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ABSTRACT. We investigate the problem of determining visible regions given

a set of (moving) obstacles and a (moving) vantage point. Our approach to
this problem is through an implicit framework, where the obstacles are repre-
sented by a level set function. The visibility problem is formally formulated as

a boundary value problem (BVP) of a first order partial differential equation. It

is based on the continuation of values along the given ray field. We propose an
efficient one-pass, multi-level algorithm for the construction the solution on the
grid. Furthermore, we study the dynamics of shadow boundaries on the surfaces
of the obstacles when the vantage point moves with a given trajectory. In all of
these situations, topological changes such as merging and breaking occur in the
regions of interest. These are automatically handled by the level set framework
proposed here. Finally, we obtain additional useful information through simple
operations in the level set framework.

1. INTRODUCTION

In this paper, we consider the visibility problem described as follows: given
a collection of hypersurfaces representing the boundaries of objects, called the
occluders, in two or three dimensional space, determine the regions of space or
on the surfaces visible to a given observer. In real world applications, this problem
must be solved efficiently. Generalizations of the visibility problem are just as, if
not more, important; this includes the case of a moving rather than static observer
and the determination of regions visible for all time or invisible for all time in this
situation. We begin with the basic visibility problem for simplicity, and address
parts of the dynamic problem later on.

The visibility problem can be reformulated into a problem of determining light
and dark regions given a point light source. Under this point of view, a more precise
set of assumptions we make in the visibility problem include: a space composed
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of a homogeneous medium and objects with nonreflecting and nondiffracting sur-
faces. Furthermore, we disregard interference, assuming that the distances between
objects are large compared to the wavelength of light. Under these conditions, light
rays travel in straight lines and are obliterated upon contact with the surface of an
object. Thus a point is called visible with respect to a vantage point, the observer,

if the line segment between the point and the vantage point does not intersect any
of the obstructing objects or their surfaces in space.

Even under these simplifying assumptions, the visibility problem arises as a cru-
cial part of numerous applications in different scientific fields, including rendering,
visualization [13], etching [1], the modeling of melting ice [5], surveillance, nav-
igation, and inverse problems, to name a few. In the case of computer graphics
and rendering, for example, determination of the visible portions of object surfaces
allows for those portions alone to be rendered, thus significantly saving costly com-
putation in unnecessary (invisible) regions. In some modeling problems, such as
etching and melting ice that we listed above, visibility is used to find out how cer-
tain quantities of interest accumulate, given a radiating source and a (dynamic)
surface configuration. There are also variational problems that minimize the corre-
sponding energy functionals over the visible regions of the ambient space, see e.g.
[14].

Currently there are numerous algorithms for solving the visibility problem us-
ing explicit surface representations. For example, the work of [9] and [11] uses
linearity to process triangulated surfaces. A detailed review of related work on the
visibility problem, especially concerning explicit surfaces, can be found in [10].
Furthermore, there are a variety of visibility algorithms from computational ge-
ometry (see, e.g., [2, 3]). These algorithms often combine special data structures
and related algorithms for efficient decomposition and information retrieval of the
configuration space. Some are even implemented commercially in hardware to
accelerate the solution.

While explicit surfaces, for example triangulated surfaces, are used in a majority
of computer graphics and vision applications, implicitly represented surfaces are
gaining more attention. This is partly due to the fact that in many applications, the
data (i.e. surfaces) is obtained originally and naturally in an implicit form. Itis also
because of the fact that more and more problems are formulated and solved using
the level set method [16]. Hence, it is natural to work directly with the implicit
data without converting to a different explicit representation. Currently, visibility
algorithms for implicit surfaces mostly consist of sending rays out from the vantage
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point to a point of interest (or the reverse) and testing for intersections with the

surfaces of the objects using information arising from the implicit formulation.
Another idea in determining whether a point is visible to a given observer is

to compare the geodesic and Euclidean distances between the observer and that

point. See [22] for an example of this approach. The geodesic distance between

two points is the distance in the space in the presence of obstacles, namely the

objects. Letx represent the point of interest arglrepresent the observer point.

The geodesic distance can thus be calculated by solving the Eikonal equation

H(@)[0u =1,

with conditionu(x,) = 0, andu = « inside of the occluders. Herl,(X) = X(0,«) (X)
is the characteristic function ¢@, ). Thus the poink is occluded if and only if

u(x) > X —Xo-

However, this algorithm as it was implemente®iéN logN), whereN is the num-
ber of grid points (see, e.g., [27]). Furthermore, numerical implementation of the
Heaviside function may cause problems for accuracy.

Our proposed method for ray tracing is different from any of the above. In
essence, we send out rays in an implicit manner so as to propagate the causality
relation of visibility. This implicit framework for visibility offers many other ad-
vantages. For example, the visibility information can be interpreted as the solution
of simple first order PDEs and [25] offers a near optimal solution method on the
grid. The dynamics of the visibility with respect to moving vantage point or dy-
namic surfaces can be derived and tracked implicitly within the same framework.
Our method retains nearly all the benefits of a level set method, including painless
Boolean operations of sets, automatic resolution of surfaces as well as the incor-
poration of geometric information and the handling of various surface topologies
afforded. By embedding the visibility in a Lipschitz continuous function, we can
obtain much more information. For example, if one is in the shadow and wants
to “be seen” as soon as possible, then one can simply follow the gradignt of
Moreover, by the continuous nature of our solutipnits application to gener-
ating “diffused shadows” in graphics is straightforward. Furthermore, using the
same framework and the well developed level set calculus and numerics, one can
start solving variational problems on the visibility numerically and efficiently [24].
This will then relate to classical “guarding cameras” or “pursuer-evader” problems
in computational geometry and robotics.
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In our case of visibility, a real valued functiapof two or three dimensions,
called the level set function, is introduced. The zero level set of this function rep-
resents the surfaces of the occluding objects, and the points whisreegative
represent the interior of the objects. Several efficient algorithms have been devel-
oped in the literature to obtain this representation. There are also methods describ-
ing level set implementation of space partitioning schemes such as octrees. Thus
our level set method for visibility will use this functiapwhenever the objects are
considered.

