-FE-FE is stable if

C(ε0 +C̃H) · (1−C̃h/ε)m · hm

εm+1 ≤ 1

for all 0 < ε≤ ε0. �

3.1.3. Oscillatory systems.Define D+φ j := (φ j+1− φ j)/h, and D−φ j := (φ j − φ j−1)/h, and the
discrete semi-norm for grid function:||D−φ||h := ∑m

j=0 |D−φ j |h. The following lemma shows the
property of effective force estimation in a discrete setting (this is in parallel to Lemma 2.2):

Lemma 3.3. Let gj = (1+P(ih/ε)) j = D+G j , G0 = 0 and P(z) = ∑s
ν=1cνzν. Let w= {w j ∈ R :

w j = 0 for j ≤ 0 or j ≥m}, and CP = max1≤ν≤s|cν|, then

(3.2) |
m

∑
j=0

w jg jh| ≤Cpε(1+
h2

ε2 )m/2||D−w||h.

In particular, if wj = K(− jh/η)/η corresponds to the grid values of the kernel Kη, then|D−w j | ≤
η−2||K′||∞ whereη = mh, and if0 < h/ε < ρ0 < 1, then

(3.3) |
m

∑
j=0

w jg jh| ≤Cp
ε
η

exp(ηhε−2/2)||K′||∞.

Proof. This is an application of summation by parts.∑m
j=0w jg jh= ∑m

j=0w j(G j+1−G j)=−∑m
j=0D−w jG jh.

Since,Gn+1 = Gn +hgn = (Gn−1 +hgn−1)+hgn · · ·= ∑n
j=0g jh, G0 = 0,

m

∑
j=0

w jg jh =
m

∑
j=0

D−w jG jh. = h2
m

∑
j=0

D−w j
(1+P(ih/ε)) j+1

P(ih/ε)
.

With the hypothesis that 0< h/ε < 1, there is a constantCp depending only on the polynomialP
such that

|1+P(ih/ε)|m≤Cp(1+h2ε−2)m/2.

Hence we have (3.2). In particular, ifw j = Kη(− jh), then

|D−w j | = |1
η

(
K(− jh

η )−K(−( j−1)h
η )

h
)| ≤ η−2||K′||∞.

With mh= η,

|
m

∑
j=0

w jg jh| ≤ Cp
ε
η

exp(ηhε−2/2)||K′||∞.

�

The following stability result is a direct consequence of the above lemma.

Theorem 3.4. Consider HMM-FE-rk methods with uniform macroscale step:

Un+1 = (1+H
m

∑
j=0

hK̃n
j (1+P(

ih
ε

)) j)Un,

whereK̃ j
n = K( tn− jh

mh ) is the discretization of the kernel used, and P(z) = ∑s
ν=1cνzν is the polynomial

corresponding to the Runge Kutta scheme. Set CRK = max1≤ν≤s|cν|.For fixed H,ε, if h is chosen such
that0 < h/ε < 1 andη = mh, m> 2, then

|Un+1| ≤ exp(CRKnH
ε
η

eηhε−2/2)|U0|.
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The reason that we choosem> 2 is to reflect our true algorithm. If we choosem= 1 for example,
the kernel used in our force evaluation is not resolved at all. In fact, the boundary conditions will
result in the “summation” to be zero. In a later part of this section, we will analyze a model nonlinear
problem. There, we will estimate how far the discrete operations approximate the continuum-level
HMM operations such as convolution with a kernel.

We see that in this coarse estimate from the discrete scheme, the kernel estimation lessens the
amplification factor from exp(H2ε−2/2) to exp(Hε/ηexp(ηhε−2/2)). (We omit the constants here
for convenience. ) We also remark that the same estimate holds (with a different constant, of course)
if a variable time step HMM-FE-RK is used.

Theorem 3.5. HMM-LF-FE for u′ = iε−1u is

(3.4) Uk+1 = Uk−1 +2H
m

∑
j=0

hK̃ j(1+
ih
ε

) jUk.

Fix q> 0, for any given H, ε, T = nH, if η = mh<C0ε1/q, and h<C1ε2−1/q, then there is a constant
C̃ independent ofη and h such that

|Uk| ≤ exp(C̃hε1−1/qT),

for 1≤ k≤ n.

Proof. Direct calculations involving summation by parts show:

Uk+1 = Uk−1 +2HhUk
m

∑
j=0

D−K̃ j
−(1+ ih/ε) j

ih/ε
h

= Uk−1 +2εhHUk
m

∑
j=0

D−K̃ j(1+h2ε−2) j/2ei j θ,

where(1+h2ε−2)1/2exp(iθ) = (1+ ihε−1).
Let γm = ∑m

j=0D−K̃ j(1+ h2ε−2) j/2exp(i j θ), and ρ = εhH > 0. The characteristic roots for

(3.4) arez= ργm± (1+ ρ2γ2
m)1/2, and|z| ≤ e2ρ|γm|. From Lemma 3.3, we have|γm| ≤ ||K′||∞(1+

h2ε−2)m/2/η. Therefore,

|z|n ≤ exp(2
ε
η

h(1+h2ε−2)m/2||K′||∞T).

By the hypotheses,h = C2ε2−1/q, (1+h2ε−2)m≤ exp(ηhε−2)≤C4, and

|z|n ≤ exp(C̃hε1−1/qT).

�

Remark3.6. The factorε1−1/q in the estimate above shows the discrete averaging effect.

3.2. Nonlinear systems.Our main focus has been to discuss the HMM technique for stiff ODEs
in general and to develop the convergence theory for linear problems. In this section, we shall
briefly consider nonlinear problems and start with a simple class of systems. The purpose is to
present examples for which it is easy to see how HMM methods converge but for which the standard
ODE methods for stiff problems do not work. After the analysis, we shall also give numerical
approximations of more general nonlinear systems.
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3.2.1. Simple analytical examples.A simple class of systems has the form

(3.5)

{
x′ = f I

ε (x,y, t) = iε−1x+ f I (x,y, t)
y′ = f II (x,y, t),

with initial conditionsx(0) = x0 andy(0) = y0, and Lipschitz continuous functionsf I and f II .
Let us first give an example for which the implicit Euler method does not converge.

Example 3.7. Our first example to show that HMM schemes converge asε→ 0 is{
ẋ = iε−1x
ẏ = |x|2 ,

(
x0

y0

)
=
(

1
0

)
,

whose solution is {
x = eiε−1t

y = t
.

In this case, we know that the effective force of the system is

f̄ =
(

0
1

)
.

Typical HMM solution is {
Xn+1 = C

(
ε
η

)q
eiε−1τn

Yn+1 = tn
,

with τn 6= tn, andtn = nH.
A typical stiff implicit method resembles the Implicit Euler scheme which will generate the

solution {
xn+1 = (1− iH/ε)xn

yn+1 = yn +H|xn+1|2 .

As ε→ 0,

xn →
{

1,n = 0
0,n≥ 1

,

and

yn → 0.

(xn,yn) is apparently a wrong solution.

Notice that the trapezoidal rule works for the above example, but fails for slightly more nonlinear
examples.

Example 3.8. {
ẋ = iε−1x
ẏ = |x2−1|2 ,

(
x0

y0

)
=
(

1
0

)
,

whose solution is {
x = eiε−1t

y = t
2π

R 2π
0 (2−2cosθ)dθ

.

However, trapezoidal rule, in the limit ofε→ 0, will give xn = 1 or−1, andyn = 0.

We point out here a situation in which the simple HMM constructions, though stable, do not yield
correct results.
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Example 3.9. Consider (3.5). Letuε = (x,y) solves (3.5) withφ = φ1 ≡ 1 andx(0) = x0, and
x̂ε = (x̂, ŷ) solves (3.5) withφ(x̂, ŷ, t) = φ2 = x̂1 and x̂(0) = x0. Note that under the settings onφ,
x(t), ŷ(t) is independent ofy(t) andŷ(t).

One can write down the explicit forms ofuε andûε:{
xε(t) = eit/ε(x0− εi)+ εi

x̂ε(t) = x0eteit/ε .

Therefore, we know that asε → 0, both x and x̃ converge weakly to 0 as well asφ1 andφ2. Let
Un = (Xn,Yn) andÛn = (X̂n,Ŷn) denote the corresponding macroscopic variables constructed by a
HMM scheme. At a given time step, the direct averaging strategy (Step 1, with the identity operator
as the reconstruction operatorR), proposed earlier will approximate the weak limit ofφ1 andφ2 and
yield in the limitXn = X̂n = x0.

If the quantity|x| is needed in the equation fory, e.g. if f II (x,y, t) = |x|2, then the proposed HMM
schemes do not converge for the problem withφ = φ2, since Step 1 evaluates̃f II (tn) = |X̂n| ≡ x0.
However, f̄ II = |x̂|2 = |x0|2e2t .

3.2.2. Model nonlinear oscillatory example.Let uε = (xε,yε) be the solution int ∈ [t0,T1] for

(3.6)

{
d
dtxε = i

εxε + f I (xε,yε)
d
dtyε = f II (xε,yε),

with initial conditionsuε(t0) = u0 = (x0,y0). Let xε = eiε−1twε. Then(wε,vε) solves the following
system:

(3.7)

{
d
dtwε = e−iε−1t f I (eiε−1twε,vε)
d
dtvε = f II (eiε−1twε,vε),

with initial conditionswε(t0) = x0 andvε(t0) = y0.
We define the averaged force

(3.8)

{
f̄ I (x,y) = 1

2π
R 2π

0 e−iθ f I (eiθx,y)dθ
f̄ II (x,y) = 1

2π
R 2π

0 f II (eiθx,y)dθ.

Denote(w̄, v̄) as the solution for

(3.9)

{
d
dt w̄ = f̄ I (w̄, v̄)
d
dt v̄ = ḡII (w̄, v̄),

with initial conditionsw̄(t0) = u0 andv̄(t0) = v0,
In the following discussion, we will assume thatf I and f II are smooth and bounded. However,

most analysis carries over under a more relaxed condition thatf I and f II are Lipschitz continuous.
We notice that 0< ε ≤ ε0, there is a timeT1 and a constantM such that the family of solutions
(wε,vε) to (3.7) exist and are bounded uniformly byM; i.e. |wε(t)|+ |vε(t)| ≤M for all t ∈ [t0,T1],
for all ε ∈ (0,ε0], hence|xε(t)|+ |yε(t)| ≤ M. This can be established from the construction of
solutions through Picard’s iterations. Hence, given Lipschitz continuous functionsf andg, we also
obtain a bound on the maximal values of| f I (x,y)| and| f II (x,y)| as long as|x|+ |y| ≤M. Hence, in
the remaining of this section, we will just assume thatf I and f II are bounded functions.