In our approach, the visibility problem is first formally formulated as a bound-
ary value problem for a first order PDE whose solution is constructed by correctly
extending the boundary values along the ray fields. The solution of this problem
is another level set function, which we called We then introduce a multi-level
algorithm for this boundary value problem for a given fixed vantage point. This
algorithm constructs the occlusion boundary, the interface separating visible from
invisible. At each resolution level, we solve a radially defined causality relation
on a given gridn one passobtaining not only a conservative estimate of the visi-
ble and invisible regions but a locally second order approximation of the occlusion
boundary. Thus, our algorithm is independent of both the convexity of the occlud-
ers and the grid geometry, and its parallelization is straightforward. In comparison
with the method using geodesic distance that is described above, our algorithm in
a more primitive form isO(N), a factor of logN) faster.

In the second part of the paper, we extend our study to the dynamic visibility
problem. In this case, we consider a moving vantage point. Obviously the static
visibility problem can be applied at each time to solve this problem, and our al-
gorithm can be used to solve it efficiently enough. However, this static approach
does not give us other useful information about the dynamics; for instance, how
fast a point in space will become visible or invisible. In many cases, the problem
can be solved even faster if the visibility at a previous time is used effectively to
produce visibility at future time. Thus we study the dynamics of curves on the oc-
cluders that separate light and dark regions on the occluders. The curves in fact can
be represented using a level set approach, following the work of [6, 7]. We derive
motion laws for all these types of curves and evolve them under the level set frame-
work. Thus, this part of our our work complements the book of Cipolla and Giblin
[8] which discusses the reconstruction of shape from the perspective (orthogonal)
projection of the horizons. To complete our study of visibility dynamics, we de-
rive an emergence-time estimate to predict an occluded object's emergence into
view. Obviously, researchers in the computer vision community have also studied
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similar topics, which are called visual events. However, their assumptions usually
involve objects which are explicitly represented as unions of simple geometrical
shapes. We stress here again that we provide a framework to work directly with
implicit data that are easy to obtain nowadays without having to convert between
data representations.

Through out this paper, we use the following notation:

The space in which we work will b&¢, whered = 2 or 3.

X, denotes the position of the vantage point, or observer. We further as-
sume thak, never lies in the interior of the objects.

Q is a set of connected domains whose closure denotes the objects in ques-
tion. Furthermore, leffl = 0Q.

¢denotes the level set function representing the objects of interest. We may
further assume thag is the signed distance function ko This particular
level set function can be efficiently computed using fast algorithms such as
the fast marching method of [27] or fast sweeping methods [26].

We define the view direction vector pointing froxg to x by v(Xe,x) =

(X —Xo)/|X —Xo|. When the context is clear, we will drop the arguments
and write simply(x) orv.

Letx; andx, denote two points in space. We say=< X2 (X1 is “before”x»)

if the conditionsy(Xe, X1) = V(Xo, X2) and|X1 — Xo| < |X2 —Xo| are satisfied.

We also define the strict relatior if the condition|x; — Xo| < [X2 — Xo|
above is replaced bixi — Xo| < [X2 — Xo.

A pointy € T is called a horizon point if and only i¥(Xo,Y) -n(y) = 0,
wheren(y) is the outer normal of aty. The horizon thus refers to the set

of horizon points.

A pointy € I is a terminator point if and only if there is a poiyt such

that: 1)y* <y and 2)y* is a horizon point. The terminator thus refers to
the set of terminator points.

The visible contour refers to the set of visible points of the horizons and
terminators.

2. IMPLICIT RAY TRACING

We now set up the foundation of our approach and derive properties of ray trac-
ing of a single point source in an implicit framework. The motivation is that the
visibility along each ray emanating from the vantage point satisfies a causality con-
dition: if a point is occluded, then all other points farther away from the vantage
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p(v2)=infinity

p(v1)=1x-Ol
vI=v(x,0)=V(y,0)=V(z,0)

FIGURE 2.1. This figure shows the definition pf

point on the same ray are also occluded, i.ey ifs occluded and; < x5, thenx,
is also occluded.

We can describe the result of this causality on a sphere centered at the vantage
point. Define

Min,crd{|X — Xo| : V(Xo0,X) = P, ®(X) < 0} if exists
0 otherwise

1)  p(p) = {

Any given pointx is invisible if p(v(x,Xo)) < [X — Xo|. Please see figure 2.1 for
an example. Howevep is typically a piecewise continuous function with large
jump discontinuity which causes some computational difficulties. In the graphics
community, this is closely related to what is called the z-buffer. We defer our
discussion of constructing accurate approximationp af a forthcoming paper
[23].

In this section, we will provide two closely related interpretations and their cor-
responding numerical methods. In the first interpretation, the visibility function
U has a closed analytical expression while in the second interpretdiicmthe
solution of a boundary value problem of a first order linear PDE. The methods to
construct approximations to both formulations are closely related and we will ex-
tend this type of methods to incorporate a multi-level mesh refinement strategy for
efficiency.
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2.1. Thefirstinterpretation. Our first interpretation of this causality condition is
to define a continuous visibility function

(22) () = min o),

L(Xo,X)

where L(Xo,X) is the line segment connectixg andx. Thus if (x) is negative,
thenx is occluded. We can approximate the valugpék) by Y"(x) as follows

(2.3) Y"(x) = min(Y"(x'), g(x))

wherex’ is some point “immediately beforein the ray direction. Herg’ depends
on the given grid structure. We will discuss hals defined on a Cartesian grid.
As long as the values afi(x’) are computed ahead of the computationpgk),
this algorithm will be valid. The constraint on the set of updated grid poXjs,
can be posed that the unions of the cells whose vertices are Hlfinms star-
shaped with respect to the vantage point. For example, consider the case where
the vantage point lies on the origin of the coordinate system. The grid points in
the first quadrant can be updated row by row, starting from the positive part of the
x-axis, in an increasing order of theircoordinate component. The grid points in
each row are updated from left to right, in increasing order of tkewordinate.
We can thus generalize this approach: in 3D, we consider the vantage point as the
origin and approximate in each octant separately, and inside each quadrant, we
employ similar approach to what is described above.

We write down our basic algorithm as follows:

Algorithm 2.1. (Basic visibility sweeping)
1. Set(Xo) = @P(Xo)-
2. Do a star-shapeldupdating sequence on the grid.
3. For each grid poink, choosex’ depending on the grid geometry.
4. Compute the value df(x) via (2.3).

For clearity of exposition, we defer a detailed description to the next subsection,
and also the Appendix. Figure 2.2 shows wtpathould look like in a one space
dimension setting.