Theorem 3.10.There exists T′ and a constant C such that for t0 ≤ t ≤ T ′, |wε− w̄|+ |vε− v̄| ≤Cε.

1This equation does not fall into the class of linear system that we considered in the previous section.
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Proof. From basic existence theory, due to the smoothness assumption off I and f II , and conse-
quently f̄ I and f̄ II , ∃T ′ > t0 such that both(wε,vε) and(w̄, v̄) exist in[t0,T ′].

We bound the differences ¯w−wε andv̄−vε for t ∈ [t0,T ′]. Let L̄ be a positive constant such that
| f̄ I (x1,y1)− f̄ II (x2,y2)| ≤ L̄(|x1− x2|+ |y1− y2|) and| f̄ II (x1,y1)− ḡ(x2,y2)| ≤ L̄(|x1− x2|+ |y1−
y2|).

|w̄(t)−wε(t)| = |
Z t

t0
f̄ I (w̄(τ), v̄(τ))−e−iτ/ε f I (eiτ/εwε(τ),vε(τ))dτ|

= |
Z t

t0
f̄ I (w̄(τ), v̄(τ))− f̄ I (wε(τ),vε(τ))dτ|+

|
Z t

t0
f̄ I (wε(τ),vε(τ))−e−iτ/ε f I (eiτ/εwε(τ),vε(τ))dτ|

≤ (t− t0)L̄ sup
τ∈[t0,T̄]

(|w̄(τ)−wε(τ)|+ |v̄(τ)−vε(τ)|)+ I1,

whereI1 = |
R t

t0 f̄ I (wε(τ),vε(τ))−e−iτ/ε f I (eiτ/εwε(τ),vε(τ))dτ|. We shall show that 0≤ I1 ≤Cε for
some constantC.

Due to the periodicity of exp(iτ/ε), we can write down the above integrals as sums of averages:Z t

t0
e−iτ/ε f I (eiτ/εwε(τ),vε(τ))dτ

=
n

∑
i=0

Z ti+2πε

ti
e−it/ε f I (eit/εwε(ti),vε(ti))dt+Ri + Iε, 0≤ t− tn ≤ 2πε,

whereIε =
R t

tn eiτ/ε f (e−iτ/εwε(τ),vε(τ))dτ,

Ri =
Z ti+2πε

ti
e−it/ε

(
f I (eit/εwε(t),vε(t))− f I (eit/εwε(ti),vε(ti))

)
dt,

tn

∑
i=0

|Ri | ≤
tn

∑
i=0

2πL̄|| f ||∞ε2 ≤ 2πL̄T ′|| f ||∞ε;

and|Iε| ≤ ε|| f ||∞.
The main summation

n

∑
i=0

Z ti+2πε

ti
e−it/ε f (e−it/εwε(ti),vε(ti))dt =

n

∑
i=0

ε
Z 2π

0
e−iθ f (eiθwε(ti),vε(ti))dθ

=
n

∑
i=0

2πε · 1
2π

Z 2π

0
e−iθ f (eiθwε(ti),vε(ti))dθ

is a Riemann sum of
R t

t0 f̄ (wε,vε)dτ. HenceI1 ≤CI1ε.
Similarly, Z t

t0
f II (eiτ/εwε(τ),vε(τ))dτ

=
n

∑
i=0

Z ti+2πε

ti
f II (eit/εwε(ti),vε(ti))dt+ R̃i + IIε,

with ∑tn
i=0 |R̃i | ≤ εC3 and|IIε| ≤ εC4, and

n

∑
i=0

Z ti+2πε

ti
f II (eit/εwε(ti),vε(ti))dt

is a Riemann sum for
R t

t0 f̄ II (wε,vε)dτ.
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Therefore, fort0 ≤ t ≤ T ′, I1 + I2 ≤Cε for some constantC. �

In the remainder of this section, we assume that the functionf I in (3.6) has the property:

f I (x,y, t) = f I (eiθx,y, t), ∀θ ∈ R.

The following lemma shows how well a kernel inKp,q([−1,0]) estimates the effective forces if
given the exact data. For convenience, we drop theε subscript inxε andyε.

Lemma 3.11. Let (x,y) solve the equations (3.6) for tn ≤ t ≤ η with initial data x(tn) = w̄n, and
y(tn) = v̄n, and let f̄ I , f̄ II be defined in (3.9). Let w(t) = ei(t−tn)/εx(t), and v(t) = y(t), then w,v solve
equations (3.7). We have the estimates:

Eker(w̄n, v̄n, tn; f I
ε ) : =

∥∥Kη ∗ f I
ε (x,y, ·)(tn)− f̄ I (w̄n, v̄n)

∥∥
≤ CI η(

ε
η

)q||K(q)||∞ +Cεq−1/ηq

and

Eker(w̄n, v̄n, tn; f II ) : =
∥∥Kη ∗ f II (u,v)(tn)− f̄ II (w̄(tn), v̄(tn))

∥∥
≤ CII (

ε
η

)q||K||W1,q +ηL f II (|| f I ||∞ + || f II ||∞).

for some constants CI and CII independent ofε andη.

Proof. We first derive the bound onEker(w̄n, v̄n, tn; f II ). With w(s) = w(tn) + (s− tn) f I (w̃n, t̃n),
wherew̃n comes from mean value theorem, we have

Kη ∗g(u,v)(tn) =
Z tn+η

tn
Kη(t−s) f II (eis/εw(tn),v(tn))ds

+
Z tn+η

tn
Kη(t−s)(s− tn)

(
eis/ε∂1 f II f I +∂2 f II f II

)
ds,

where∂1 f II and∂2 f II denote the partial derivatives off II with respective to its first and second
arguments, respectively. Thus the second integral is bounded above byηL f II (|| f I ||∞ + || f II ||∞), and
L f II is a Lipschitz constant off II . Let f̃ II (t) = f II (eit w̄n, v̄n), then f̃ II is a 2π periodic function.
Furthermore, we notice that

1
2π

Z 2π

0
f̃ II (t)dt =

1
2π

Z 2π

0
f II (eit w̄n, v̄n)dt = f̄ II (w̄n, v̄n) =: f̄ II

n ,

and thatf̃ II (t)− f̄ II
n is a 2π periodic function with zero average. Thus by Lemma 2.2, we haveZ tn+η

tn
Kη(t−s) f II (eis/εw(tn),v(tn))ds =

Z tn+η

tn
Kη(t−s)( f̃ II (s)− f̄ II

n )ds+
Z tn+η

tn
Kη(t−s) f̄ II

n ds

= CI (
ε
η

)q||K||W1,q + f̄ II
n .

Therefore, we have∥∥Kη ∗ f II (x,y)(tn)− f̄ II (w̄n, v̄n)
∥∥≤CI (

ε
η

)q||K||W1,q +ηLg(|| f I ||∞ + ||gII ||∞).

We now prove the first inequality. Sincex(t)= exp(i(t−tn)/ε)w̄n+
R t

tn exp(i(t−s)/ε) f I (x(s),y(s))ds,

Kη ∗ fε(tn) =
i
ε
Kη ∗

(
eiε−1(·−tn)w̄n +

Z ·

tn
eiε−1(·−s) f I (x(s),y(s))ds

)
(tn)

+Kη ∗ f I (x,y)(tn)

= I1 + I2 +Kη ∗ f I (x,y)(tn),(3.10)
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whereI1 = i
ε w̄nKη ∗exp(iε−1(· − tn)), and I2 is the second term in the convolution. Thus||I1|| ≤

C0εq−1/ηq by Lemma 2.2. Integration by parts shows:

I2 =
i
ε
Kη ∗

(Z ·

tn
eiε−1(·−s) f I (x(s),y(s))ds

)
(tn)

= −Kη ∗ f I (x,y)(tn)+e−itn/ε f I (w̄n, v̄n)Kη ∗ei ·/ε +Kη ∗
(Z t

tn
eiε−1(t−s) d

ds
f I (x(s),y(s))ds

)
.

Notice that the first term cancels with the last term in (3.10). By Lemma 2.2, the second term
|exp(−iε−1tn f I (w̄n, v̄n)Kη ∗eiε−1t | ≤CK | f I (w̄n, v̄n)|εq/ηq. We now analyze the last term:

II = Kη ∗
(Z t

tn
ei(t−s)/ε d

ds
f I (u(s),v(s))ds

)
(ξ)

=
Z tn+η

s=tn

Z tn+η

t=s
Kη(ξ− t)eiε−1te−iε−1sb(s)dtds

where

b(s) =
d
ds

f I (x(s),y(s))

=
d
ds

f I (w(s),v(s)) (w(s) = ei(s−tn)/εx(s), f (x,y) = f (w,v))

= ∂1 f I (w,v)e−iε−1t f I (w,v)+∂2 f I (v,s) f II (x,y).

Switching the order of integrations, we have

|II | ≤
Z tn+η

s=tn
|b(s)|ds

∣∣∣∣Z tn+η

t=tn
Kη(tn− t)eiε−1tdt

∣∣∣∣≤ constη||b||∞(
ε
η

)q||K(q)||∞.

Hence, ∥∥Kη ∗ f I
ε (u,v, ·)(tn)

∥∥≤CI η(
ε
η

)q||K(q)||∞.

�

Now we analyze the local errors made in one step of the HMM-FE-* schemes by grouping the
errors according to how they are committed in the HMM process. We first remind the readers of the
notations.

LetU(tn) = (X(tn),Y(tn)) be the solution of the effective equation (1.4) at grid nodestn = t0+nH,
with initial conditionU(t0) =U0 = (X0,Y0). LetUn = (Xn,yn) denote the numerical approximations
for U(tn) produced by the chosen HMM-FE-ϒ scheme, hereϒ is the selected micro-solver. Define
En =U(tn)−Un. Assuming thatf̄ can be evaluated with no error, we first have the standard relation:

En+1 = En +H( f̄ (U(tn))− f̄ (Un))+En
macro= (I +H D f̄n)En +En

macro,

whereEn
macro is the usual local truncation error of the Forward Euler scheme, andD f̄n is the Ja-

cobian matrix obtained through mean value theorem. Next, in HMM schemes, sincef̄ is actually
approximated through Step 1 in the algorithm described in Section 2.1, there are further sources of
errors coming from microscopic processes from Step 1(a)-(d). Denote byEHMM the errors made
altogether from Step 1(a)-1(d). It becomes clear thatEHMM = E (a)