Before we move on to our multi-level implementation of the above algorithm,
we discuss some additional properties of our proposed visibility representftion,
and its numerical approximatiapf’.

Lemma 2.2. If |g(x) — @(y)| < LIx—y], then|y(x) — w(y)| < Lix—y].

1See 5.2
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FIGURE 2.2. A demonstration of the motivation of our implicit
ray tracing algorithm in one dimension.

Proof. This can be shown directly from the definition:

WX) —w(y)| = ILr(TleXrg))cp—Lr(];]Q))cp\
< [(9(Xo0) — LIX —Xol|) — (®(Xo) +L|y —Xo|)|
S L‘X_y‘7

2.2. PDE interpretation and extensions.Here, we propose an approximation
scheme to (2.2) using a linear PDE and a thresholding procedure.

Let r(x) be a suitable vector field in the domahsuch that all the flow lines
of r in Q eminate from the séd C Q. For example, our main focus in this paper
will be the case in whichi(x) = V(X) = (X —Xo)/|X — Xo|, andO = {Xo}. In this
slightly more general setting, formula (2.2) is generalized to

Px) = min @y),
yeL(O,x)
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whereZ (0O, x) ={the flow line connecting,to O}. Defining fi(x) = Og(x) - r (x),
we observe that its zeros correspond to the critical poimi @ing the flow lines
that pass through; i.e(x) = @(y) for some¥y € £(0,x) and O@(¥) - r(y~) =0.
Even though our implicit algorithm will not make use of this feature, we will see
thatz will be used in a later section for identifying a type of important curve on the
occluders that we call the horizons.

Our algorithm is the following: Sep|o = @lo. At grid pointx; j, ;i ; is com-
puted by:

(1) Solve fory; j by upwinding:

(2.4) O j-r(xj) =0.

(2) Update
Wij = min(@ j, Gi j).-

In general, the above equation (2.9) can be solved by the fast sweeping method [26]
on Cartesian grid. Alternatively, due to the special structure of the characteristics,
we proposed an effiecient one-pass sweeping algorithm. For simplicity, we will
assume that, = (0,0), x = (x,y), r(x) = (r1,r2), and shall introduce an upwind
scheme in the first quadra®t, . = {x> 0,y > 0,xy# 0}. In this region, equation
(2.4) is discretized by regular upwind scheme

r1(Xi,j)Dx Wij +r2(Xi,j)Dy Wi j =0,

leading to an update formula fds ;:

ho 1 - b eh
(2.5) l-IJi,j = (rl(xhj)“‘rz(xi,j)) 1(r1(xl,])l‘pl—l7j+r2(xl,l)l‘pl,j—l)

(2.6) = min(G-I-,-I-(LIJihfl,janih,j—l)a(ﬂ-,i)'

With this scheme, we computh?_’j in Q. 1 in the following order:

Algorithm 2.3. (Updating scheme for regiof )
fori=0:n
forj=0:m (ij # 0)
Wl = min(Gy (WL 1 Wl _1). @)
In fact, the above algorithm is an alternative way of solving (2.2). Y€

[0,AX] x [0,Ay] not lying on a grid point, we use a slightly different discretization.
For example foxyj, 1> j >n,

ri(Xi;j)

(2.7) Dy Wij = (%)

Dy Wij-1.
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This corresponds to the interpolations described in the Appendix for (2.3). Figure
2.3 provide a result of the above algorithm applied to a real city model. In the
general cases, where the integral curveg ®f are more complicated than straight
lines, similar convergence analysis applies, since characteristics do no cross. See
Figure 2.4 for a result under this kind of ray field. We may use higher order ap-
proximation schemes to obtain more accurate solution@* ke can, for instance,
use linear multistep methods for advance inxtdirection, and higher order ENO
type discretization, see [12], for the computationgf

An alternative interpretation of the causality condition stated in the beginning of
this section is to formulate it as a boundary value problem for the following first
order PDE:

X —Xo
X=Xl

_XO

— min(H (Y — @) 0g: -

(28) DlIJ : |X—Xo|’

0), W(Xo) = @(Xo),

whereH (2) = X|0,«)(2) is the characteristic function @@, ). More generally, we
can handle the situation in which the light rays are not straight lines. Assupning

0 on asel’ C wandr(x) be a differentiable vector fields such that for the integral
curves starting from every interior point & traces back td. The “generalized”
visibility information on this vector field can be obtained franthat solves

(2.9)  Ow-r(x)=min(H(Y—@Ue-r(x),0), Y(y) = @(y) foreveryy e T.
Consequently, we have an the a priori estimate
Ol = mafﬂw-r < ma;@cp- r=|0g <L;
rl= r|=
i.e. Lemma 2.2 holds for solutions of (2.9). We point out, however, that much
study is needed for this kind of PDEs with discontinuous coefficients.

2.3. Estimates of visibility change using Lipschitz constant.Our multi-level
approach to the visibility problem requires the skipping of large regions which are
determined a priori to be either visible or invisible. This hinges upon the ability
of determining whether any given voxel is completely “inside” or “outside” of the
objects. This can be done conservatively with the help of the Lipschitz constant of
the embedding level set functign

If we assume that we know the valugy), ¢(z) > 0, and letx be a point on the
line segment joiningy andz. We would like to know if@(x) can be negative. Let
C be the Lipschitz constant gf It dictates the maximal decrease in values fpm

2The authors thank Prof. John Steinhoff and Yonghu “Tiger” Wenren for their help in obtaining this
data.
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FIGURE 2.3. A visibility result applied to a city grid. The blue
surface represents the occluders, and the red surface represents
the boundary between visible and invisible regions with respect to
the vantage point at the position indicated by the green diamond.

1 a4

FIGURE 2.4. Visibility under a bending ray field.

to x to beL|y — z|, therefore,
o(x) = @(y) —Lly—x|
and, similarly
ox) = 9(z) —L|z—X].
Hence, if 0< @(y) — Ly — x| and 0< ¢(z) — L|z— x|, we can conclude that the
values ofp along the line segment connectingindz always stay above zero.
We thus generalize the above observation to determine the sigarap over a

a retangular or cubic region that we call a voxel. kgbe the center point and
the vertices of the given vox#l. If

(2.10) @(Xi) + L|Xc—Xi| <0 Vi,



VISIBILITY AND ITS DYNAMICS IN A PDE BASED IMPLICIT FRAMEWORK 12

then we knowgply < 0 (V C {@ < 0}). Conversely, if
(2.11) @(Xi) +L|xc—Xi| > 0 Vi,

then we knowgly > 0. Since@is the signed distance function, as we pointed out
in the previous subsection, a Lipschitz constanpafan be taken to be. 1

If we can obtain ar.,, error boundz(V; ") of @' on the give voxeV, we can
conservatively estimate both the visible and invisible regions from our approxima-
tiony". Le.