HMM + E (ϒ)
HMM whereE (a)

HMM cor-

responds to the analytical errors committed andE (ϒ)
HMM corresponds to the discretization error. We

have been analyzingE (a)
HMM in this paper and the bounds appear in the Theorems in Section 2 and

Lemma 3.11.E (ϒ)
HMM = E (ϒ)

micro+ Equad is the sum of the global error in evaluatingfε accumulated
in Step 1(b), and the quadrature errorEquad corresponds to Step 1(d). The justification of using

R= Q = I , the identity operator, is absorbed intoE (a)
HMM. Here, it is understood that the terms in
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EHMM = En
HMM actually depend onU(tn), fε andtn. We remark that there are problems not consid-

ered in this paper in whichRor Q require further analytical and numerical approximations.
In summary, for a HMM-FE-ϒ scheme, we have

En+1 = (I +HD f̄n)En +HEn
HMM,

whereEn
HMM = E (a)

HMM +E (ϒ)
micro+Equad. Writing An =

(
I +HD f̄n

)
for convenience, we have

(3.11) En+1 = Πn
j=0A jE

0 +
n+1

∑
j=1

Πn
k= jAk

(
HE j−1

HMM +E j−1
macro

)
.

In Forward Euler scheme, the l||Emacro|| ≤CtruncH2. Assuming that the macro-solver is stable, i.e.
||A j || is bounded

||A j || ≤Camp1eµH, for0≤ j ≤ n.

then if we have||E j−1
HMM|| ≤CHmmH for someε ≤ ε0(H), andη ≤ η0(H), andε0,η0 decrease with

H, we have a bound on the global error of the macro-solver inH.
Assuming that we use a 4-th order Runge-Kutta scheme in Step 1(b), in the time interval[tn, tn +

η], the global error in the approximation ofuε is Crk4h4ηε−5, where the last factorε−5 comes from

d(5)uε/dt(5); therefore the error in evaluatingfε, i.e. E (ϒ)
micro, becomes̃Crk4h4ηε−6.

By Lemma 3.11,

||E (a)
HMM|| ≤ C̃εq−1/ηq +ηL f II (|| f I ||∞ + || f II ||∞).

If we take composite trapezoidal rule as our numerical quadrature. For general smooth functions,
||Equad|| ≤ C̃quadh2. However, due to the regularity of the kernel used,K ∈Cq

c(R), our integrant is
smooth and periodic, and therefore its Fourier spectrum decays very fast. Since trapezoidal rule is
exact fore2πi·lx for l = 0, · · · ,2m, ||Equad|| is typically very small and negligible.

Assuming that forT0 ≤ t ≤ T1, the analytical solutionU = (X,Y) of the effective equations (3.9)
are bounded bȳM :|X(t)|+ |Y(t)| ≤ M̄, and that|Xk||+ ||Yk|| ≤ M̄ +m′ for k = 0,1, · · · ,n < N and
T0 +Nh≤ T1. Assume in addition that we start with the exact initial conditions. The error (3.11) is
bounded by

|En+1| =
n+1

∑
j=1

Πn
k= j ||Ak||

(
H||E j−1

HMM||+ ||E j−1
macro||

)
≤ C1eµ(T1−T0)H

(
1+

n+1

∑
j=1

||E j−1
HMM||

)
.

Forη =CηH−1/qε(q−1)/q, h=Chη−1/4H1/4ε1+2/4, ||E j
HMM|| ≤CM̄+m′H, for 0≤ j ≤n, and|En+1| ≤

Cexp(T1−T0)H.
With H andT1−T0 sufficiently small, that is, we have

||Xn+1||+ ||Yn+1|| ≤ M̄ + ||En+1|| ≤ M̄ +m′.

Thus we can iterate our arguments and obtain the following theorem:

Theorem 3.12.Given an HMM-FE-rk4 scheme. Let Un = (Xn,Yn) be the solution at tn = T0+nH,
computed by this scheme applied to (3.6), and U(t) be the analytical solution to (3.9). Let H,h,η
be respectively the macro-stepsize, micro-step size, and the length of each microscale evaluation.
Then there are constants C such that for h≤ h0(H,ε), η≤ η0(H) < H, H < H0, and for t∈ [T0,T1],
the global error En := U(tn)−Un is bounded above by H:

|Xn−X0| ≤CH,
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and
|Yn−Y(tn)| ≤CH,

for 0≤ n≤ N, where T0 +NH = T1.

3.3. Complexity estimates. In the previous subsection, we see in an HMM-FE-rk4 scheme for
the oscillatory problem (3.9), how a the kernel support sizeη and the step sizeh for micro-solver
should scale (up to constants) with the macro-solver step sizeH. This is done trough balance
different errors to the same order inH. We now describe this balancing of errors for oscillatory
problems of a general HMM-X -ϒ scheme. The dissipative case is analyzed similarly.