Casel. If (Y"(xi)+ E(V;W") +L|xc —xi| < 0Vi, theny|y < 0. (V is definitely
invisible.)

Case2. If (Y"(xi) —E(V;y") +L|xc—x| > 0 Vi, thenly > 0. (V is definitely
visible.)

2.4. A Multi-resolution algorithm. We offer a mesh refinement strategy to fur-
ther accelerate our one-pass implicit ray tracing algorithms. Essentially, these are
all applications of methods of characteristics for first order PDEs.

Assuming the ability of determining whether a given voxel lies completely in-
side or outside of an occluderwe propagate these voxels along the rays from the
vantage point, and obtained a set of voxels over which the visibility status does not
change. We then refine our grid over the remaining region. This is in similar spirit
to what is reported in [21].

Given a grid at resolutiont? we use?,;. and 7, to represent the subsets@f
over which the analytic solutioy is determined to remain positive and negative
respectively. Furthermore, I8, = V4 (J ¥y, and letd Vs, denote that bound-
ary of V.. We refine the grid over the regid®, = Qun \ 75, and subsequently
determine the setfsﬁz.

One way to find‘l/hj/t2 is to solvey" for the same PDE with different boundary
conditions:

(2.12)

OWM-r(x) = min(H (Y — @) 0 r(x),0) for x € Qﬁo), the interior ofQp,
@(X) if x€ 09,,andr(x)-ng(x) >0
W2 (x) if x€ dVyandr(x)-ng(x) >0

int

BC: Y"(x) =

whereng is the inner normal adQy,, andmﬁﬂ is a linear interpolant of the grid func-

tion P?". We then determiné4, using the analysis shown in the previous section.

3Later on, we will call these voxels the “source” voxels.
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50 100 150 200 250 50 100 150 200 250

FIGURE 2.5. This is a schematic diagram for the multi-resolution
algorithm. Occluded voxels are depicted in blue and visible ones
in red. The regions are target for next level refinement.to be refine.
The red curves represent the boundaries of the occluders, and the
vantage point is positioned ét,1). The sizes of the voxels are:
64 x 64, 16x 16,4x 4, and 1x 1.

Hence we can repeat this procedure until the desired resolution is reached. This
approach, however, requires eitlagpriori or a posterioriestimates of the error to
the viscosity solution of the given problem. It will be reported in a forthcoming
paper by the authors.

The second way is the following: At each resolution level, we construct another
function M such that for each voxaf in the domainMy(x) = (V,0,@), where
the first componenY is the “source” voxel oV (see Footnote 3), the second
component is the visibility of/ (o = 1 if visible, —1 if invisible, 0 inconclusive.
), and the third will be the constant continuation of the valuep @bngr (x) from
the “source” voxels.

We first identify thosé/; on which the embedding level set functigris nega-
tive; these are the “source” voxels. 3étx) = (Vj, -1, @). FindV, that contains



VISIBILITY AND ITS DYNAMICS IN A PDE BASED IMPLICIT FRAMEWORK 14

Xo. If @is positive ovei,, setM(x) = (Vo,1,¢). Let Q, = Qan \ (U V) UVo)-
We then “solve” the following problem by method of characteristics:

CIMp, - r(x)=0 forxe Qﬁlo)

(2.13)
BC: Mn(X) = Man(X) if x € 0%, (J0Vy, andr(x) -ng(x) >0

In a 2D setting, at each vertexof V, Mp(x) = BM(X;) + (1 —8)M(xc) for some
upwind neighbors; andxg,and some € [0, 1] determined by (x). However, we
modifiedMp(x) after the update formula by rounding the second componehit,of

that is neither 1 nor1 to 0. Finally, a voxeV is determined to be irV/, or

‘Vh+, if, onV, the second component dfy, is —1, or 1, and the voxels referred

to by M;, are all immediate neighbors to each other. Please see Figure 2.5 for a
demonstration of this algorithm.

As for complexity, the operation count for our multi-level algorithm®i®9—logN).
HereN = 1/h whereh is the smallest spatial stepsize used in the multiresolution
framework andi is the dimension of the space. TNE~1 part of the complexity
comes from the fact that a codimension one hypersurfadedimensional space
is being generated under fast sweeping and thallpgrt comes from multiresolu-
tion. The memory allocation of our algorithm is al8ON~*logN), with the logN
part once again due to multiresolution.

We point out here that for applications in which the occluders are triangulated
and one is only interested in the visibility information projected on an image plane,
there are already many specialized algorithms and hardware designed available.
The purpose of our algorithm is to work with implicit data and find visibility in-
formation in the whole ambient space without the costly operations of changing
representations.

2.5. Multi-scale considerations. If we consider the visibility problem in appli-
cations related to human vision, such as 3D virtual environment rendering, it is
natural to put a scale parameter into the size of the objects related to the distance
of the object from the vantage point. We want to ignore ceiitatated and small
objects that aréar away from the vantage point using this information. It is im-
portant to notice that a collection of closely positioned small objects can form a
visible ensemble, seen for example in clouds and trees.

Using the level set representation of the virtual environment in conjunction with
the solution properties of certain PDEs, we are able to deal with this issue easily
without explicitly considering each object separately. The idead#iate the inter-
face first so that small objects can merge to form ensembles of larger size. We then
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FIGURE 2.6. An example of grouping

shrink the interfaces (one possibility is to perform curvature driven motion) such
that remaining small objects will disappear. The result of this approach follows the
regularization effect of viscosity solution theory for Hamilton-Jacobi Equations. It
is basic mathematical morphology, and can be done easily, see e.g. [4][20].

We shall return to a brief discussion of scales at the end of this paper, after we
discuss the dynamics of the visibility.

3. DYNAMIC VISIBILITY

In this section, we introduce an implicit framework for tracking the change
in visibility when the vantage point or the underlying oocluders are changing in
time. Typically, disconnected components of the invisible regions may merge and
one single connected component may break up into several pieces; completely
occluded objects may emerge to the scene and occlude parts of the domain that
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was previously visible. In many of these situations, the topology of the occlu-
sion changes and implicit methods such as the level set methods become attractive
options.