Assume that the macro-solverX is ans-th order accurate scheme, the micro-solver isr-th or-
der accurate, andK ∈ Kp,q

η is used. We want our kernel estimation errorEHMM = || f̄ (Un)−
∑ j ω jK j f (uε(tn)|| bounded byCKHs so that it is comparable to the local truncation error of the
given macro-scheme. Similar to what we have seen previously, the error in approximatinguε in
Step 1(b) is

Chrηε−(r+1),

where the factorε−(r+1) comes fromd(r+1)uε/dt(r+1), and thus

|E (ϒ)
micro| ≤C||∂ fε

∂u
||∞ηhrε−(r+1) ≤ C̃ηhrε−(r+2).

Hence we needηhrε−(r+2) = C′Hs, so omitting the constant,

h = η−1/rHs/rε1+2/r .

From Section 2, we know that, for suitable problems, the force estimation error of a kernel inKp,q

is

(3.12) E (a)
HMM ≤C1ηp +Cgε(

ε
η

)q.

Cgε in our case is proportional to||∂ fε/∂uε||∞, thus

Cgε(
ε
η

)q = C
εq−1

ηq .

Omitting the constants, the two terms in (3.12) is or the same order whenη is proportional to
η∗(ε) = ε(q−1)/(p+q), and theεq−1/ηq term dominatesηp for η < η∗(ε). To minimize the number
of microscale time steps, we wantη to be small. Hence, we want to scaleη < η∗(ε) such that the
dominating term

εq−1

ηq ∼ Hs =⇒ η = H−s/qε(q−1)/q.

The constraintη < η∗ is satisfied if
H > ε−ω

whereω > 0 is a constant found by balancing all the exponents involving positive integersp andq.
Hence, withη = H−s/qε1−1/q,

# micro timesteps=
η
h

= H−αε−β,

where

α =
rs+qs+s

qr
,β =

q+ r +1
qr

> 0,

sincep,q, r are positive integers, 0< β < 1. Assuming that 1/H macro steps are needed to reachT,
the total complexity is

# total HMM steps= H−1−αε−β ≤C.
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Example 3.13. In the following, we give a really conservative error estimate for an HMM-FE-rk4
method using a kernel inK2,5. (s= 1, r = 4, p = 2,q = 5).

• Global error inη-interval: rk4 givesh4ηε−5. The last factorε−5 is fromd5z/dt5.
• E4 scales withH gives:ηh4ε−6 = H.
• Error in the approximation of̄f : ε4/η5 = H

Thus,η = ε4/5H−1/5 and correspondinglyh= ε6/5H6/5. An estimate for the number of flops for the
HMM-FE-rk4 method withη/h micro steps for each of theN∼ 1/H macro steps is

# of Flops=N
η
h

= ε−1/2H−3/2.

We compare this particular HMM-FE-rk4 method to other methods. Any explicit methods will
need a step size of the order ofε to resolve the oscillations and to be stable. The complexity then
is proportional toε, which makes the computation impossible, let along other properties such as,
possibly, unnecessary damping in the solution. These evidences suggest that our HMM-FE-rk4 is
superior.

4. ANALYTICAL AND NUMERICAL EXAMPLES

In this section, we apply our schemes to a few examples. We first present some numerical results
on certain interesting nonlinear systems. For each fixedε, our numerical tests verify the results for
the HMM schemes developed in the previous section.

We set up our numerical simulations as follows. The numerical approximations are computed in
the time interval[0,T1] using a macro step sizeH ∈ {T1/n j : n j = 10+10j, j = 0,1,2, · · · ,7}. We
useH j to denoteT1/n j , h j for the corresponding micro step size, andη j for the kernel support size.
With a givenε, and the quadruple(p,q, r,s) representing that a kernel inKp,q(I) is used in Step
1(d), as-th order macro-solver andr-th order micro-solver is used in the chosen HMM scheme, we
determineη j andh j according to our discussion earlier:

η j = CηH−s/qε1−1/q,

h j = Chη−1/rHs/rε1+2/r .

We compute the absolute errors in theY component defined by

e( j)
L1 =

T1/H j

∑
n=1

|Yn−Y(nHj)|H j ,

and
e( j)

∞ = max
1≤n≤T1/H j

|Yn−Y(nHj)|.

Finally, these errors are plotted in loglog plots in each of the following examples. In the follow-
ing subsections, as notations for the adopted macro-solvers, AB2 stands for the 2nd order Adam-
Bashforth scheme, LF for Leapfrog, FE for forward Euler scheme, and for the micro-solver, rk4
stands for the common 4th order explicit Runge-Kutta scheme.

4.1. Stiff oscillatory example. We demonstrate some numerical results on a similar example:

(4.1)

{
ẋ = iε−1(x−y)+ i(y− t)+1
ẏ = i(y− t)+ |x−y|2 ,

(
x0

y0

)
=
(

2
1

)
,

with solution
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{
x = eiε−1t +eit + t
y = eit + t

.

Before applying HMM ODE schemes to this system, we remark that this systemis in the class of
nonlinear equations that we have considered in the previous section. System (4.1) after a linear
transformation(w,y) = (x−y,y), becomes{

ẇ = iε−1w−|w|2 +1
ẏ = |w|2 ,

(
w0

y0

)
=
(

1
0

)
,

which is obviously in the form to which our convergence theory applies. We have mentioned that
the averaging approach is invariant of linear transformations, so we can worked directly with (4.1).
We see in this example that we cannot simply ignore the fast scale variablex, since it contributes
the dynamics ofy.