For simplicity, we consider the case in which the vantage point is moving and
the ocluders are stationary. We formulate the visibility problem so that the points
which are on the boundaries of the visible regions on the surfaces of the occluders
can easily be identified. The dynamics of these points are derived so that one can
track the visible regions according to the motion of the vantage peint

For a single convex object, the horizon determines the visibility information
on the surface. Therefore, tracking the motion of the horizon for all time gives
us incremental information on the change of the visible portion of the object. For
non-convex objects or multiple objects, these horizon extends the rays to other parts
of the surfaces, and thereby creating another type of occlusion boundaries which
we coin “terminators”, based on The Merriam-Webster Dictionary. Similar to the
horizons, one side of a terminator is visible while the other not. In summary, the
points forming the boundaries of visible regions on given surfaces can be placed
into two categories:

e points that are part of the horizon;
¢ points that bordeshadows cast by some surfgeerminator).

We shall see that the motion of the horizon is characterized by the orthogonality
constraint and it, in turn, becomes a part of the constraints of the terminator motion.

In our level set formulation, we create a continuous function whose zero level
set captures the curves described above. We also propose a method that relates each
point on the terminator to a point on the horizon of the surface casting the shadow.
This description should be global, that is, quantities should vary “continuously”
with respect to points not on the surface.

For a single convex object, tracking the horizon is certainly the optimal solution.
With the fast sweeping algorithms and local storage strategies, the complexity of
the level set approach to track the horizon and terminator curves is formaily
both in operation count and in storage. Here, the nurilderthe number of points
used to resolve the curves. In more realistic applications, we need to consider the
situations in which 1) the velocity fields for the horizons and terminators become
singular, 2) some “hidden” object may appear and creat new terminators. Indeed,
these are among the most difficult problems in this topic. We will address this
difficulty in a later subsection. If the visibility information in the whole ambient
space is needed, we think that our previous "static” approach might generate more



VISIBILITY AND ITS DYNAMICS IN A PDE BASED IMPLICIT FRAMEWORK 17

elegant and easier-to-implement algorithms with comparable performance. How-
ever, the additional information about how shadow boundary moves may be used
together with the static visibility algorithm for many dynamic type applications.

In the following, we will first proposed a fast implicit characterization of the
horizons and their terminators. The procedures involved consist of our “static”
algorithm and some simple boolean operations on sets.

3.1. Finding the horizon and the terminator implicitly.

Finding the horizon.We extend the orthogonality condition that defines the hori-
zon and arrive at

(3.1) h(X,t) = (X —Xo) - O@(x).

Earlier, we have seen that the zeros of this function correspond to the critical point
of ¢ along the rays that passs through. We also noted abovéitbampletely
determines the visibility of any convex object embedded in

{h(x) <0} {9=0} < visible.

In general cases, where there are multiple objects (convex and noncondeds
not give exact visibility information anymore. It just provides local visibility infor-
mation just as local extrema may not be absolute extrema.

Due to its definition (3.1)k will still be non-negative on the parts of the surface
facing the source, even though those parts are completely occluded. Instead,
gives a conservative “estimate” of the shadow:

{h(x) >0} {e=0} = invisible.

Thus thevisiblehorizon is

{o=0}{r=0}{w =0},

wherey is the visibility function coming from our static algorithm. Figure 3.1
gives an example of horizons found this way.

Finding the terminator.How do we find the terminator? Our idea is to overshoot
each ray that tangents the visible horizons when it hits another p&sttbtis the
intersections of these rays ahatorrespond to exactly the terminators. This “over-
shooting” strategy is, of course, implemented by an auxilliary level set function
¢, and{(] = 0} will cut throughl" on the terminator, therefore providing an im-
plicit representation of it. Considey= max@ —#), then{@ < 0} corresponds

to the set{i > 0} N{@ < 0},a set created by “carving off* a neighborhood of the
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visible portions the occluders. We notice that the occlusion generated by the set
{h>0}N{@< 0} is the sam&as{@ < 0}. Therefore, we can construtas the
solution of (2.8) with@ on the right hand side, instead ¢f Consequently, the
shadow boundarie$|p = 0}, extending from the horizons cuts through portions of
the original ocluderg@ < 0}, and the intersections corresponds to the terminators.
Figure 3.1 shows the operations described above in a simple two circle setting.
Additionally, we can even makéll = 0} perpendicular td” locally around the
intersection by iterating on the following PDE used in [15]:
00 _,
0ol

With these characterizations, we can easily identify the visible contours. See
Figures 3.2, 3.3, and Figures 3.4, Bfér examples. In these figures, the visible
portions of the horizons and the terminators are depicted as cyan and yellow curves
respectively. A green circle is drawn to reveal the location of the vantage point in
each setting. The boundaries between visible and invisible regions are represented
by blue surfaces. We observe that the blue surfaces cut through the objects exactly
at the visible contours.

Dy +-sgn (@) 0P

3.2. The dynamics of the horizon. Let X,(t) be the position of the vantage point
andx(t) be a corresponding point on the horizon at timeWe first consider a
single convex occlude® embedded by the signed distance functipnLet n(x)
denote the outer normal @R at x. This translates into the following constraints
onx(t):

Qx(t) =0
(3.2) { o) Do) —0

In two dimensions, we can invert the above constraints and derive that

(3.3) X = ( x ) _ 1%y

y K X —Xo

Here,K is the curvature of the occluding surfacexatln three space dimensions,
the horizon becomes a closed culvés) = x(s,t), wheres is the arc length of
I'(s). Let P be the plane tangent t@, passing througli (s) andx,. Let (o) be
the curve on the intersection BfanddQ. Then, locally at andx, we have a two
dimensional visibility problem on the plafein which (o) defines the boundary

4modulo a small subset dfp < 0}, which we know is invisible by definition.
The terrain data is obtained frofap://ftp.research.microsoft.com/users/hhoppe/data/gcanyon/.
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FIGURE 3.1. Finding the visible silhouettes and their casts. The
occluders are the two circles depicted by the blue curves, and the
vantage pointis located &t1,—1). The green curves are the zero
level set offi. Visible silhouettes and their casts are characterized
by the intersections of different level set functions as described in
the text.

of the objects. Following this reasoning,should naturally be taken frofs(o).
See Figure 3.7.
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FIGURE 3.2. Visible contour (portions of silhouette and termi-
nator that are visible)

Alternatively and more naturally under our level set formulation, we rederive
the above motion law as
. H(x=x) (. Do
11 (x—Xo)|? (8]
wherell is thesecond fundamental fornmhich can conveniently be extended to
the other level sets and takes the form:
1

Il = ——Pry0%@P.
o e
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FIGURE 3.3. Visible contour (portions of silhouette and termina-
tor that are visible)

Here, Py is the orthogonal projection matrix projecting vectors to the plane with
normal vector parallel tdlg. Thus thek in (3.3) denotes the normal curvature of
the surface in the viewing direction.
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FIGURE 3.4. silhouettes and terminators obtained from the eleva-
tion data of Grand Canyon.