In Figure 4.1, we plote( j)
L1 and e( j)

∞ for each computation using macroscopic step sizeH j =
4/(10+10j) along with the following settings:

(1) HMM-FE-lf: Kexp([−1,1]), δt∗ = 0, (p,q, r,s) = (1,10,2,1). ε = 10−3/2π,Cη = 5,Ch = 0.4;
(2) HMM-FE-rk4: Kexp([−1,1]), δt∗ = 0, (p,q, r,s) = (1,10,4,1). ε = 10−5/2π, Cη = 2.6,Ch =

0.5;
(3) HMM-LF-rk4: Kexp([−1,1]), δt∗ = 0, (p,q, r,s) = (1,10,4,2). ε = 10−6/2π,Cη = 6,Ch = 2;
(4) HMM-AB2-rk4: Kexp([−1,1]), δt∗ = 0, (p,q, r,s) = (1,10,4,2). ε = 10−6/2π, Cη = 6,Ch =

2.

We remark that since the system is not stiffly dissipative, in Step 1(b), we solveuε,n in [tn, tn+δt∗] by
the given equation, and in[tn, tn−δt∗] backward in time with the initial conditionuε,n(τ = tn) = Un.
Then the effective force can be evaluated attnusing a symmetric kernel.

4.2. Dissipative systems.

4.2.1. Stiff system with fast transient.We test the HMM-AB2-rk4 solver (with a 4th order Runge-
Kutta for microscale and the 2nd order Adam-Bashforth for macroscale) on the following equation:

(4.2) y′ =−ε−1(y+cost), y(0) = 2.0

Since the macro-solver is a linear multistep method that requires uniform step size, we use the non-
symmetric kernel,K ∈K2,3([−1,0])

T
C3

c([−1,0.2]), depicted in Figure 1.1 to estimate the effective
force at the left end of each microscale evolution.

HMM-AB2a-rk4: δt∗ = 0.6η, (p,q, r,s) = (2,3,4,2). ε = 10−4,Cη = 25, Ch = 0.25.H ∈ {T1/n j :
n j = 40+20j, j = 0,1,2, · · · ,10}, T1 = 4. The errors are plotted in Figure 4.2.

4.2.2. Oscillatory system with transient.

(4.3)

{
ẋ = ε−1(i + 5

2(1−|x−y|2))(x−y)+ i(y− t)+1
ẏ = i(y− t)+ |x−y|2 ,

(
x0

y0

)
=
(

3
1

)
.

We see from the equation that a stiff transient inx would take place whenever|x− y| is not 1.
However, passing the transients, the averaged solution should be identical to that of system (4.1).
In the following computations, the macro time step is taken to beH ∈ {2/n j : n j = 10+ 10j, j =
0,1,2, · · · ,8}.

HMM-AB2-rk4: K ∈K2,3([−1,0])
T

C3
c([−1,−0.1]), δt∗ = 0, (p,q, r,s)= (2,3,4,2). ε = 10−6/2π,

Cη = 0.23,Ch = 10. T1 = 2.

HMM-AB2-rk4: K(t) = Kexp(t +0.2), δt∗ = 0.6η, (p,q, r,s) = (10,1,4,2). ε = 10−6/2π, Cη =
20.3,Ch = 2. T1 = 2. Note thatU is constructed atTn = 0.6η+nH.
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FIGURE 4.1. The horizontal axes 1/H. The lines with x-markers aree( j)
∞ and the

lines with◦-markers aree( j)
L1 . The dotted lines are proportional toH, and the dashed

lines are proportional toH2. The detailed settings are provided in the example in of
Section 4.1.

101
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10−2

10−1

FIGURE 4.2. HMM-AB2a-rk4. The horizontal axis is 1/H. The lines with x-

markers aree( j)
∞ and the lines with◦-markers aree( j)

L1 . The dashed lines are propor-
tional toH2. The detailed settings are provided in Section 4.2.1.
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FIGURE 4.3. Numerical accuracy study of (4.3). The lines with x-markers aree( j)
∞

and the lines with◦-markers aree( j)
L1 . The dotted lines are proportional toH, and the

dashed lines are proportional toH2. The detailed settings are provided in Section
4.2.2.

4.3. A three-body problem. Let x = (x1,x2,x3) ∈ R2×R2×R2 and (m1,m2,m3) ∈ R3 denote,
respectively, the positions and the masses of the three planets of the system. See Figure 4.4 for an
illustration of the setup. The potential energy of this system takes the form:

V(x) =−∑
i< j

mimj

|xi −x j |
=−(

m1m2

|x1−x2|
+

m1m3

|x1−x3|
+

m2m3

|x2−x3|
).

The corresponding equations of motion are:

mi ẍi = ∇xiV(x), i = 1,2,3.

We solve these second order equations as a system of first order equations by introducing new
dependent variablesvi = ẋi andv̇i = ẍi . In our setting, we assume thatm2 is O(1) andO(ε) = m1�
m2 �m3 = O(1/ρ). x3 is stationary. We assume that

|x1−x2|2 ∼ ε

|x2−x3|2 ∼ ρ−1 and|x1−x3|2 ∼ ρ−1,

so that the equations forvi have only two scales:

v̇1 =−m2
(x1−x2)
|x1−x2|3︸ ︷︷ ︸
O(1/ε)

−m3
(x1−x3)
|x1−x3|3︸ ︷︷ ︸

O(1)

= f I (x)+
1
ε

g(x)

v̇2 =−m1
(x2−x1)
|x2−x1|3︸ ︷︷ ︸

O(1)

−m3
(x2−x3)
|x2−x3|3︸ ︷︷ ︸

O(1)

= f II (x).