-0.5 -0.5

0.5 0.5

11

FIGURE 3.5. terminators and terminators obtained from the ele-
vation data of Grand Canyon.

For a detailed derivation and implementation, please see sections 5.4, 5.3 and
5.6. Figure 3.8 shows a result of horizon motion on a nonconvex body.

3.3. The dynamics of the terminator. Assume thak is a terminator point and
X*(x) is its generator. In two dimensions, the motionxofs determined by the
following constraints:

o(x) =0,
(3.5) { o X xe
[X—Xo| ~ [X*—Xo|"

Inverting, we find that the motion of the terminator can be written as follows:

(3.6) = (L (v5) L 4% - vt (),
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FIGURE 3.6. By taking the intersection of the occlusion during
a trajectory of the observer, we can find the cumulative occlusion
easily and efficiently. The following pictures show a progression
of the cumulative occlusion subject to an observer (“spy plane”)
moving across a region of Grand Canyon.

v

FIGURE 3.7.

where
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T

FIGURE 3.8. A example of moving silhouette around a noncon-
vex occluder. Observe that the silhouette curves break and change

topology.

and similarly forv-. See Section 5.5 for a detailed derivation. See Figure 3.9 for
a computational result using this formula. We notice that these constraints also tell
us how the shadow boundaries should move.



VISIBILITY AND ITS DYNAMICS IN A PDE BASED IMPLICIT FRAMEWORK 25
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FIGURE 3.9. A result of tracking the terminator and terminator
motion using the formulas derived in this paper. The blue curve
represents the trajectory of the vantage point and the green curves
represent the paths of the terminator and terminator. The black line
links the current position of the vantage point and the terminator;
it shows that the colinearity of the vantage point, the horizon and
its terminator is preserved.

In three dimensions, we can reduce the instantaneous motion to a two dimen-
sional problem on the “right” section of the surface following the reasoning given
in the previous subsection.

Motions of the shadow boundarieslow does the shadow move in space? We
can constrain a point on the shadow boundary to move only normal to the viewing
direction (ergo, the shadow boundary):

X'-v =0,
(3-7) { X—Xo __ X*—Xo

[X—Xo| ~ [X*—Xo|"

Motions of horizons and terminators of dynamic surfacéf& remark that we are
able to derive the motion laws of the visible contours even when the occluders are
changing shapes. In this case, the embedding level set fungtoa function of
space and timep(x,t) and differentiating formulas (3.2) and (3.5) with respect to

t will bring @(x,t) into the equations.

3.4. Analysis of the motions. The formulae derived in the previous subsection
can be regarded as a Lagrangian description of the horizon/terminator motion. We
extend the velocity to the domain near the surfaces and obtain the corresponding
velocity fieldv(x). We then evolve the level set function(sin question by

U +v-Ou=0.

The velocity fields for a horizon and its terminator do not depend on the func-
tion u. In horizon motion, we evolvé, the velocity is a function of postion,
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time, %o, and the derivatives af, i.e. v = v(t,x,Xo, 0@, D?p). Furthermore, the
level set function to be evolved Is In terminator motion, we evolvé, we have
¥ = U(t,x, %o, 0@, D@, ). Therefore, we are evolving the following two level set
equations:
By +V(t, X, Xo, O, D?@) - Oh = 0,

Py + V(t, X, X0, O, D%, 1) - O = 0.
These are simple convection equations whose viscoity solutions are well studied,
provided that the velocity fields are bounded. We only have to be careful near
singularities.

Formula (3.3) reveals a few interesting facts. First, we notice that the speed of
the horizon motion is inversely proportional to the normal curvature in the viewing
direction and to the distance between the horizon and the vantage point. If the
vantage point is moving in the tangent directigrithe horizon will not move (since
Xo-n = 0). The speed of the horizon motion becomes singular if the curvature of
the surface at the horizon location becomes zero. On strictly convex objects, this
will never happen. If we restrict our analysis to a single connected smooth non-
convex object, we see easily that at the instance in which a horizon point moves
into the location where = 0, a neightborhood of this location becomes completely
visible. This signifies the disappearance of the horizon point. If the course of the
vantage point is reversed, we get the genesis of a new horizon point.

Formula (3.6) tells us that the motion of a terminator point becomes singular
when it is a horizon point(- n = 0). On a single non-convex smooth surface, this
happens precisely when a horizon point and its cast across the concavity collide
into each other at the location whate= 0. In the setting where there are multiple
strictly convex objects, this also describes the changing of the terminator into a
visible horizon point which is previously invisible. Therefore, the singularities of
the horizons and terminators describe a part of their genesis. A complete genesis
of the visible contours includes another part, in which a hidden object suddenly
becomes visible. We shall discuss this point in a later subsection.

3.5. Relating horizon and its terminator. To move the terminator, following the
notation used in the previous section, we need toXir{e) for each poini on the
terminator. Of course, on the continuum levegndx*(x) are related by

X*(X) := X — w(X)v(X);
w(X) can be computed by

W(X) = [X=Xo| = P(V(X)),
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0=0
FIGURE 3.10. Propagating.

wherev andp are defined as previously. In fact, findipgor w is equivalent to
solving the visibility problem. Here, we propose an implicit method to find the
connection between a horizon point and its terminator in a fashion consistent with
our PDE approach; i.e. propagating information along the characteristics of a first
order PDE.

In general, letv(x) be the ray vector field. We can propagate the any “seed-
ing” horizon point along the ray. We will creat a vector fiddcby the following
procedures:

(1) SetP=PRy ¢ Q.
(2) Leth be defined as in (3.1]g be a thin tube of radiugaround the horizon,
andoH, = TaN{%~ = 0}. Solve by upwinding

OP-v(x) =0, P(z) = 2,Yz € OHa| J{Xo}.

Again, from the method of characteristi¢sjs extended constant to the ray direc-
tion from the horizon. See Figure 3.10. The soluti®is a piecewise continuous
function that is continuous around the terminator. When we move the poirgar
terminator, we also move move the poifix), which are points near the horizon.
By continuity, we will have the right motion with the terminator.

3.6. Reinitialization and emergence-time estimatelt can be easily seen from
figure 3.11 that a completely hidden object may suddenly become visible at a later
time during the journey of the vantage point. At the time of emergence, we need
to reinitialize our algorithm, i.e., we need to find the visible contours on the newly
emerged surfaces to get the correct visibility information. Assuming that we are
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FIGURE 3.11. Model scenario |

merely tracking the visibility boundaries on the objects. How do we know when
to initialize? We can formalize the reasoning as follows. We define thegndp
§-1 s (1 such that

G18) := {x; e RY: Oe(x;)/|0¢(x;)| = Bandep(x;) = O}.

This map is the inverse of the Gauss map in the cas€ ¢rat0} is a strictly convex
hypersurface. Le§ be the set containingandx®. We reinitialize whenever there
exists arx € Ssuch thaBly € G(v(y)) with x*(x) <y < x. This provides an explicit
criterion for reinitialization, but it is certainly not a trivial task. In our implicit
formulation, we have more information about the spatial structure of the occluders
that we are able to derive an estimate on the time of emergence of an hidden object
by using the knowledge of : 1) how the shadow moves; 2) how far a hidden surface
is from the shadow boundaries.

Given current vantage point position and its motion, we want to estimate the
emergence time for an object that is occluded. We begin by assuming the the
curvatures of the surfaces locally around the regions of interest are constant. The
diagram in Figure 3.12 shows a model configuration: The small circle is initially
occluded by the larger circle on the left. We want to estimate the time int&rval
between this instandg and the time;, = to+ &t when the small circle first emerges
into the scene.

Following the discussion above, consider a pgirdn the shadow boundaries
away from the horizon such thaip(y) L v(y) andO@(y) - O@(y(x)) > 0. This is
the point closest to some hidden part of the objects.

For consistency of notation, we will ugin place ofy. Letd be the distance
betweenD and the circle centered &. Letp andp’ be the radius of the circle
centered a© andO' respectively. Let denote the distance betwePrandC’. We
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FIGURE 3.13. bad case for moving curves

have the following identities:
CC = ptané—ze, CD=r-CC =r— ptané—ze, = DE = CDsind0,

/ A/

p/
cosdf
Therefore, we can find0 from the last two equalities. Since we know how fast the
horizon is moving, we can then determidte

LetX = |X|,
DE _ . 5. DE
a T X
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3.6.1. Further considerations — spatial and temporal scalé¢e have mentioned

in the beginning of this paper that the approach of moving the visible contour may
not be more efficient than simply performing implicit ray tracing in general “large
world” configurations. Here we construct such a case to validate our arguments.

Consider a nonconvex part of an object as shown by the dashed red curve in Fig-
ure 3.13. Suppose the dashed curve is broken down into dense small disconnected
components. In the case where the red curve is the nhonconvex part of a connected
component and with the viewing direction being depicted in Figure 3.13, the ter-
minator will move continuously on the nonconvex part of the object without need
for reinitialization.

In essense, this is really an issue of spatial and temporal scales. If the time
scale of interest is significantly larger than the distance between these objects, i.e.
the vantage point and the occluding surfaces are moving relatively fast when com-
pared to the size of the occluders, then frequent reinitialization is inevitable, and
the dynamic approach may be inpractical. In this case, we can reconsidered the
strategy mentioned ealier of merging these small pieces together, and considered
the dynamics in the new “homogenized” setting.

4. CONCLUSION AND FUTURE DIRECTIONS

In this article, we introduced a fast implicit ray tracing algorithm independent of
grid geometry and easily parallelizable. This is then extended to a multi-resolution
algorithm for near optimal efficiency. Furthermore, we showed that the implicit
framework captures accurately the shadow boundaries, which include the horizon
and terminator curves. We studied how these objects move when the source point
is moving. Explicit formulas which reveal the relations between the motions and
the local/global geometry of the given configuration are derived and are tightly
coupled with our level set framework for implementation. Also, questions such
as “how soon will this hidden object appear” can be answered as a result of our
algorithm.

There is a rich pool of applications related to the visibility problem described
in this paper. Currently we are working on problems related to navigation, visibil-
ity with occluders changing shapes in time, in hon-uniform media. Our solutions
will combine approaches both from the PDE formulation and the algorithms in
computational geometry.
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FIGURE5.1. A demonstration of 2D and 3D interpolation

5. APPENDIX

5.1. Interpolation schemes. Since the majority of visibility applications benefit
from the simplicity of Cartesian grids, we need to adapt the algorithm in order to
take advantage of this. As described in the algorithm, at each gridpsift j, k),
we need to determine an upwind neighlxoand find the value ofy(x'). In most
casesx does not lie on the grid. Therefore, we need to interpolate the values of
Y from the grid points closest t&. For simplicity and speed considerations, we
choose to perform linear interpolation in 2D and bilinear interpolation in 3D. In
Figure 5.1, we us&(Py) andy(P,) for linear interpolation in the 2D case and use
W(R),i=1,2,34, for bilinear interpolation ofp.
We note that a fast marching or fast sweeping strategy for determining distance
from the source point and passing values can be used in place of this interpolation.
Let Yint be the interpolant neat, we know thatin; (X') = W(X') + O(h?). Thus,
the discrete visibility equation (2.3) is in effect

Y(x) = min(Wint(X), 9(X)).

5.2. Examples of star-shaped updating sequence (sweepingdjhere are many
different ways of implementing a star-shaped updating sequence. One approach
is to use the algorithm based on the heap sort strategy [27] to find grid nodes for
update based on their distance to the vantage point. However, due the complexity
involved with heap sort, this algorithm is not optimal.