Thus, with suitable initial conditions,m1 spins aroundm2 in ε time scale whilem2 orbits aroundm3

in the slow time scale. Essentially, we have two time scales in this problem and the HMM method
resolves the trajectory ofm2 andm1 in a short timeη then take a big time step. See Figure 4.5 for a
snapshot of an actual computation.
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FIGURE 4.4. This is a diagram showing the planar three body problem. In our
setup,m1 spins aroundm2 is theε time scale.
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FIGURE 4.5. n-body problem (2)

Simulations 1.Simulation setting:ε = 10−5/2π, ρ = 10−4, (m1,m2,m3)= (500∗ε,0.4,5/ρ), x1(0)=
x2(0)+0.5(

√
ε,
√

ε), x2(0) = (
√ρ,0), x3(0) = (0,0), andv1(0) = (5,−5), v2(0) = (0,10),v1(0) =

(0,0). T1 = 5.0.
HMM-LF-rk4: Kexp, δt∗ = 0, Cη = 230/2 Ch = 120,T1 = 5.0. We first apply the scheme with

differentH ’s to establish a convergence evidence for this method. Denote byXLF(H)
2 the position

of massm2 at T1 constructed this way using macro step sizeH. We obtain|XLF(0.5)
2 −XLF(0.25)

2 | .=
18.29904, |XLF(0.25)

2 −XLF(0.125)
2 | .= 5.47153, |XLF(0.125)

2 −XLF(0.0625)
2 | .= 1.04626, and from these

data, we saw that the difference is deceasing at a rate proportional toH2. In Figure 4.6 plotted the
trajectories ofXLF(H)

2 and also the total energy of the system versus 1/H, which shows a conver-
gence in total energy at a rate proportional toH2.

In the following set of simulations, we compare the numerical approximations obtained from two
different first order schemes to theXLF(0.05)

2 (T1). In our simulations, we ran the following two first
order schemes:

• HMM-FE-rk4: Kexp([−1,1]): δt∗ = 0,(p,q, r,s) = (1,10,4,1). Cη = 230/2 or 200, Ch =
120,T1 = 5.0.

• HMM-FE-rk4: Kexp([−1,1]): δt∗ = η/2, (p,q, r,s) = (1,10,4,1). Cη = 230/2 or 200, Ch =
120,T1 = 5.0.

The two schemes differ in that one keeps uniform macroscopic time steps and the other one can be
considered as a variable time stepping method. We plot|x2−XLF(0.05)

2 | versus 1/H in Figure 4.7.

Simulation 2: ε = 10−5/2π, ρ = 10−4, (m1,m2,m3)= (500∗ε,5.87,1/ρ), x1(0)= x2(0)+0.5(
√

ε,
√

ε),
x2(0) = (1,−2.1

√ρ), x3(0) = (0,0), andv1(0) = v2(0)+(60,0), v2(0) = (2.5,2.2),v3(0) = (0,0),
H = 0.2,Cη = 200/2,Ch = 100.
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FIGURE 4.6. Numerical convergence study of the energy simulation1 of HMM-
LF-rk4. The plot on the left shows the difference of total energy of approximation
atT1 to the initial energy versus 1/H. Cη = 230,Ch = 120,T = 5.0.
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FIGURE 4.7. Planar three body problem numerical convergence study of simula-
tion 1. The curves marked with4 are data obtained from HMM-FE-rk4 with sym-
metric kernelKexp (i.e. δt∗ = 0) with backward flow to enforce uniform step sizes.
The curves marked with× are data obtained from HMM-FE-rk4 with symmetric
kernelKexp and variable step sizes. The plot on the left is obtain withCη = 200,
and the one on the right withCη = 230/2.

HMM-LF-rk4: Kexp andδt∗ = 0. T1 = 80. See Figure 4.8.

5. SUMMARY

In this paper, we introduce and analyze a new class of numerical algorithms for stiff ODE systems
based on the HMM framework. We study the stability and convergence of the HMM schemes, and
presented a few numerical computations on stiff systems using either Runge-Kutta or linear multi-
step HMM schemes. The analysis also covers some existing classes of methods that use variable
step sizes. An important component in the new effective force estimation is accomplished through
the convolution of the data with certain classes of compactly supported kernels. In particular, we
show that a general class of highly stiff systems with oscillatory solutions, for the first time can be
practically approximated with an explicit technique that requires fewer functional evaluations than
the number of oscillations.
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FIGURE 4.8. Planar three body problem numerical convergence study of simula-
tion 2. The circle is placed at the position ofx3. The diamond and cross represent,
respectively thex2(0) andx2(80). The dashed line shows the orbit ifm1 = 0.

We point out that the HMM methods are not limited to the few simple schemes that we listed
above. We show that one can use this methodology to build an HMM scheme for an hierarchy of
scales. One can customize and fine tune the numerical approximation scheme in each scale more or
less independently from the other scales. For example, one can naturally adopt symplectic schemes
for Hamiltonian systems. The HMM framework provides a systematic way to build a scheme that
is suitable for a given system.
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