Alternatively, we use a sweeping approach in our simulation. For example, let
us consider a Cartesian grid in 2D and assume that the vantage point lies on a
grid node; we can then consider separately the visibility problem in each of the
four quadrants centered at the vantage point. For simplicity, let us assume that the
vantage point is at the origin and the grid is represented by the I&ttigeny] x
[—ny,ny] C 72. A compact way of writing this sweeping sequence in C/C++ is:
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*****************************************

*****************************************

FIGURE5.2. The red points denote the cell vertices.

for(sl=-1;sl1<=1;s1+=2)

for(s2=-1;s2<=1;s2+=2)

for (i=0; (s1<0?i>=-nx:i<=nx);i+=sl)

for (3=0; (s2<0?3j>=-ny: j<=ny); j+=s2)

update .

In the case wher&, does not lie on a grid node, we describe an easy mod-
ification to the updating sequence above. Xt lg := [Xig,Xig+1) X Yo, Yjo+1)-
Update the values aff on the vertices of,. Then update the grid nodes in the strips
{(%i,y;j) i =lo,io+1andj = —nytony} and{(x;,y;) : i = —ny,nxandj = jo, jos+1}-
Finally, update the remaining four quadrants independently. See Figure 5.2 for a
depiction of this approach.

Finally, we remark that the for loops presented above are meant to demonstrate
one possible upwind update sequence for the construction of the solution. In real
implementations, one should break it up for better efficiency.

5.3. Finding the curvature of a specified direction. As we argued in Section
3.2, the three dimensional problem of determining the motion of the horizon can
be reduced to an instantaneous two dimensional problem. In order to move the
horizon in this manner, we need to evaluate the curvature of the surface in the
specified direction. Here we present a way to do that.

Let T be the tangent vector being specified. We want to find the curvatu@on
in this direction. First lefp(x; 1) be the plane passing throughspanned by (x)
andt, and letP be the level set function that embeds this plane. Then
Opx OP

fo PN
|Opx OP|’
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wheret(x) = 1, and the curvature is
ken = O0F -1
5.4. Derivation of the dynamics of horizon. We follow the constraints (3.2):

®(x)=0
(X—Xo)-Op(x) =0

and differentiate with respect towe have

(5.1) O@(x)-x=0

(5.2) (X~ Xo) - DPQ(X)X = o - IG(X)

In 2 space dimensions, these two relations uniquely determine the motion of
with given initial conditions. WritingX —Xo) = |[X—Xo| N (X) = X —Xo| (=@, @) /| O],

we have
X=Xo| [ =@ | [ Bx @y X
O 0¥ Gx Py y
_ x=Xol [ @O+ BPx | [ X
00\ —@@y+ oy y )’
X —Xo| 0N 0 X
|0¢l —QPx+ BPx  — PPy + BBy y
B 0
—\ %o-Og(x)
X\ jog 1 Byt e@y —@ 0
y X%lD\  @on—a@x @ Xo - O@(x)

_ 0ol %o Dux) [ —®
[x—xo| D oy ’

and

where

O
I

det e @

O Pxt cPyx PPy + PPy
= —Q@By+ KRy + TPx— BB By
EQy+ B — 20P Py,
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Since the curvature @fQ atx is

U
K -
U
1
= W(qﬁ%ﬂ'qﬁ(&x—z&%(&y%
the motion ofx is
[ x) 1% -n(x) |
(5.3) X_<y>_ﬂx—xo]n (X).

We definent (x) = (X — Xo)/|X — Xo.
Alternatively, we can writein a slightly different form:
2
ke o ) o )
|Pae?@(x —X0)|

whereP, is the orthogonal projection matrix projecting vectors to the plane with
normal vectow. Let us check this expression for the velocity of the curve. Note
O-x = 0 sincev- P,w = 0 for all vectorsv andw. Also, 02@(Xx — Xo) - X = @- Xo
is satisfied sinc®w-w = |P,w|? for all vectorsv andw. Thus this velocity is valid
and is the first form in our alternate derivation.

Geometric interpretation. If x indeed represents the position of the curve, then
X— X is tangent to the object surfacexend sax — Xg = Py(X — Xo). Making this
replacement above gives our second form for the velocity,

. PDchZ(PPD(p(X_ Xo)
B |Pop2@Pag(X —Xo)|?
This form is particularly nice because we know the second fundamental form in a
level set framework is transformed to
I = ﬁpmpmchpm.
Thus we can rewrite the velocity in its final form,

o ITx=x) (. D¢
= T x—x0)2 <X° rm«m)‘

Ilv evaluated at a point represents the change in the normals of the object surface
in the direction ofv at that point.

(%-Ug).

5.5. Derivation of the dynamics of the terminator . We assume that the level
sets ofpnearx are smooth curves and are not tangent tm two space dimension,
we have two equations that determine the dynamiocs:of
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FIGURE 5.3. Model terminator scenario

(5.4)

@(x) = constant
v=V

Let r andf denote(x — X,) and (X — Xo) respectively. Differentiating these
equations, we arrive at:

O@(x)-x' =0,
r ' v-r' = r r V-
r|rf? .
Notice that the term
! r !/
V-r 0] =V -rv

is r’ projected onto the unit vectar. Therefore, the left hand side denotes the
projection ofr’ onto the unit vectop:
r-vt 1

—Ryr’.
I

(r —v-r'v) =

Similarly, with the right hand side, we have the equation:

1 1
Pvr -
Irl 7| \
Keeping in mind that we want to solve faf, we move every other term to the right
hand side and arrive at ‘

RPX =

PV (o}]

—

e
De(x) - x
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In two dimensionsR,w = (w-v+)vt, andR,w-v+ = w-vt, therefore, we have

Vo —Vp X\ _ I;T{F’-vierg-vL
Ga o X 0

and consequently,

X B 1
X, | v-O@(x)

B 1
~ v-O(x)
Irle 1, o oL @,
O S Y
(||'| (0] ) _(p)(l
_ nL(X) |r|~/ / 1
~ v-n x)(mr +Xo) v

where

5.6. Numerics. We computed the quantities describe in this paper using standard
level set technologies. Please refer to [17, 18, 19] for details.

5.7. Alist of level set functions used in this paper.We provide a comprehensive
list of the level set functions we construct in this paper:

¢. embeds the objects

R(X) := (X —Xo) - J@(X): characterizes the horizon

@:=max@,—h): {p<0} ={@<0}\{h< 0}, defines the same visibility ag

y: the visibility map resulting from the implicit ray tracing @n

{: the visibility map resulting from the implicit ray tracing qmcharacterizes
the terminator

P: R — RY: links horizon to its cast implicitly
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